Planar Upward Tree Drawings with Optimal Area*

Ashim Garg Michael T. Goodrich Roberto Tamassia
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
Brown University The Johns Hopkins University Brown University
Providence, RI 02912-1910 Baltimore, MD 21218-2694 Providence, RI 02912-1910
ag@cs.brown.edu goodrich@cs. jhu.edu rt@cs.brown.edu

September 23, 1993

Abstract

Rooted trees are usually drawn planar and upward, i.e., without crossings and without any
parent placed below its child. In this paper we investigate the area requirement of planar
upward drawings of rooted trees. We give tight upper and lower bounds on the area of various
types of drawings, and provide linear-time algorithms for constructing optimal area drawings.
Let T be a bounded-degree rooted tree with N nodes. Our results are summarized as follows:

o We show that 7" admits a planar polyline upward grid drawing with area O(N), and with
width O(N?) for any prespecified constant o such that 0 < o < 1.

e If T is a binary tree, we show that 7" admits a planar orthogonal upward grid drawing
with area O(N loglog N).

e We show that if T is ordered, it admits an O(N log N)-area planar upward grid drawing
that preserves the left-to-right ordering of the children of each node.

e We show that all of the above area bounds are asymptotically optimal in the worst case.

e We present O(N)-time algorithms for constructing each of the above types of drawings of
T with asymptotically optimal area.

o Wereport on the experimentation of our algorithm for constructing planar polyline upward
grid drawings, performed on trees with up to 24 million nodes.

Key Words Graph drawing, layout, upward drawing, tree, area, grid.

*Research at Brown University supported in part by the National Science Foundation under grant CCR-9007851,
by the U.S. Army Research Office under grant DAAL03-91-G-0035, and by the Office of Naval Research and the
Defense Advanced Research Projects Agency under contract N00014-91-J-4052, ARPA order 8225. Research at The
Johns Hopkins University supported in part by the National Science Foundation under Grants CCR-9300079, CCR-
9003299 and IRI-9116843, and by the NSF and DARPA under Grant CCR-8908092. An extended abstract of this
paper was presented at the Ninth Annual ACM Symposium on Computational Geometry, San Diego, CA, May 19-21,
1993.

1 Introduction and Overview

The research area of graph drawing presents an exciting connection between computational geometry
and graph theory. The general setting is that we are given a graph G, and we wish to produce a
geometric representation of G that visualizes G’s “important” properties. For example, we may
wish to display all the symmetries in G, or, if G contains a Hamiltonian cycle, we may wish to draw
G as a regular polygon with chords. The interest in this area has been growing significantly of late
(see, e.g., [7, 11, 16, 17, 20]). For example, the annotated bibliography maintained by Di Battista,
Eades, and Tamassia [10] mentions more than 250 papers in graph drawing. Important domains of
application for graph drawing algorithms include software engineering, project management, visual
languages, and VLSI layout.

Perhaps the most studied graph drawing problem is that of producing a planar drawing of a
planar graph (e.g., see the classic work of Tutte on planar convex drawings [27] and the recent
results on planar straight-line drawings [11, 12, 17, 20, 25]). But there are a variety of other
interesting graph drawing problems that are also being investigated of late, such as representing
G by means of visibility between geometric figures in the plane (e.g., see [24, 26] and O’Rourke’s
computational geometry column [21]), or dynamically maintaining a drawing under a sequence of
insertions and deletions of vertices and edges, as studied by Cohen et al. [7].

1.1 The Problem

An important criterion for a drawing of a graph is that it take up as little area as possible. This
is motivated by the finite resolution of all of our current technologies for rendering a drawing, and
also by circuit-area optimization criteria in VLSI layout [2, 19, 28]. In the following, we assume the
existence of a resolution rule that implies a finite minimum area for the drawing of any graph. A
typical resolution rule is to require grid drawings, where the vertices and bends of the edges have
integer coordinates. Indeed, this consideration recently motivated the re-examination of straight-
line drawings of planar directed graphs, because they require exponentially-large area [9], whereas
several researchers have recently shown that planar graph drawings require only quadratic area,
and that such drawings can be produced in linear time [12, 17, 25]. Moreover, some very nice recent
work by Kant [17] shows that a number of other aesthetic criteria (such as convex faces) can be
satisfied for a planar drawing while still keeping the area quadratic.

In this paper we study area-eflicient drawings of rooted trees. The goal of this research is to
draw an N-node tree T in as little area as possible while still maintaining certain aesthetic qualities
of the drawing. The aesthetic qualities we are particularly interested in are that the drawing be
planar and upward, i.e., that every edge of T be a vertically monotone chain from the child to the
parent, so that the parent « of a node v has y-coordinate greater than or equal to the one of v. This
is the natural way in which rooted trees are usually drawn to display their hierarchic structure (e.g.,
see any undergraduate text in data structures). The difficulty is that most of the known techniques
for constructing planar upward drawings of trees require (N?) area in the worst case [22, 23].

1.2 Previous Work

If we relax the upward requirement, however, then, as independently shown by Leiserson [19] and
Valiant [28], one can construct an O(N)-area planar orthogonal grid drawing of an N-node tree T,
where the nodes are placed at integer grid points and the edges follow paths of the grid. However,
Brent and Kung [5] show that if the leaves of an N-node complete binary tree are constrained to
be on the convex hull of the drawing, then the drawing needs Q(N log N) area.

Thus, a natural question is whether O(N) area is still achievable for planar upward drawings.

Crescenzi, Di Battista, and Piperno [8] have recently provided a negative answer to this question
for the case of strictly upward grid drawings, where the nodes have integer coordinates, and the
parent of a node has y-coordinate strictly greater than the ones of its children. Namely, they exhibit
a family of binary trees that require Q(N log N') area in any strictly upward planar grid drawing.
They also show that this lower bound is tight within a constant factor: they give an algorithm that
constructs a strictly upward planar straight-line grid drawing of an N-node tree with O(N log NV)
area, O(N) height, and O(log V) width.

Their result doesn’t settle the question for the standard notion of upward drawing, however,
which allows a child node to be on the same horizontal line as its parent, so long as it is not
above its parent. In addition, the issue is clouded somewhat by the fact that producing the exact
minimization of the area of the drawing of a tree is NP-hard under several drawing conventions [1,
4, 13]. Nevertheless, Crescenzi et al. give O(N) area planar straight-line upward grid drawings of
complete binary trees and Fibonacci trees. They do not, however, give a general construction for
other types of trees.

Related results on the area requirement of visibility representations of trees are given in [18].

1.3 Our Results

In this paper we show that, for any rooted bounded-degree tree T" with N nodes, one can construct
a planar upward grid drawing of 7" with O(N) area in O(N) time, and that such drawing can have
width O(N®), for any prespecified constant o such that 0 < a < 1. The latter feature provides
great flexibility to applications that need to fit the drawing in a prescribed region of the plane. We
also extend our approach to trees of arbitrary maximum degree d, at a small additional cost when d
exceeds N'7¢ for any € > 0. Our drawings do not preserve the left-to-right ordering of the children
in T, however. But this should not be surprising, for we show that if one requires a planar upward
tree drawing to preserve the left-to-right ordering, then the drawing requires at least Q(N log V)
area in the worst case, and we show that this is tight to within a constant factor. Our O(N)-area
drawing is for the polyline grid model, where the nodes of T are mapped to integer grid points, and
the edges of T are mapped to polygonal chains with bends at grid points. These polygonal chains
need not follow along grid edges, however.

If one desires such a drawing, then in Section 4, we show that one can construct a planar upward
orthogonal grid drawing of an N-node binary tree T" with O(N loglog N) area in O(N) time. This
loglog N factor in the area may, at first, seem unnatural, but we show that it is not, for we give
an N-node binary tree that requires Q(N loglog N) area for any upward orthogonal grid drawing.
Thus, we show that there is an intermediate case between the @(NV) area achievable for non-upward
planar orthogonal grid tree drawings and the ©(N log V) area achievable for strictly-upward planar
grid drawings, or for upward planar grid drawings that preserve the left-to-right order. It is also
interesting to observe that the upward requirement penalizes the area less than the requirement of
placing the leaves on the same horizontal line, for which the (N log V) area bound also applies [5].
We summarize the previous and current bounds on planar grid tree drawing in Table 1.

2 Preliminaries

In this section we give definitions that will be used throughout the paper.

A drawing T' of a graph G maps each vertex of G to a distinct point of the plane and each
edge (u,v) of G to a simple Jordan curve with endpoints v and v. We say that I' is a straight-line
drawing (see Fig. 1.a) if each edge is a straight-line segment. I' is a polyline drawing (see Fig. 1.b)
if each edge is a polygonal chain, and we call bends the intermediate vertices of the chain that are

Tree Type ‘ Previous Bounds ‘ Our Bounds H

Upward Polyline O(NlogN) [8] O(N)
Strictly-Upward Straight-Line | O(N log N) [8]

Upward Ordered Polyline - O(NlogN)
Upward Straight-Line (com- O(N) [8]

plete binary trees and Fi-

bonacci trees)

Non-Upward Orthogonal O(N) [19, 28]

Upward Orthogonal - O(N loglog N)
Leaves-on-Hull Orthogonal O(Nlog N) [5]

Table 1 Area-requirements for planar grid tree drawings.

not vertices of G. 1" is an orthogonal drawing (see Fig. 1.c) if each edge is a chain of alternating
horizontal and vertical segments. A grid drawing is such that the vertices and bends along the edges
have integer coordinates. Planar drawings, where edges do not intersect, are especially important
because they improve the readability of the drawing, and, in the context of VLSI layouts, they
simplify the design process [2, 19, 28]. An upward drawing of a directed graph is such that every
edge is a curve monotonically nondecreasing in the vertical direction (when traversed along the

direction of the edge).
(a) (b)

(c)

Figure 1: Example of planar upward drawings of the same binary tree: (a) straight-line; (b)
polyline; (c) orthogonal.

The area of a drawing I' is the area of the smallest rectangle R with sides parallel to the axes
covering the drawing. The width and height of I' are the width and height of R, respectively. We
assume the existence of a resolution rule that implies a finite minimum area for the drawing of any
graph. A typical resolution rule is to require grid drawings. When a resolution rule is given, it is

meaningful to consider the problem of finding drawings with minimum area.

Let T be a rooted ordered tree. We assume that each edge of 7 is directed from the child to
the parent. The ordering of the children of a node v will be referred to as their left-to-right order.
Hence, the first and last children of v will be referred to as the leftmost child and rightmost child
of v, respectively. The degree of a node of T is the number of its children. Tree T is said to be
left-heavy (see Fig. 2.a) if, for every node v of T', the children of v are ordered by nonincreasing
size of their subtrees. A leftmost path of T is a maximal path consisting of nodes that are leftmost
children, except the last node.

A binary tree is defined as a rooted tree such that each node has at most two children. Examples
of planar upward drawings of a binary tree are given in Fig. 1.

3 Polyline Drawings

In this section we investigate polyline drawings. First, we describe a layering technique that will
be used to construct the drawings.

3.1 Upward Layerings

We define the inorder visit of a rooted ordered T as follows:

1. recursively visit the first subtree of T';
2. visit the root of T7;

3. recursively visit the other subtrees of T, in left-to-right order.

(a) (b)

Figure 2: (a) Example of upward layering A of a left-heavy tree. (b) Drawing associated with A.

An upward layering of T is a mapping A of the nodes of T' to nonnegative integers that satisfies
the following properties (see Fig. 2.a):

1. If w is the leftmost child of v, then A(v) < A(w);

2. If wis a child of v but not the leftmost child, then A(v) < A(w).

3. If w is the root of T, then A(u) = 0.

We say that a node v is assigned to layer 7 if A(v) = ¢. An edge (u,v) is said to traverse layer
i if A(v) < © < A(u). The height of upward layering A is defined as max,er A(v). The width of a

layer ¢ is the number of nodes assigned to layer ¢ plus the number of edges that traverse layer <.
The width of A is the maximum width of a layer.

The following theorem shows that an upward layering can be extended to a planar polyline

upward grid drawing where the nodes are placed along horizontal lines associated with the layers
(see Fig. 2.b).

Theorem 1 Given an upward layering A with height H and width W of an N -node ordered tree
T, a planar polyline upward grid drawing of T with height W and width H can be constructed in
O(H - W) time.

Proof: First, we insert dummy nodes along the edges that traverse layers. Namely, if edge (u,)
traverses layers ¢ through j, we insert j — ¢+ 1 dummy nodes along (u, v), and assign them to layers
i through j, respectively. Let T’ be the resulting tree. For each node v of T’, we set y(v) = —A(v),
and z(v) equal to the number of nodes of layer A(v) preceding v in the inorder visit. The edges of
T" are then drawn as straight-line segments. Clearly, this yields a straight-line upward grid drawing
of T" with height H and width W, such that every edge either joins nodes of consecutive layers, or
joins a leftmost child to its parent on the same level. We claim that the drawing is also planar. To
prove the claim, we observe: (a) a horizontal edge (u,v) on layer ¢ cannot be crossed because all
the nodes between u and v in the inorder sequence are assigned to layers below ¢; (b) if there were
a crossing between edges (v', w') and (v”,w"), where w’ precedes w” in layer 7 and v" precedes v’
in layer 7 + 1, then we would have that w’ precedes w” in the inorder sequence but v’ follows v” in
the inorder sequence, a contradiction. Finally, we obtain a planar polyline upward grid drawing of
T by replacing the dummy nodes of 7’ with bends. The height and width are not affected. The
above construction can be easily carried out in time O(H - W). O

Therefore it is sufficient for us to describe how to construct an upward layering of a tree.

3.2 Drawing Algorithm

In this section we describe an algorithm for constructing an upward layering of an N-node rooted
tree. If the tree has bounded degree, an upward layering with width O(N®) and height O(N'~%)
can be constructed for any constant a such that 0 < a < 1.

So, let 1" be a left-heavy ordered rooted tree with N nodes (we will show how to remove this
left-heavy restriction later). The following algorithm constructs an upward layering A of 1" with
width O(N® + dlog N) and height O(N'~%). The algorithm incrementally assembles an ordered
sequence A of nodes of T, and marks some nodes of T, such that the following invariants are
maintained:

1. If u precedes v in A, then A(u) > A(v); and

2. a node is marked if and only if it is the the first node of its layer contained in A.

The assembly of A is performed by repetitive insertions of leftmost paths. At the end of the
computation, the sequence A contains all the nodes of T', so that A and the marking of the nodes
uniquely identify the upward layering A. Note that in the sequence A a child precedes its parent,
while in the layering A, a child is assigned to a layer number greater than or equal to the one of its
parent. The algorithm consists of three steps:

1. Preprocessing: Initialize A as the leftmost path containing the root of 7T'.

2. Main Loop:

for k=1, ---,log N do (round k)
(a) Select the nodes v of T’ such that
e v is a child of a node of A;

e v is not already in A; and

e the subtree rooted at v has size at least N/2*.
(b) Sort the selected nodes according to the order of their parents in A.

(¢) Partition the sorted sequence of selected nodes into blocks of 2%¥ nodes (with the last
block possibly having fewer nodes).

(d) For each block (v1,---,v,), let u be the parent of v;. Mark u and successively insert
into A the leftmost paths of vy, - -+, v, right before w.

endfor

3. Postprocessing: Scan sequence A, and mark a node if it has N® — 1 unmarked predecessors.

Layering A is finally constructed by assigning node v to layer ¢ if there are ¢ marked nodes
following » in A.

Block 1 (a) Block 2

xXyz u v

round k=4

xXyz u v
000 0000000000000 0-Q QO oo o000 00Qeeoeoeoeo

Block 1 N Block 2
(b)

Figure 3: Illustration of the upward layering algorithm of Theorem 2.

The algorithm is illustrated in Fig. 3. An example of the layering A produced (for a different
tree) is shown in Fig. 2.

Theorem 2 Let a be a constant such that 0 < a < 1. Given an N-node lefi-heavy rooted ordered
tree T with mazimum degree d, an upward layering X\ of T with height H = O(N'™%) and width
O(N/H + dlog N) can be constructed in O(N) time.

Proof: Every node is eventually inserted into A. Namely, after round % all the nodes in the leftmost
path of a subtree of size N/2* are inserted into A. Hence, every node is assigned to a layer. All
the children of a node v precede v in A. Also, if u is a child of v but is not the leftmost child of
v, then A(u) > A(v) because either v is marked, or there is a marked node between u and v in A.
Hence, A is an upward layering.

We say an edge (u,w) of T is across a marked node v if u precedes v, and v precedes w in A.
After round k, the number of edges across a node is increased by at most 2°f + d — 1. Hence, at
the end of the main loop the number of edges across a marked node is at most

log N o

Y (2% 4d—1) = 2 (N 1)+ (d- 1)log V.
k=1

The postprocessing step does not increase the number of edges across a marked node. After the
postprocessing step, at most N® nodes are assigned to a layer. Also, the number of edges that
traverse a layer is less than or equal to the number of edges across the marked node of that layer.
We conclude that the width of A is at most

e

NE4
T

N —1)+(d—1)logN.

After round %, the number of marked nodes is increased by at most 2(:=)% 4 1. Hence the total
number of nodes marked in the main loop is at most

log N 9l—a
(l—oz)k _ 7l—a T
;;:1: (2 +1)) = s (D 1) + log N.

The postprocessing step marks at most N!=% nodes. The height of) is equal to the number of
marked nodes, so that it is at most

N~ 4 21%0(7_1(1\71_“ —1)+log N.

To achieve linear time complexity, we set up a data structure that allows us to efficiently perform
Steps 2a—2b. We say that a node is active for round k if it is in A and has a child not in A whose
subtree has size at least N/2*. A node is called active if it is active for any round k. We maintain
log N lists such that, before round &, the k-th list contains the nodes active for round k. Within
each list, the active nodes are in the same relative order as in A. An active node can appear in
more than one list, and has pointers to its representatives in the lists.

The nodes selected in round % are children of the nodes in list &, so that they can be accessed
and sorted in Steps 2a-2b in O(1) time per node. Every node v that has more than one child and
gets inserted into A at round k£ becomes a new active node, and its representatives are inserted into
the appropriate lists. The insertion in each such list is carried out in a manner similar to insertion
in A. This can be done in O(1) time per representative in Step 2d. Also, whenever a node becomes
inactive for round k, we remove its representative from the k-th list. Again, this can be done in
O(1) time per representative. Therefore, the total time for maintaining the lists is proportional to
the maximum total size of the lists. The k-th list can have at most 2¥ nodes. Since a node in list
k is also in list &’ for &’ > k, we have that the maximum total size of the lists is

log N
Y 2% (logN —k+1)=4N —log N — 1.
k=1

The remaining computations can be performed in O(N) time, and we conclude that the time
complexity of the algorithm is O(NV).]

Theorem 3 Given a rooted tree T with N nodes and mazimum degree d, and a constant o such
that 0 < a < 1, a planar polyline upward grid drawing of T with height H = O(N'=%) and widlh
O(N/H + dlog N) can be constructed in O(N) time.

Proof: First, permute the children of a node so that they are ordered by nonincreasing size. The
tree so obtained is left-heavy, so that the result follows from Theorems 1-2. a
Theorem 3 implies the existence of optimal area planar upward polyline grid drawings for trees

of maximum degree O(N?®), for any constant é such that 0 < é§ < 1.

Corollary 1 Given a bounded-degree rooted tree T with N nodes, and a constant o such that
0 < a < 1, a planar polyline upward grid drawing of T with area O(N), height H = O(N'~%) and
width O(N/H) can be constructed in O(N) time.

Corollary 2 Let a and 6 be constants such that 0 < § < a < 1. Given a rooted tree T with N
nodes and mazimum degree O(N°%), a planar polyline upward grid drawing of T with area O(N),
height H = O(N'~%) and width O(N/H) can be constructed in O(N) time.

The algorithm described in this section has been implemented for binary trees. The drawing
produced for a complete binary tree with 63 nodes and a = 1/2 is shown in Fig. 4.

N

L
AN
Figure 4: Drawing of the complete binary tree with 63 nodes produced by the implementation of
the algorithm of Corollary 1 with @ = 1/2.

3.3 Order Preserving Drawings

The drawings obtained with the above algorithm do not preserve the left-to-right order of the
children. This is justified, however, by the following lower bound:

Theorem 4 The N-node ordered binary tree By requires Q(N log N') area in any planar upward
polyline grid drawing that preserves the order of the children.

Our proof of this theorem is based upon the following lemma:

Lemma 1 Any planar upward polyline grid drawing of the complete binary tree with N nodes has
Qlog N) width and Q(log N') height.

Proof: Let us denote by H(N) and W(N), the minimum height and width, respectively, of an
upward polyline grid drawing of an N node complete binary tree 7.

In any upward polyline grid drawing of T, a node, its children and its grand-children can
not all be placed at the same height. Hence we get the recurrence H(N)> H((N —3)/4)+ 1;
H(1)= H(3)=0. Therefore H(N) = Q(log N).

The width of any upward polyline grid drawing of T is at least one plus the minimum of the
widths (of the drawing) of the subtrees of 7" in the drawing. Therefore W(N) > W((N —1)/2)+ 1
with W (1) = 0. Hence W(N) = Q(log V). o
Proof: (For Theorem 4) Let By be an ordered binary tree comprising (see Fig. 5.a):

e a chain with N/3 nodes, alternating between left and right children;

e N/3 leaves attached to each node of the chain, alternating as left and right children; and

e a complete subtree with N/3 nodes attached to the bottommost node of the chain.

chain with
N/3 nodes

(b)

complete

binary tree

with N/3
nodes

(a)

Figure 5: Order-preserving drawings: (a) Tree for the lower bound of Theorem 4. (b) Each edge
of chain increases height by at least one unit.

In any planar upward polyline grid drawing of By, because of the order of the children, each
edge of the chain contributes at least one unit to the height of the drawing (see Fig. 5.b) so that
the chain requires Q(N) height. By Lemma 1, the complete subtree requires Q(log N) width. O

Incidentally, the lower bound of Theorem 4 is tight. It can be achieved with the following simple
recursive algorithm:

1. Let T1,T5,...,T,, be the subtrees of a bounded degree tree T" whose root is v (see Fig. 6.a-
here m is five). Let the root of the subtree 7; be denoted by v;. Recursively construct the
drawings of each T;. Vertically stack their drawings (see Fig. 6.b) so that the subtree at the
bottom has the maximum size among the subtrees (other subtrees can be placed in any order,
e.g. in Fig. 6.b, they are in the order 14,75, 75,75 from bottom to top). Place the root v
above the drawing of the topmost subtree.

2. Now for every T;, draw edge (v;,v) as a polyline that uses one vertical track (grid column)
either on the left or on the right of each 7; drawn above T; depending upon whether 77 is to
the left or right of 7; in 7', and correspondingly switches from left to right or vice-versa (see
Fig. 6.b). This completes the construction of the drawing of the tree 7.

Y

Ty To Ty Ty Ts

(a)

(b)

Figure 6: Example with m = 5 for constructing order-preserving drawings: (a) Tree 17" with
subtrees 17,15, ...,T5. (b) Drawing of 7', where the rectangles represent the drawings of the 7’s.

Theorem 5 Given a bounded-degree tree T with N nodes, a planar polyline upward grid drawing
of T' with width O(log N), height N —1 and area O(N log N) that preserves the order of the children
can be constructed in O(N) time.

10

Proof: Let Ty,T5,...,T,, be the subtrees of T and v be the root of T'. Let the root of the subtree
T; be denoted by wv;.

Since m is a constant, only a constant number (say ¢) of vertical tracks are needed to route all
the edges of the type (v;,v). Let T be the subtree that is drawn bottommost and hence has the
maximum size among the subtrees. Therefore if we denote by W (1') the width of the drawing of
T, we have:

W(I) < max(W (1), max(W (1) + o) (1)

Let width(N) be the maximum width of the drawing, constructed by the algorithm, of any tree
with N nodes. Now we show inductively that width(N) < alog, N, for some constant a > ¢. This
is trivially true for N = 1 since width(1) = 0.

Now suppose this is true for any tree with less than N nodes. If NV is the size of a tree 1', then
the size of T} (as defined above) is at most N —1 and since there can be at most two subtrees of sizes
both at least (N — 1)/2, size of any subtree T; of T, for ¢ # k is at most (N — 1)/2. Therefore from
equation 1 and our inductive hypothesis, width(N) < max(alog,(N — 1), alog,((N —1)/2) + ¢).
For a > ¢, we have width(N) < alog, N.

It is easy to prove by a simple inductive argument that the height of the drawing of T"is N — 1.
Thus the area of the drawing is O(N log V).

The algorithm can be trivially implemented in linear time. a

4 Orthogonal Drawings

In this section we consider planar orthogonal upward grid drawings of binary trees, and provide a
tight ©(N loglog N) bound on the area.

4.1 Drawing Algorithm

First, we present a simple straight-line drawing algorithm that will be later used as a subroutine.
We say that a node in a drawing is obstructed if the the vertical line through v intersects the drawing
below v. The algorithm is based on the proof of the following lemmas:

Lemma 2 Let T be a binary tree with N nodes. A planar straight-line orthogonal upward grid
drawing of T with width at most N and height at most log N, such that every node of degree 1 or
2 is not obstructed, can be constructed in O(N) time.

Proof: The algorithm first transforms the tree into a left-heavy binary tree. Then for every node
v, it sets y(v) equal to the number of nodes on the path from v to the root that are right children.
Finally traversing the left-heavy binary tree in the post order sequence, for every node v, it sets
z(v) equal to the z-coordinate of its right child, if it has one otherwise sets z(v) to one plus the
z-coordinate of the last vertex visited before it. a

An example of a drawing constructed by the algorithm of Lemma 2 is shown in Fig. 7.a. Now,
we recall some definitions on separators of binary trees. Let T be a binary tree with N nodes. A
partial tree of T is a tree which is a subgraph of 7. (Note the difference between partial tree and
subtree.) A separator of a binary tree T is an edge of 7" whose removal divides 7" into two partial
trees, each with at least N/3 nodes and at most 2N/3 nodes (e.g., see Chazelle [6]). A recursive
decomposition of T by separators defines a binary tree 5, called separator tree, where each leaf of
S corresponds to a node of 7', and each internal node p of S corresponds to a partial tree 7, of T
and to the separator s, = (u,v) of T, with the left child of & being associated to the partial tree
of T, rooted at u, and the right child associated with the rest of 7},. Tree S has 2N — 1 nodes,
height at most logg/, IV, and can be constructed in O(N) time (e.g., see Guibas el al. [15]).

11

(a) (b)

OO DO

(c) (d)

Figure 7: Illustration of the Algorithm of Theorem 6: (a) Example of a drawing produced by the
algorithm of Lemma 2. (b) A tree T" and the separators that join blocks. (c) Truncated separator
tree of 7. (d) Drawing of 7', where the rectangles represent the drawings of the blocks.

The algorithm for constructing a planar orthogonal upward grid drawing of an N-node binary
tree 1’ is outlined below (see Fig. 7):

1. Construct the separator tree S of T'.

2. Remove from S the nodes associated with partial trees with less than log N nodes, and let S be
the resulting truncated separator tree, which has O(N/log N) nodes and O(log(N/log N)) =
O(log N) height. (See Fig. 7.b—c.)

3. For each leaf p of 5', construct a drawing of the associated partial tree 7}, called a block,
using the algorithm of Lemma 2. Since 7, has O(log N) nodes, its drawing has O(log V)
width and O(loglog V) height.

4. Place the drawings of the blocks vertically one above the other, sorted from bottom to top
according to the inorder sequence of the associated nodes of 5’

5. For each internal node v of S, route separator s, = (u,v), on the current drawing, creating
bends and adding extra tracks (grid rows or columns), whenever needed. (See Fig. 7.d.)

Theorem 6 Given a binary tree T with N nodes, a planar orthogonal upward grid drawing of T
with O(N') bends, O(N loglog N) area, O(log N) width, and O(N loglog N/log N) height can be
constructed in O(N) time.

Proof: By Lemma 2, the union of the drawings of the blocks constructed in Step 4 has width
O(log N) and height O(Nloglog N/log N). We show that all the separators can be routed in
Step 5 by adding a total of O(log N) vertical tracks and O(N/log N) horizontal tracks. We say

12

that a separator spans a block T, if its endpoints are one below and the other above the drawing
of T,. A separator s, is routed using one vertical track either on the left or on the right side of the
drawing of a block T}, spanned by s,, depending on whether 7, is to the left or the right of the path
from s, to the root in modified 7' (modified because of the conversion of each T), into a left-heavy
tree in lemma 2). A switch occurs when s, changes side between two blocks or enters a block. Each
switch needs a distinct horizontal track and two bends. For each basic block 7),, only the separators
associated with ancestors of y in S can span T), so that O(log V) extra vertical tracks are sufficient
to route all the separators in Step 5. The number of horizontal tracks added in Step 5 is equal to
the total number of switches. The number of switches in the routing of separator s, is bounded by
the height of the subtree rooted at v in S’. If v corresponds to a partial subtree of size k, the height
of the subtree rooted at v in 5" is O(log(k/log N)). Thus the total number of switches s(N) is the
solution of the recurrence s(k) = s(k/c)+s(k(1—1/¢))+O(log(k/log N)); s(log N) = 0, where c lies
between 2 and 3. It is easy to see that s(k) is less than or equal to ¢1k/log N — ¢y log(k/log N) —c3
for appropriate constants ¢1, ¢z and ¢3. Therefore the total number of switches is O(N/log N). O

This loglog N factor in area may at first seem unnatural, but it is not.

4.2 A Superlinear Lower Bound on the Area
We show that the superlinear area-bound of Theorem 6 is tight. Let Ty be the N-node binary tree
consisting of (see Fig. 8):

e a chain C' with N/3 nodes, where every y/log N-th node of C' is called a joint of C;

e N/3/log N complete subtrees, where each subtree has y/log N nodes and is rooted at a child
of a joint of C

e a complete subtree with N/3 nodes, which is rooted at a child of the first node of C.

A
AN complete

\ binary tree
with
(log N)1/2

I / nodes

complete
binary tree

with N/3
nodes

N/3 nodes

(log N)2 nodes

——p

Figure 8: Tree for the lower bound of Theorem 7.

Theorem 7 Any planar upward orthogonal grid drawing of the N-node tree TN requires area

Q(N loglog N).

13

Proof: Consider any planar upward orthogonal grid drawing of Th, and let W and H be the
width and height of the drawing, respectively. If W is more than N/6, then the area of the drawing
is Q(Nlog N) since, by Lemma 1, H = Q(log N). Now, suppose W is at most N/6. Since Tx
contains a complete subtree with N/3 nodes, by Lemma 1 we have that W is ©(log N). Consider
the subdrawing of any subchain 5 of C' with 2W nodes. We claim that the height of the subdrawing
of §'is 2(loglog N). Since the drawing is upward, the subdrawings of any two consecutive subchains
of C' must be vertically stacked. Hence, the claim implies the statement of the theorem.

The proof of the claim is illustrated in Fig. 9. For the sake of contradiction, we need only

l"

u |subchain S

joint

w

x=x x=x"

Figure 9: Drawing of subchain S in the proof of Theorem 6.

to consider the case when the height of the subdrawing of S is less than loglog N. Let ¢’ be the
horizontal line through the bottommost node of S in the drawing. Since S has 2W nodes and
is drawn with width at most W, it contains at least W obstructed nodes (recall the definition
of “obstructed” from Section 4.1). Also, by a simple pigeon-hole argument, there are at least
W/ loglog N obstructed nodes of S on the same horizontal line £”; and such nodes form a subchain
of §. Thus, there are at least W/(y/log N loglog N) obstructed joints along line ¢”. Consider
the subtrees connected to such obstructed joints. These subtrees are drawn below line ¢”. If any
such subtree is drawn entirely above ', then by Lemma 1 the height of the subdrawing of S is
Qloglog N), and the claim is verified. Otherwise, every subtree has a leaf v below line ¢/, and
we consider the path from v to its closest ancestor joint . Let z’ and z” be the minimum and
maximum z-coordinates of the subdrawing of S below line ¢”. The path between u and v must
intersect one of the vertical lines at # = 2’ — 1 or = z” + 1. Also, since the drawing is upward,
orthogonal and grid, such intersections must occur at distinct grid points of these two vertical lines,
and between ¢’ and ¢”. Since there are at least W/(y/log N loglog N) such paths, we have that the
height of the subdrawing of S is at least W/(2y/log N loglog N). Recalling that W = Q(log N), we
conclude that the height of the subdrawing of S is Q(y/log N /(2loglog N)) = Q(loglog N), which

contradicts our height assumption about 5. This completes the proof of the claim. a

The drawings constructed by the algorithm of Theorem 6 do not preserve the left-to-right order
of the children. Note that the lower bound of Theorem 4 applies also to orthogonal drawings.

5 Experimental Results

We have implemented the algorithm of Corollary 1 given in section 3 for constructing planar upward
polyline drawings of trees, on a Sun Sparcstation 10 in language “C”. Our implementation takes
a binary tree as its input. The implementation places [2%*] nodes in a block in step 2c of the

14

algorithm. The theoretical upper bound for width and height of the drawing with @ = 1/2, of a
N-node binary tree, produced by our implementation, computed as in the proof of theorem 2 is

Width = [(34+V2)VN +log, N]
Height = [(3+v2)VN +log, N]

The additive term of log, N appears in width because the implementation places [2°*] nodes in a
block in the step 2c as compared to 2%* nodes as described in the algorithm. The ratio of theoretical
area bound of drawing and number of nodes in input tree therefore lies between 19.48 and 33.34.
The experimental results obtained for complete binary trees and Fibonacci trees, with a = 1/2
are presented in Table 2. In the table, we have denoted the theoretical area bound by A;; and the
experimental area by A.,. Fig. 10 and Fig. 11 give a comparison of the the ratios 7, = Ay /N
and 7. = A.z/N for complete binary and Fibonacci trees respectively. The value of r., for both
complete binary and Fibonacci trees is less than 5 even up to about 24 million nodes and hence

the algorithm is quite area-efficient in practice.

35 T T T T T T T T
Theoretical Bounds <—

Experimental Results -e— —

30

25

20

15 | .

10 -

0 2 4 64 28 210 212 214 216 218

Figure 10: Experimental results on the area of the drawings of complete binary trees produced
by the algorithm of Corollary 1 with @ = 1/2, and comparison with the theoretical upper bounds

6 Conclusion

In this paper we have investigated the area requirement of different types of planar upward drawings
of a rooted bounded-degree tree 7" with N nodes. Our results are summarized as follows: 17" admits
a planar upward polyline grid drawing with area O(N), and with width O(N®) for any prespecified
constant a such that 0 < a < 1. If 1" is a binary tree, then 7" admits a planar orthogonal upward
grid drawing with area O(N loglog N). If 7' is ordered, then 7" admits an O(N log N)-area planar
upward grid drawing that preserves the left-to-right ordering of the children of each node. All of
the above area bounds are asymptotically optimal in the worst case. Also, there are O(N)-time
algorithms for constructing each of the above types of drawings of T" with asymptotically optimal
area.

15

Nodes N Theoretical Bounds Experimental Results
Width | Height | Area Ain | ren = 52 | Width | Height | Area Aey | rep = 252
Complete 15 22 22 484 32.27 5 6 30 2.00
Binary 31 30 30 900 29.03 8 7 56 1.81
Tree 63 42 42 1764 28.00 11 13 143 2.27
127 57 57 3249 25.58 18 18 324 2.55
255 79 79 6241 24.47 27 29 783 3.07
511 109 109 11881 23.25 40 41 1640 3.21
1023 152 152 23104 22.58 62 57 3534 3.45
2047 211 211 44521 21.75 90 79 7110 3.47
4095 295 295 87025 21.25 121 114 13794 3.37
8191 413 413 170569 20.82 178 158 28124 3.43
16383 580 580 336400 20.53 261 228 59508 3.63
32767 815 815 664225 20.27 374 314 117436 3.58
65535 1147 1147 1315609 20.07 521 451 234971 3.59
131071 1616 1616 2611456 19.92 746 632 471472 3.60
262143 2279 2279 5193841 19.81 1071 905 969255 3.70
524287 3216 3216 10342656 19.73 1542 1284 1979928 3.78
1048575 4541 4541 20620681 19.67 2182 1802 3931964 3.75
2097151 6414 6414 41139396 19.62 3074 2553 7847922 3.74
4194303 9063 9063 82137969 19.58 4344 3616 15707904 3.75
8388607 12808 12808 164044864 19.56 6192 5108 31628736 3.77
16777215 18105 18105 327791025 19.54 8902 7229 64352558 3.84
Fibonacci 20 25 25 625 31.25 6 7 42 2.10
Tree 33 31 31 961 29.12 10 9 90 2.73
54 39 39 1521 28.17 10 11 110 2.04
88 48 48 2304 26.18 15 14 210 2.39
143 60 60 3600 25.17 24 19 456 3.19
232 76 76 5776 24.90 26 23 598 2.58
376 95 95 9025 24.00 42 30 1260 3.35
609 119 119 14161 23.25 56 40 2240 3.68
986 149 149 22201 22.52 64 48 3072 3.12
1596 187 187 34969 21.91 86 62 5332 3.34
2583 236 236 55696 21.56 130 7T 10010 3.88
4180 298 298 88804 21.24 194 95 18430 4.41
6764 376 376 141376 20.90 193 122 23546 3.48
10945 476 476 226576 20.70 276 156 43056 3.93
17710 602 602 362404 20.46 384 194 74496 4.21
28656 763 763 582169 20.32 402 252 101304 3.54
46367 967 967 935089 20.17 577 320 184640 3.98
75024 1226 1226 1503076 20.03 825 404 333300 4.44
121392 1555 1555 2418025 19.92 831 521 432951 3.57
196417 1974 1974 3896676 19.84 1282 659 844838 4.30
317810 2507 2507 6285049 19.78 1705 832 1418560 4.46
514228 3185 3185 10144225 19.73 1717 1070 1837190 3.57
1346268 5143 5143 26450449 19.65 3463 1705 5904415 4.39
2178308 6537 6537 42732369 19.62 4824 2141 10328184 4.74
3524577 8309 8309 69039481 19.59 4890 2733 13364370 3.79
5702886 10564 10564 111598096 19.57 6968 3494 24346192 4.27
9227464 13433 13433 180445489 19.56 9530 4425 42170250 4.57
14930351 17081 17081 291760561 19.54 9980 5664 56526720 3.79
24157816 21721 21721 471801841 19.53 14633 7202 105386866 4.36

Table 2 Experimental results on the drawings of complete binary trees and Fibonacci trees produced
by the implementation of the algorithm of Corollary 1 with @ = 1/2, and comparison with the
theoretical upper bounds.

16

35

T T T T T T T
Theoretical Bounds <—

Experimental Results -e— —

30 F

25 F

20 F

15 F -

10 -

1
0 2 4 64 28 210 212 214 216 218

Figure 11: Experimental results on the area of the drawings of Fibonacci trees produced by the
algorithm of Corollary 1 with a = 1/2, and comparison with the theoretical upper bounds

In view of our results, the main open problem on this subject is determining the area requirement
of a planar upward straight-line drawing of T'. There is still a gap between the trivial Q(N) lower
bound and the O(N log N) upper bound given in [8]. It would also be interesting to extend our
results to unbounded degree trees. A related open problem is to investigate the area requirement
of planar upward straight-line drawings of rooted trees such that the angular resolution (i.e., the
minimum angle between any two edges incident on the same node) is maximized. Previous results
on the angular resolution of (non upward) drawings of graphs appear in [14, 20].

Acknowledgement

We would like to thank Ginter Rote for useful comments.

References
[1] S. Bhatt and S. Cosmadakis, “The Complexity of Minimizing Wire Lengths in VLSI Layouts,” Infor-
mation Processing Letters, vol. 25, 1987, pp. 263-267.

[2] S.N.Bhatt and F.T. Leighton, “A Framework for Solving VLSI Graph Layout Problems,” J. Computer
Systems Sciences, vol. 28, 1984, pp. 300-343.

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, 1976.

[4] F.J. Bradenburg, “Nice Drawings of Graphs and Trees are Computationally Hard,” Technical Report
MIP-8820, Fakultat fur Mathematik und Informatik, Univ. Passau, 1988.

[5] R.P. Brent and H.T. Kung, “On the Area of Binary Tree Layouts,” Information Processing Lelters,
vol. 11, 1980, pp. 521-534.

[6] B. Chazelle, “A Theorem on Polygon Cutting with Applications,” Proc. IEEE Symp. on Foundations
of Computer Science, 1982, pp. 339-349.

[7] R.F. Cohen, G. Di Battista, R. Tamassia, I.G. Tollis, and P. Bertolazzi, “A Framework for Dynamic
Graph Drawing,” Proc. ACM Symp. on Computational Geometry, 1992, pp. 261-270.

17

(8]

P. Crescenzi, G. Di Battista, and A. Piperno, “A Note on Optimal Area Algorithms for Upward
Drawings of Binary Trees,” to appear in Computational Geomeiry: Theory and Applications.

G. Di Battista, R. Tamassia, and I.G. Tollis, “Area Requirement and Symmetry Display of Planar
Upward Drawings,” Discrete & Computational Geometry, vol. 7, 1992, pp. 381-40.

G. Di Battista, P. Eades and R. Tamassia, “Algorithms for Drawing Graphs: An Annotated Bibliog-
raphy,” revised version in preparation, 1993. See also Technical Report CS-89-09, Dept. of Computer
Sci., Brown Univ., 1989.

G. Di Battista and L. Vismara, “Angles of Planar Triangular Graphs,” Proc. ACM Symp. on Theory
of Computing, 1993.

H. de Fraysseix, J. Pach, and R. Pollack, “Small Sets Supporting Fary Embeddings of Planar Graphs, “
Proc. 20th ACM Symp. on Theory of Computing, 1988, pp. 426-433.

P. Eades, T. Lin, and X. Lin, “Two Tree Drawing Conventions,” Technical Report 174, Key Centre
for Software Technology, Dept. of Computer Science, The Univ. of Queensland, 1990.

M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F.T. Leighton, A. Simvonis, E. Welzl,
and G. Woeginger, “Drawing Graphs in the Plane with High Resolution,” Proc. IEEE Symp. on
Foundations of Computer Science, 1990, pp. 86-95.

L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan, “Linear-Time Algorithms for
Visibility and Shortest Path Problems inside Triangulated Simple Polygons,” Algorithmica, vol. 2,
1987, pp. 209-233.

M. Furer, B. Raghavachari, X. He, and M.-Y. Kao, “O(n log n)-Work Parallel Algorithms for Straight-
Line Grid Embeddings of Planar Graphs,” Proc. ACM Symp. on Parallel Algorithms and Architec-
tures, 1992.

G. Kant, “Drawing Planar Graphs Using the lmc-Ordering,” Proc. IEEE Symp. on Foundations of
Computer Science, 1992, pp. 101-110.

G. Kant, G. Liotta, R. Tamassia, and 1.G. Tollis, “Area Requirement of Visibility Representations of
Trees,” Proc. 5th Canadian Conf. on Computational Geometry, pp. 192-197 (1993).

C.E. Leiserson, “Area-Efficient Graph Layouts (for VLSI),” Proc. IEEE Symp. on Foundations of
Computer Science, 1980, pp. 270-281.

S.M. Malitz and A. Papakostas, “On the Angular Resolution of Planar Graphs,” Proc. ACM Symp.
on Theory of Computing, 1992, pp. 527-538.

J. O’Rourke, “Computational Geometry Column 18,” to appear in Int. J. on Computational Geometry
and Applications, 1992.

E. Reingold and J. Tilford, “Tidier Drawing of Trees,” IEEE Trans. on Software Engineering, vol.
SE-7, 1981, pp. 223-228.

K.J. Supowit and E.M. Reingold, “The Complexity of Drawing Trees Nicely,” Acta Informatica, vol.
18, 1983, pp. 377-392.

P. Rosenstiehl and R.E. Tarjan, “Rectilinear Planar Layouts of Planar Graphs and Bipolar Orienta-
tions,” Discrete & Computational Geometry, vol. 1, 1986, pp. 343-353.

W. Schnyder, “Embedding Planar Graphs on the Grid,” Proc. ACM-SIAM Symp. on Discrete Algo-
rithms, 1990, pp. 138-148.

R. Tamassia and 1.G. Tollis, “A Unified Approach to Visibility Representations of Planar Graphs,”
Discrete & Computational Geometry, vol. 1, 1986, pp. 321-341.

W.T. Tutte, “How to Draw a Graph,” Proc. London Math Soc., vol. 3, 1963, pp. 743-768.

L. Valiant, “Universality Considerations in VLSI Circuits,” IEEE Trans. on Computers, vol. C-30,
1981, pp. 135-140.

18

