Algorithmica (1996) 16: 569-617

Algorithmica

© 1996 Springer-Verlag New York Inc.

A Nearly Optimal Deterministic Parallel Voronoi
Diagram Algorithm !

R. Cole2 M. T. Goodrich? and C.O Dunlaingd*

Abstract. We describe an-processorQ(log(n) log log(n))-time CRCW algorithm to construct the Voronoi
diagram for a set ofi point-sites in the plane.

Key Words. Voronoi diagram, Parallel algorithm.

1. Introduction. Outline of the Algorithm. The Voronoi diagram is a geometric
structure of great computational interest: see [5] for a useful survey. This paper addresses
the problem of constructing the diagram in parallel, given as input a setpaiints
(“sites”) in the plane. The Voronoi diagram for a set of sites is the locus of points
equidistant from two closest sites: Figure 1 illustrates a diagram with 32 sites.

The model of parallelism we assume is a CRCW PRAM, a system of independent
processors accessing a shared random-access memory, where the same memory cell can
be read by several processors simultaneously (concurrent read) and written by several
processors simultaneously (concurrent write). Write-conflicts are resolved arbitrarily:
the model of computation is an ARBITRARY CRCW PRAM.

Each processor is assumed capable of exact rational and integer arithmetic in unit
time.

Earlier algorithms [1], [9] were presented for CREWachines. The algorithm in [1]
usedn processors and todR(log?(n)) parallel time; that in [2] used log(n) processors
and tookO(log(n) loglog(n)) parallel time. Our algorithm reduces the overall work
(parallel timex number of processors) 1 (nlog(n) log log(n)), while maintaining a
runtime of O(log(n) log log(n)). Both of these figures are within the factor log{oy

1 A preliminary version of this paper was presented at the 17th EATCS ICALP meeting at Warwick, England,
in July 1990.

2 Department of Computer Science, Courant Institute, 251 Mercer Street, New York, NY 10012, USA.
cole@cs.nyu.edu. Supported by the US NSF under Grants CCR 890221 and CCR 8906949.

3 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.
goodrich@cs.jhu.edu. Supported by the US NSF under Grants CCR 8810568, CCR-9003299, and IRI-
9116843, and by the NSF and DARPA under Grant CCR 8908092.

4 School of Mathematics, Trinity College, Dublin 2, Ireland. odunlain@maths.tcd.ie. Supported by the EU
Esprit program under BRAs 3075 (ALCOM) and 7141 (ALCOM II).

5 Exclusive-write, that is, no write conflicts are allowed. We use the concurrent-write mechanism for forward
chaining and integer sorting [6].

Received May 1, 1994; revised December 20, 1994. Communicated by K. Melhorn.

570 R. Cole, M. T. Goodrich, and €@ Dunlaing

Fig. 1. Voronoi diagram formed from two seBandQ to the top and bottom of the dashed horizontal line
The (P, L)- and(Q, L)-beachlines are illustrated, and t{fé, Q)-contour edges are darkened. Note that the
contour lies between the two beachlines. Khdirection is upwards.

of optimal® Our technique, like aflprevious deterministic parallel algorithms, is based
on the serial algorithm due to Shamos and Hoey [25]. The set of sites is initially sorted
by x-coordinate; then the algorithm proceeds recursively:

e Partition the input se$ of n sites into two setd® and Q of sizen/2 by a vertical
straight lineL.

e Compute the Voronoi diagrams of the left and right half-sets recursively, nyith
processors assigned to each; call thesgRpand Vo Q) respectively.

e Compute thecontour, the locus of all points in the plane equidistant frétrand Q
(the contour is illustrated in Figure 1).

e Stitchthe diagrams together along the contour.

It was shown in [1] how to compute the contour and stitch the diagrams together in
log(n) parallel time. This is done, roughly speaking, as follows:

e Each edge of VaiP) can meet the contour at most twice; for simplicity we assume at
most once: using suitable data structures and one processor per edgeR)f Yose
edges which meet the contour are identified. We call such edges “attachments,” and
the points where they meet the contour (necessarily vertices ¢E)jdheir “ends.”

This takesO(log(n)) parallel time. Likewise for VaiQ).

e The edges of VaiP) meeting the contour can be ranked and sorted according to the
y-coordinates of their ends, without knowing these coordinatgd(iag(n)) parallel
steps.

e Among all the attachments in \d?), ranked along the contour, letbe the median
attachment. Its end can be calculated using processors assigned to all attachments
from Q in one parallel step; this subdivides the attachments f@@rand permits,
ultimately, calculation of all the ends from, in O(log(n)) time. Likewise forQ.

6 This is substantially better than earlier deterministic algorithms, but randomized parallel algorithms have
been described which achieve optireapectedime and work [24].

7 All, that is, except the earliest [8], which ran @(log®(n)) time, using a transformation to the three-
dimensional convex hull problem.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 571

e Once all the attachments and ends have been calculated, it is straightforward to com-
plete construction of V@S) in O(log(n)) steps.

In this paper we show that it is possible to compute the conto® (log log(n))
parallel time, and stitch in constant parallel time. The ideas are derived from Valiant's
[27] array-merging algorithm. In place of a data-structure which allows one proces-
sor to answer certain queries in serial ti@¢og(n)), we have one allowing/n pro-
cessors to answer such queriesOril) parallel time. The structure involves what
are calledbeachline® and fringes [1]. Beachlines (but not fringes) are illustrated in
Figure 1.

Given a seP of sites and a (vertical) line which has all ofP to its left (or right), the
“beachline” betweer andL is the set of points in the plane equidistant frarand P.

It is a union of parabolic segments; the foci of the parabolas arReand they all have

the same directrix.. The beachline “cusps” (where adjacent parabolic segments meet)
are the points where it crosses edges of ®r The beachline thus divides \d?) into

a part neareP thanL and a part further fronP thanL. The latter part is called the
“fringe.” It has the structure of a forest of trees; each tree contains exactly one unbounded
edge of VofP). These trees are essentially binary trees, and the structure of the fringe
can be used to build the contour@ylog log(n)) parallel time.

An important advantage of our structure is that not only are the attachments calculated,
but also the ends, which allows two of the above steps to be bypassed. This avoids an
Q (log(n)) bottleneck caused by list-ranking [13].

Another feature of our methods is that the structures can have surplus processors
allotted. The beachlinB is a sorted list, and it would be convenient to store it in sorted
order in an array. However, to avoid the need for excessive reorganization between
phases of the algorithm, we allof to be represented in an arrdyof size O(n), in
which an element fronB might be represented by a block of several contiguous entries
from A. The arrayA is then used to assign processors to the elemeriés amly those
processors assigned to the first copy of an element will be active. By this means we avoid
compressing data by parallel prefix, another potential bottleneck [23].

It appears that the main difficulty in our approach is recursive construction of the
beachlines, which would be trivial in the serial case. In [9] the beachlines were all
precomputed independently @(log(n)) parallel steps using fractional cascading [3].
This allowed the algorithm to proceed without difficulty but was processor-inefficient,
since the precomputed structures were built usitag(n) processors.

The improved method described here uspsocessors to precompute not the beach-
lines but partial information about the beachlines. Specifically, given B sék points
in the plane, sorted by-coordinate, auling for B is a set ofO(k/log(n)) horizontal
lines such that each horizontal strip conta@dog(n)) points in B. We will see how
to precompute rulings for the beachlines withprocessors. During the algorithm, a
linked-list structure for a beachlirig can be used to build an arrdycoveringB: A has
O(k/log(n)) blocks, each of siz&(log(n)), covering the strips of a given ruling &.

Each strip contain® (log(n)) elements oB, which can be sorted in tim@ (log log(n))
by list-ranking.

8 The notion of beachline, invented by Chee Yap, was first described in [1].

572 R. Cole, M. T. Goodrich, and €@ Dunlaing

The contributions of this paper (aside from the result stated in the title) are:

(a) Detailed geometrical analysis of beachline and fringe.

(b) A special-purpose planar point location structure for the fringe.
(c) Usage of duplicate array entries to avoid array compression.
(d) An unusual application of stable integer sorting.

Sections 2-8 of this paper cover the material as follows. Section 2 introduces the
Voronoi diagram together with the convex hull, and proves some facts about “beachlines”
and “fringes.” Section 3 reviews some parallel operations on arrays, including Valiant’s
merging technique and some results from [6]. Section 4 introduces the point-location
structure definable from a fringe, and Section 5 shows how to use it to locate contour
vertices. Section 6 shows how the Voronoi diagram itself can be built recursively during
this process. Section 7 (which is long) shows how to build these fringe structures during
the recursive processing, with the aid of precomputed “rulings,” and Section 8 shows
how to precompute the necessary “rulings.” Concluding remarks are in Section 9.

REMARKS. It is implicit in our algorithm that most of the processing will take place

in sorted arrays of data, and processors will be attached to entries in such arrays. The
general steps involve processors attached to a block of entries in one array inspecting
either an evenly spaced sequence of entries in another array, or a few contiguous intervals
of entries in another array. These tasks do notinvolve processor-allocation problems such
as occur in list processing; processor allocation involves simple arithmetic calculations
and does not complicate our algorithm.

Most of the structures are defined relative to a vertical “reference lin&i some of
the diagrams, to save spat¢ewill be shown as horizontal.

2. Definitions, Notations, and Terms. In this section the notions of convex hull,
Voronoi diagram, contour, beachline, and fringe are defined. Various geometrical prop-
erties are demonstrated; the section summary indicates where such properties will be
useful.

2.1. We consider throughout a sebf sites points in the planen will be the number
of sites inS. For convenience, the following assumptions are made gout

e nis apower of 2.

e For no two distinct pair$p, q}, {p’, g’} of sites are the linepq and p'q’ parallel®
e No four sites are concyclic.

e No two sites have the sanxecoordinate.

2.2. Theconvex hull HS) of Sis the smallest convex set containiSyFigure 2).
Its boundary is a convex polygon whose corners are sit€s ofhe distancex — y|
between two points in the plane is Euclidean distance. For any ppthe distance of

9 The distinct pairs could have one site in common, so this implies no three sites are collinear.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 573

Fig. 2. Convex hull of a set of point sites.

X to a nonempty serf of points is
dix, T) =inf{|x —t|:t e T}.

For any sitep its Voronoi cell(with respect t®) is the set of pointg in the plane such that
X — p| = d(x, 9, i.e., the set of points as close or closeptthan to any other site i.

Let x be a point in the plane. Iltslearance circlerelative toSis the circle centred
atx and of radiugi(x, S). This is the largest circle centred»xatvhose interior contains
no site inS. The Voronoi cell of a sitgp can be defined as the set of all points whose
clearance circle touchgs

The cell owned byp can be expressed as the intersection 6f1 closed half-planes;
because, for every other sitg the set of points equidistant fromandq is a straight
line, and the set of points as close or closepthan toq is a closed half-plane bounded
by this line. Therefore the cell is a (topologically) closed convex region whose boundary
is an open or closed polygdfi.

DerINITION 2.3. TheVoronoi diagramvor(S) is the union of all these cell boundaries.

Equivalently, the Voronoi diagram consists of every point in the plane whose clearance
circle touches two or more sites.

2.4. The Voronoi diagram is a plane graph witlfiaces, one for each site, and hence
it hasO(n) edges and vertices. The cells owned by the corneks(@) are unbounded,
and all other cells are bounded. The unbounded edges are infinite rays perpendicular to
the sides oH (S) (and collinear with the midpoints of its sides, of course). The vertices
are those points in the plane whose clearance circles touch at least three (hence, in view
of 2.1, exactly three) sites.

We begin with a simple lemma about Voronoi vertices. It will be used in Lemma 2.20
below.

LEMMA 2.5. Letv be a Voronoi vertexand let V be any line through. Then Voronoi
edges from extend on both sides of.V

PrROOE See Figure 3. Without loss of generalityis the only vertex, an¥ is vertical.
If none of the incident edges extends rightwards frarthen one of the incident cells,

10 The nondegeneracy assumptions 2.1 eliminate the possibility that its boundary is two parallel lines.

574 R. Cole, M. T. Goodrich, and €@ Dunlaing

Fig. 3. lllustrating Lemma 2.5.

C say, contains all points to the right ¥f. This is impossible sinc€ is convex with a
corner atv. O

2.6. Construction of the diagram will be by divide-and-conquer. Initially, the sites are
sorted byx-coordinate (which are all distinct, 2.1). The recurrence step involves parti-
tioning Sinto two equal-size se® andQ separated by a vertical linepassing between
the two median elements.

DerINITION 2.7. The(P, Q)-contour[25] is the set of pointx in the plane such that
d(x, P) =d(x, Q).

(The (P, Q)-contour is an infinite zigzag line, monotonic in thalirection [25]: see
Figure 1.) Then VogS) is the union of the contour together with that part of \@y to
its left and of VoK Q) to its right.

Throughout this papeS6, L, P, andQ play theseales. SinceP and Q play almost
identical ©dles, any statement involving applies, suitably altered, tQ.

DEFINITION 2.8. (See Figure 4.) TheP, L)-beachlines the set of pointx such that
d(x, P) =d(x, L).

LEMMA 2.9.

(i) The (P, L)-beachline is infinite piecewise parabolicand monotonic in the y-
direction, each segment is contained in a cell\é&r(P), and its cuspgpoints
common to two adjacent segm@rdage on the edges afor(P).

Fig. 4. Vor(P), reference lind_, (P, L)-beachline and -fringe. The-direction is upwards and is shown
horizontal.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 575

(i) The beachline crosses each edgé/of(P) at most twice hence there are Q)
beachline segments
(i) The contour lies strictly between thie, L)- and (Q, L)-beachlines

ProoF (i) For each sitep in P, let R, consist of all points closer tp thanL. The
boundary of this region is the parabola with foquand directrixL. The beachline is
the boundary of the union of all these regidRs hence it is infinite, monotonic in the
y-direction, and piecewise parabolic.

If a point x on the beachline is interior to a segment with fogshen its clearance
circle touchesp alone and hence is in the cell forp. If it is on the boundary of two
segments, then it is on the edge of U8 separating the two associated foci.

(ii) An edge bounding the cell of the sifecan meet the beachline only on the parabola
boundingR,, hence it can meet it at most twice.

(iii) If a point x is on the(P, Q)-contour, then its clearance circle touches b®tnd
Q; hence this circle intersectsproperly andx lies between the two beachlines. O

REMARK 2.10. We have assumed that the processors are capable of exact rational arith-
metic. The sites, and any vertical separating lin@re assumed, of course, to have ra-
tional coordinates. Given two sitgsand(, the perpendicular bisector (which contains

the Voronoi edge separating them, if it exists) satisfies a rational linear equation: hence
the Voronoi vertices have rational coordinates.

This does not generally hold for the beachline cusps. However, it is easy to see that
their coordinates satisfy quadratic equations with rational coefficients, hence are of the
form a & +/b wherea andb are rational. Comparison between two quantities of this
form, which is the only exact arithmetic operation needed, is easily accomplished with
a few rational operations.

DerFINITION 2.11. The(P, L)-fringe is that part of Vo¢P) to the right of the(P, L)-
beachlinet!

See Figure 4. From the above lemma, the contour can me@®Yonly in this fringe.
We first note that

LEmMMA 2.12. A fringe edge cannot meet the beachline twice

PROOF See Figure 5. Suppose thhtis a fringe edge, on the bisector of two sites
andr; suppose that both its endpointsandv were on the beachline. These endpoints
are equidistant fronp, r, andL, and this fixes them uniquely on the bisector between
p andr. Thenf is (by definition) the edge joining andv: but points between andv

are to the left of the beachline, hence not on the fringe, a contradiction. O

Itis possible that an edge of \d?) could cross the contour twice; if so, the beachline
divides it into two fringe edges. That is a consequence of the following lemma.

11 The(Q, L)-fringe lies to the left of th&Q, L)-beachline.

576 R. Cole, M. T. Goodrich, and €@ Dunlaing

Fig. 5. lllustrating Lemma 2.12.

LEMMA 2.13. Let X be aline-segment or ray with one end on the beachline at a point x
and entirely contained in a cell &br(P) containing x Then X cannot meet the contour
more than once

PROOF (See Figure 6.) Choose e P so thatX is in the cell of VoK P) owned byp.
We assume thaX meets the contour at least once. kdie the point orX, closest to,
whereX meets the contour. Now,is on the beachline: therefords not on the contour,
and it is closer tqp than to the closest site i@ (Lemma 2.9(iii)).

Let g be a site inQ such thaty is equidistant fromp andq. Sincey is on the per-
pendicular bisector of the linpg, andx (being closer ta) is not, all points beyong
on X are closer t@ than top. Since they are all in the cell of VOP) owned byp, they
are closer to the closest site@than inP, and are therefore to the right of the contour.
Hence no point beyond is on the contour. O

LEMMA 2.14. A fringe is a forest of free)!? trees

o

Fig. 6. lllustrating Lemma 2.13.

12 A free tree is a connected undirected graph without cycles; it does not have a distinguished root node. In
this paper “graph” has a wider meaning than usual, since edges can be unbounded.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 577

S
Fig. 7. As: beachline region owned ks/(Definition 2.15). The open boundalys is darkened.

PrROOF In other words, théP, L)-fringe is an acyclic graph. The reason is as follows:
any simple cycle of edges in \d?) must (being a Jordan curt® enclose part of the
plane. Its interior, being open, intersects the interior of the cell of at least ong.site
However, the cycle is disjoint from the cell interior, so it encloses all of the cell, and
hence enclosep. Sincep is to the left of the beachline, the cycle cannot be entirely
within the fringe. O

DEFINITION 2.15. Lets be a beachline segment, contained in the €Celif a site p
in Vor(P). Theregion A owned bys is that part ofC bounded bys on its left. The
boundary ofAs (which includess) is conventionally denote@lAs. The open boundat§
b A is that part ofd A to the right of the beachlindtA; = 9 Ag\s.

See Figure 7. The open boundaryAfis whereAg intersects théP, L)-fringe.

2.16. Itis easy to show that for every corneiof the convex hullH (P) of P there
exists a circle touching andL and not touching or containing any other siteHror
Q: in other words, each corner of the convex hull owns a beachline segment. The two
infinite segments of the beachline belong to the parabola whose focus is the leftmost site
in P (necessarily a corner ¢ (P)).

Consider one of the infinite edges of ¥@). It lies along the perpendicular bisector
B of two sitesp, p’ which are corners ofl (P). As a pointz moves alond away from
H (P), the circle with centrez passing througlp and p’ increases in size; whenis
sufficiently distant then that circle contains no other site and intersectk (since the
line pp’ is not vertical by assumption 2.1). This implies tlzds on the(P, L)-fringe.
In other words (see Figure 8),

LEMMA 2.17. Every unbounded edge Wbr(P) intersects the&P, L)-fringe, and the
intersection is unbounded

13 A Jordan curve is a curve in the plane topologically equivalent to a circle. The Jordan Curve theorem [16],
[21] says that such a curve has a definite “inside” and “outside.”
14 «“Open boundary” is a nonstandard term, used only in this paper.

578 R. Cole, M. T. Goodrich, and €@ Dunlaing

L

Fig. 8. lllustrating Lemma 2.17.

DEFINITION 2.18. A segmens is aseparating segmeritt s is bounded bu# is un-
bounded.

If sisa separating segment, then its two endpoints are on different, disjoint, unbounded
components ob Ag:

LEMMA 2.19. If s is a bounded nonseparating segmehen its endpoints are con-
nected by b A If it is a separating segmerthen its endpoints are connected to different
unbounded edges on the fringe

ProOOF Consider a point moving alongAs, beginning at the lower endpoint sf The
moving point either goes to infinity, along an unbounded fringe edge, or returns to the
beachline at the upper endpoint®fin the first caseAs is unbounded. In the second
caseb A is bounded.

Thus if s is bounded (has two endpoints), but is not a separating segment, then its
endpoints are connected alobgs. If s is a separating segment, then its endpoints are
not connected alonigAs, its lower endpoint is connected to an unbounded edge, and its
upper endpoint is (by similar reasoning) connected to a different unbounded edge.

LEMMA 2.20. EachtreeinthéP, L)-fringe contains exactly one unbounded edge from
\Vor(P).

PrROOF LetT be atreeinthéP, L)-fringe. Leth be the highest beachline cusp®n
The segmerg whose lower endpoint is cannot be a bounded nonseparating segment,
since otherwise, by Lemma 2.19, its upper endpoint would also Be Thereforeh is
connected to an unbounded edge albAg. Thereforel contains at least one unbounded
edge.

Next we show that every tree meets at most one unbounded edge; equivalently, there
is no path within th& P, L)-fringe joining two unbounded edges.

Consider any simple patffi in Vor(P) joining two infinite edges of VaiP). Let Rbe
alarge rectangular region containing all site®iand all vertices in VaiP), so only the
unbounded edges of the diagram intersect the bourtldrand bothL and the infinite

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 579

Fig. 9. lllustrating Lemma 2.20.

beachline segments pass through the top and/or bottom siée&lote thatll intersects
d R at exactly two points. By a straightforward adaptation of the Jordan Curve Theorem,
I partitionsR into two open connected sefsandB. See Figure 9.

Letx be a point o1, not a vertex, so there are exactly two Voronoi cells incidert to
owned, say, by andq, respectively. These sites are both indtjend the line-segments
px andgx are entirely within these respective cells, meefihgnly atx, so one of them
is in A and the other is ifB. This implies that bottA and B contain sites fronP.

Clearly, the outside oR is partitioned byIT into two connected regions, so we can
say thatll divides the whole plane into two connected regions, still denétead B.
We shall labelA and B so thatB contains a sitg such that the horizontal ray extending
leftwards fromp intersectd] at a pointx. Since the beachline must pass to the right of
p, it will follow that x is not on the fringe, and the proof will be complete (the infinite
edges belonging to different fringe trees).

If TT extends infinitely in both vertical directions, then B:be the region “to the right
of” I1. ThenIl passes to the left of all sites B, and no more need be said. Otherwise,
IT is bounded below, say, and unbounded above (by assumption 2.1, the infinite edges
cannot be horizontal). LeB then be the region “abovdl. Then for every horizontal
line ¢, BN ¢ is bounded. Lep be a site inB, and let¢ be the horizontal line through.
Let x be the leftmost point oB N ¢; thenx is onIT and to the left ofp. O

2.21. LetT be afree tree—a connected acyclic graph—in(fReL)-fringe. LetE be
its unique unbounded edge, witlits endpoint. Orient all edges @fby orientingE away
fromr and orienting all other edges toward$.e., any edgeis connected toby aunique
path inT: if e # E, then it is oriented towardsalong this path). Regarding these edge
orientations as from child to parefit,(or, more properlyT \ E) is now given the structure
of a binary tree: the leaves @fare the cusps whefiemeets the beachline. Every internal
nodev of T has two incoming edges and one outgoing edgeel leé the outgoing edge.
Thene; is oriented towards the parentofunlessv = r). LetC; be the cell of Vo(P)

to the left ofes, and letC, be the other cell; the other two edges meeting ate on the
boundary of these cells; lef be the edge on the boundary®f; similarly, e;. Then the
child node ore; (resp.e,) is defined as thieft (resp. right) child ofv. See Figure 10.

LEMMA 2.22. Let e be a fringe edg®n a fringe tree T Let p, (resp pz) be the site
owning the cell to the leffresp right) of e Let x be a point on the interior of. et
X1 (resp x;) be the unique point where the line-segment gpsp xp,) crosses the

580 R. Cole, M. T. Goodrich, and €@ Dunlaing

Fig. 10.lllustrating 2.21.

(P, L)-beachline The beachline interval from;xto X, and the line-segments xand
XX together form a Jordan curve. Buppose that is the endpoint of e inside (br on
J if e meets the beachliheSee Figurell. Then

(i) All descendants afin T are inside J and all nodes inside J are descendants of
(ii) x, is above ¥ on the beachline

PrROOF Letubeanodeinsidd. The path fromu to infinity in the fringe must cros3, at
some point not on the beachline; the only such poirt &nd the path must therefore pass
throughv, sou is a descendant of If u is a node of the fringe not insidk then the path
fromuto infinity cannot crosg, since if it entered it would have to leave it at a different
point, but it can only crosd atx. Thereforeu is not a descendant of This proves (i).
(i) Let y be a point beyona on e, so the line-segmenty is oriented towards the
infinite part of T. Travel around the Jordan curde beginning aix;: from x; to x to x,
and along the beachline backxtg At X, y is to the left of this path. Ik, were above,
then this tour would be anticlockwise, with the interiordbbn the left. In this casey
would be insidel. However, in this case a path froyrto infinity in T would be forced
to leaveJ, and therefore cross which is impossible. O

COROLLARY 2.23. Let e be a fringe edgevith p; and p its two adjacent sitesThen
the orientation of e in the fringe depends only on p,, and L.

PrROOF Choose any internal poixton e, and calculate; andx, as in Lemma 2.22.
Assume thak; is the higher of the two points. Theris oriented so that; (and p;) is
to the left ofe. O

Fig. 11.lllustrating Lemma 2.22. The-direction is upwards.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 581

\'

w

Fig. 12.lllustrating Lemma 2.25.

COROLLARY 2.24. For any fringe node, the leaf descendants ofform a contiguous
interval of beachline cuspwith the leftmost descendant highest and the rightmost lowest

PrROOF From Lemma 2.22(i), and following the notation of that lemma, the leaf de-
scendants are betwerpandx, on the beachline; hence they form a contiguous interval.
The leftmost leaf descendant is the closest cusp fo J: hence it is the highest cusp.
Similarly, the rightmost cusp is the lowest. O

Consider a segmerst of the beachline between these two cusps. It is a bounded
nonseparating segment (Definition 2.18):Ueindw be its upper and lower endpoints.
Recall (Lemma 2.19) thdtAs connectsitow in T.

Now for any tre€l a path joining two (adjacent) leavesndw can be separated into
two branches leading from the leaves to their lowest common anaedtothe present
case, the branch from to v (clockwise alongb As) leads to a left child ob along a
rightmost branch, and the branch franmto v (anticlockwise alondp As) leads to a right
child of v along a leftmost branch. See Figure 12. This implies thahdw are the
inorder predecessor and successor, respectively, of

LEMMA 2.25. If u and w are the endpoints of a nonseparating segmeatthey are
adjacent beachline cuspandv is their lowest common ancesttiten u is the inorder
predecessor and is the successor af.

Another lemma with the same flavour as Lemma 2.22 is about edge orientations at
the contour. It refers to the construction in that lemma.

LEMMA 2.26. In Lemma2.22suppose that x is not to the right of thB, Q)-contour
(it might be on the contodrlet v be as in the lemmahenv and all its descendants are
to the left of the contour

PrROOF For clarity, assumg is on the contour. By Lemma 2.13, the line-segmenxs
andx,x meet the contour only at, so the Jordan curvé meets the contour only at
However, the beachline is to the left of the contour; hence 9o leence so i® and all
its descendants. O

Both the contour and the beachline are monotonic inyduérection. The order of
edges (resp. segments) is not necessarily the same as the vertical order of the sites owning

582 R. Cole, M. T. Goodrich, and €@ Dunlaing

Fig. 13.lllustrating Lemma 2.27(i).

them. However, there is a way to match contour edges with some beachline segments so
that vertical orders correspond. We call an edge which meets the contatiaelnment

In the following lemma we speak of beachline “features.” This means “segments or
cusps.” Ifeis a fringe edge, its “child” endpoint is either a beachline cusp, or comes
between two adjacent beachline cuspandw in inorder (Lemma 2.25). In the first
case we consider the beachline cusp to “owrlhd in the second case we consider the
beachline segment betwearmndw to “own” v.

LEMMA 2.27.

(i) Forany beachline segmentA¢ (2.15)intersects the contour in a connected inter-
val.

(i) Let A be the set of attachmeriest U be the sequence of beachline features owning
the child endpoints of the edges inakd let V be the sequence of contour vertices
where they cross the contodihen U and V are in the same vertical order

(iii) Let e be a contour attachmemheeting the contour at a vertexand let i, and i,
be the contour edges incident towith i; above . Let § and $ be the(P, L)-
beachline segments such thalritersects 4, j = 1, 2. Then g is above .

ProoF (i) If the intersection were disconnected, then there would be two pajrits
common to the contour and the open boundafy, with a aboveb and no other such
points between. See Figure 13. The paths feotob onb A and on the contour would
form between them a simple cycle of edges in(®r a Jordan curve, containing sites
from S and lying between théP, L)-beachline and théP, Q) contour. Hence these
sites are fronP and are to the right of the beachline, which is impossible.

(ii) Let a andb be two points on the contour, where edgesnde, respectively of
the (P, L)-fringe meet the contour, with aboveb and no other such point in between.
Then the edges (truncated aoandb, respectively) and the contour interval between
them are all on the boundary of the same a@|lpf Vor(S).

Fig. 14.lllustrating Lemma 2.27(ji).

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 583

s b

Fig. 15.lllustrating Lemma 2.27(iii).

Letu be the child vertex omy, v that one, (Figure 14). The pathbau (fromv tob
alonge,, then fromb to a along the contour, and then fraarto u) is in the anticlockwise
sense around the bound&§. SoC is to the left ofe, and to the right o&;; the right-
most cusp descendant ofand the leftmost descendantwfre upper and lower ends
respectively of a beachline segmentGn so the beachline feature owningis above
that owningu, as required.

(iii) See Figure 15. The attachmeatrosses the contour from left to right;is left
of e andi is right of e; therefores, ands, are respectively left and right & which
implies thats; is aboves,. O

Summary In this section the structures of the beachline and fringe have been analysed
in detail. The results, summarized, are: each unbounded edge @)eeparates the
cells of sites which are adjacent corners of the convexH@lP). For every such edge
there is an unbounded edge on tiRe L)-fringe ® The (P, L)-fringe is a disjoint union
of free trees; every such tree contains a unique unbounded edge. These trees can be
oriented naturally as binary trees, with the leaves on the beachline: with this orientation,
the leftmost descendant of a node is the higlest the beachline.

Since the fringe has quite a regular structure, it partitions the plane into regions which
are well organized for planar point-location queries; this organization is discussed in
detail in Section 4, leading to efficient calculation of the contour in Section 5.

3. Parallel Operations on Arrays. This section collects some standard techniques of
parallel computation. Most of them are of thé divide-and-conquer style, leading to
variousO(log log(n)) parallel time algorithms.

3.1. We begin with a review of Valiant's CREW procedure to merge two sorted arrays
A and B of sizesn andm respectively into another arrdy of sizen + m. We assume
there is a processor attached to each entr and B. For every itemA[i] we want to
calculate the maximum index(if any) such thatA[i] > B[j]; for every itemB[j] we
want to calculate the maximum indexif any) such thatA[i] < B[j].

Let A be divided into,/n blocks of size,/n. CorrespondinglyB is divided into,/n

15 There are two such edgesRfcontains only two sites.
16 AssumingP is to the left ofL; otherwise the opposite holds.

584 R. Cole, M. T. Goodrich, and €@ Dunlaing

(uneven) intervals, and each block Afis merged recursively with the corresponding
interval fromB, as follows.

Call the first elements in each block thieck leadersLetn; = 1+ (i — 1)./n: then
A[n; ---nj11 — 1] is theith block of A. The corresponding interv@[m; - - - mj; — 1]
(which can be empty) satisfieB{m;] is the first element no less thain;], if it exists.
Calculating the partition oB is in two steps. First, the elemenBm;] matching the
block leaders are identified; these elements define the partitBnRdcond, all elements
in B[m; - - - mj;1 — 1] matching theth block of A are informed.

Let B be divided intom/,/n blocks each of size/n. For each block leadeA[n;]
in A assign one processor from each blockBto compare the block leadeB[¢],
say, with A[n;] and hence identify the largest block leadgf¢] of B (if any) such
that B[¢] < A[ni]. Then the processors iA[n; ---nj. 1 — 1] can inspect the block
B[¢--- £+ ./n— 1] to ascertain the largestsuch thaB[i’ — 1] < A[i]: i’ is the desired
indexm;. This finishes the first step.

Next the correct indiceisare first written to the block leaders Bfas follows: if B[£]
is a block leader, then the processors in the block identify the correspondingi lbck
A, by finding the largest; such thatA[n;] < B[4].

To clarify the second step, we define

DerINITION 3.2. A block of processors iA is shortif the corresponding interval d3
is within a single block oB, otherwise it idong.

(Compare with 5.6.) Led be theith block of A, and letl be the corresponding interval
m; ---mj;; — 1 of B. If J is short, therjJ| > |I| and the index can be written into
I by the processors id. If J is long, the processors i first write the index to the
leftmost and rightmost blocks & intersecting . Then the processors Incomplete the
calculation; for the only entries infor whichi is not yet calculated are those belonging
to complete blocks contained in and they can copy from their block leaders. This
finishes the second step.

For a complete description, which does not assume lagag an integer, and which
achieves optimal speedup/{og log(n) processors), see [18].

3.3. The following “broadcasting” problem occurs in the Voronoi diagram algorithm.
Suppose thaA is an array of bits with one processor attached to each array entry. Sup-
pose that each 1-bit is intended to mark the beginning of a subinterval of the array, so
we call the 1-bits the “interval leaders.” The problem is to inform all the other proces-
sors of the nearest interval leaders, i.e., for dathe maximumj < i which carries a
1-bit.

An obvious way is to use parallel prefix. This would be a bottleneck in our algorithm
[23]. When the interval leaders are linked together, however, it is possible to do this in
O(loglog(n)) time, as shown below.

LEmMmA 3.4. With A as aboveand assuming that each interval leader knows the closest
interval leader to its left and rightall of A can be informed of the appropriate interval
leaders in Qlog log(n)) parallel stepg CREW,.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 585

PrOOF Without loss of generality is a power of 2; len = 2+ wherek; < k, <
ki + 1. ConsiderA partitioned into & blocks of size .

We have the “marked” processors, the interval leaders, and we have the processors
at the beginning of each block, the block leaders. Each interval leader ascertains if there
are any block leaders in its interval. If so, it informs teémostsuch block leader. All
the processors in this block can consult the block leader, and then the interval leader, to
ascertain the range of block leaders in the interval, and hence to inform them all (there
are enough processors to do this).

Having done this, all processors in the same interval as their block leader or the leader
of thenextblock can identify themselves by consulting the block leader. The only proces-
sors which remain in doubt are those in intervals which do not contain a block leader, and
these can be informed by a recursive application of the same method within the blocks.

“In summary: there are about log l@g rounds. In théth round,B is partitioned into
22 blocks of equal size. For each one of these blocks, if it is entirely contained in an
interval of the partition, then the identity of the interval leader is written into each block
entry. If a block does not fit into an interval of the partition in il round, then it is
untouched during that round. O

Lemma 3.4 addresses the so-cafieavard chaining probleni6], in the special case
where there are pointer-links between the marked elements. Actually, the same effect can
be achieved by a subtle variation of the methods in the above two lemmas, on a CRCW
machine, without assuming such links. We state the result (it is used in Sections 7 and 8):

PrOPOSITION3.5 [6]. If Ais an array of processorsome of them markesh a CRCW
machinethen in time log log(n)) the processors can attach to each array entfyj JA
indices i and k to the closest marked entriishey exis} left and right of j.

We also use the principal result from [6] in Section 8:

PrOPOSITION3.6. Let K be an array of k< n integers betweehand n Then K can
be stably sorted in @Qog(n) log log(n)) time using Klog(n) processorfCRCW.

PrRoOOF Theorem 1 of [6] provides for sorting stably in timet (k, n) = O(log(k)/
log log(k)+log log(n)) with a time-processor product 6f(k log log(n)). Usingk/log(n)
processors, the time would &(log(n) log log(n)), which is greater thatik, n), so the
time is achievable. O

3.7. Forcompleteness we include two other techniques: list-ranking and parallel prefix.
These are applied in Sections 7 and 8. The techniques described here are inefficient in
terms of processor allocation, but they are sufficient for our purposes.

Given a linked listF, the rank of a node iifr is its distance from the last node in the
list. Letk = |F|. If processors are assigned to every node in the list, this rank can be
calculated in timeD(log(k)) as follows: there are about lgd) phases; in thér + 1)st
phase all nodes of rank less thdrkBow their rank, and the other nodes know the node
at distance 2ahead of them in the list. A typical nodewith a nodeq at distance 2

586 R. Cole, M. T. Goodrich, and €@ Dunlaing

ahead on the list calculates the node at distaficel® pointer jumping, and, if this does
not exist, stores its rank as Z d whered is the rank of.
This (exclusive write) algorithm will be sufficient for our purpos&x(log(k)) is
optimal for exclusive-write machines, as can be shown by a reduction from parity [13].
Parallel prefix is the recognized method of solving the following problem: given a
list X1, ..., Xk of numbers stored in an array, compute all partial s@‘&sxi. It can
be solved withk/log(k) processors (CREW), essentially by covering the array with a
balanced tree structure and calculating partial sums of subintervals covered by nodes of
the tree [19]. The runtime of lag) achieved is more or less optimal [23].

4. PointLocation Using the(P, L)-Fringe. From Section 2 we have a fairly complete
picture of thg P, L)-fringe: itis aforest of free trees, exactly one tree for each unbounded
edge of VorP); the leaves of each tree form a contiguous interval of cusps along the
(P, L)-beachline, and it has essentially the structure of a binary tree in which the leaf
descendants of any node likewise forms a contiguous interval along the beachline, with
the “leftmost” above the “rightmost” with respect yecoordinates.

Throughout this sectiom will be the number of sites ifP. The beachline, fringe,
etc., and the arrays covering these structures, all hav€&xize It is convenient to speak
as ifn is the number of entries in an array covering tfe L)-beachline.

4.1. We address the followirigcationproblem: given a poirg in the plane, to decide
whether it lies to the right of théP, L)-beachline, and, if so, to return the cell of &)
containingg—that is, to return the site iR closest tay.

The aim, realized in Section 5, is to use search structures qiPtHe)- and(Q, L)-
fringes to calculate théP, Q)-contour vertices. We use methods analogous to parallel
merging (3.1). Valiant's parallel algorithm to merge sorted arrdynd B is based on
the observation that any iterican be located in the arrayin two steps using/n pro-
cessors. Analogously, we describe a “skeleton tree” fot Ehe.)-fringe which enables
any pointx to be located in the fringe region containirgusing ./n processors. The
skeleton tree will have sizg/n and each node of the tree will be assigned a plane region
intersectingO(,/n) regions of the P, L)-fringe.

4.2. Since the individual trees in the fringe correspond to sides of the convex hull
H(P), it is useful to have a description of this set (i.e., an array containing its corners
in cyclic order) available during the algorithm. Fortunately it is not difficult to construct
H (S) from H(P) andH (Q) with n processors: it is necessary to calculate the two outer
tangents common tél (P) and H(Q), and this can be done in constant parallel time
using 4/n divide-and-conquer [28], [4], [22]. Thus we have all relevant convex hulls
constructed during the algorithm.

4.3. The fringe is laid out as a sequence of binary trees. To provide a uniform search-
structure, it is convenient to embed the structure isirayle full binary treeT. The
structure ofT will itself be mapped onto the beachline.

Let Ty, ..., Tk be the sequence of fringe trees, with root nodes (meeting the infinite
edges), ..., k. Letsy, ..., 51 be the sequence of beachline segments whose bound-
ing cusps are on different trees Eeparated; from T, and so on; we ignore the two
unbounded segments owned by the leftmost sitd {(®)).

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 587

Fig. 16.Ray from f is in p’s cell in Vor(P) (2.18).

These segments are the separating segments (Definition 2.18). For the purpose of
searching the beachline, it is useful to have sample points available on the separating
segments. Such points can be calculated easily taR); for definiteness, we fix the
following method of calculating separating points: given a gitehich is a corner of
H (P) but not the leftmost corner, Igtbe the corner next tp in anticlockwise order, and
let f be the centre of the circle tangentit@nd tangent to the sideg at p. Thenf ison
the separating segment associated witland the infinite ray extending outwards from
f,inthe directionpf, is entirely within the P, L)-fringe, and entirely withirp’s cell in
Vor(P). (See Figure 16.) Itis convenient to fix and record descriptions of these rays and
call themseparating raysThere is one separating ray for each cornét 6P) except the
leftmost.

One associates nodescorresponding to thke— 1 separating segmerss . . ., S_1;
these are not associated with any vertex of the fringe, but, formally, the left child of
isr; and its right child is;, (except fomy_1 whose right child is).

This defines a structuré which is a single full binary tree. The leavesDfcorre-
spond to the beachline cusps; the internal nodes correspond to the bounded beachline
segments. The beachline segments (excluding the two unbounded segments) each “own”
a unique internal node &f, namely, the least common ancestor (LCAJTirof its two
bounding cusps. K is a separating segment (2.18), then this LCA is an artificial mpde
introduced above. I§ is a bounded nonseparating segment, then this LCA corresponds
to a (P, L)-fringe vertex, using the natural binary-tree structure on the fringe (2.21).
Sufficient information about theP, L)-fringe to define the structure af will be stored
in an arrayA covering the(P, L)-beachline (4.7).

DEFINITION 4.4. Ifsis a bounded nonseparating segméine unique vertex coming
between its bounding cusps in inorder (Lemma 2.25) is calledhtier vertexowned
by s.

4.5. The regiond\s as defined in 2.15 partition the plane to the right of (Re L)-
beachline. By extending the ends of the open bound#rigsleftwards with infinite
horizontal rays, we define a partition of the entire plane. This partition is subdivided as

17 vertices of VoKP) are not associated with the separating segments, which separate different trees of the
fringe.

588 R. Cole, M. T. Goodrich, and €@ Dunlaing

Fig. 17.TubeR,; T-pocket atv.

follows. With each inner node of T is associated tbe this is a polygonal region, not
necessarily convex, defined as follows. beindw bev’s leftmost and rightmost leaf
descendants if. If u andw are in the same tree of the fringe, sds a fringe vertex,
then the tube is bounded by the lings andvw (possibly but not necessarily fringe
edges), and the horizontal rays extending leftwards fucendw. See Figure 17.

Otherwisep andw are the highest and lowest cusps respectively meeting two fringe
treesT; andT;. If u is not the highest beachline cusp, then let the tube be bounded above
by the separating ray directly aboud4.3), extended leftwards from where it meets the
beachline by an infinite horizontal rayuis the highest cusp, then the tube is unbounded
above. Similarly, the tube is bounded below by two infinite rays unie&sthe lowest
cusp in which case the region is unbounded below.

All tubes are closed, that is, they include their polygonal boundaries.

4.6. We assume there is an ariagovering the(P, L)-beachline. Recall from the In-
troduction that this means that each array ewiy} contains, or points to, a data record
R(f) associated with one of the featuréqa cusp or segment) of the beachline, and
that all beachline features are thus accessed in vertically descending ofd@oissibly
with duplicate entries. We allow for duplicates to avoid a data-compression step between
phases of the algorithm.

In general, the number of processors available will be a fixed fraction of the sfze of
For simplicity, we assume that there are sufficiently many processors available to attach
to all the elements oA.

4.7. Array entryA[j] contains the following information about the beachline feature
f which it covers.

e The intervali - - - k of entries inA covering f .

If j # i, then no other data need be stored with this entry: it is enough to store the
information aboutf in A[i].
If the featuref is a cusp, then:

e lts coordinates are stored AJi].
e Letedenote the edge of VOP) crossing the beachline at the cusp: a pointer to arecord
for eis stored withf . This is needed when combining V@) with Vor(Q) (Section 6).

Otherwise, itis a segment. The two unbounded segments contribute little information.
If the feature is a bounded segmantet u andw be the bounding cusps, and lebe

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 589

Fig. 18.lllustrating Lemma 4.9.

the inner vertex owned bs;*® then the information stored is:

e The sitep owning it, the coordinates ofif s is not a separating segment (2.18); if it
is, a description of the separating ray. glis a separating segment, then the gitis
a corner of the convex huli (P), and the index of the leftmost entry imA covering
s will be associated wittp in the description oH (P).)
o Indices to the (leftmost) records covering the leftmost and rightmost cusp descendants
of v, from which the tube owned byis easily determined.

DEerINITION 4.8. (See Figure 17.) ThE-pocketassociated with an internal nodds
the setR,\(R, U R,), whereR, is the tube associated withandu andw are its two
childreninT.

LEMMA 4.9. Pointer links defining the parent—child relations of T can be installed in
the array A in constant time with n processofen the T -pocket associated with every
node can be determined in constant time

PROOF We assume one processor per entrAirince the range of leaf descendants
is given with each node, it is trivial to test whether one node is an ancestor of another.
Given a noday, let x be the inorder predecessor of its leftmost descendant, apdket
the inorder successor of its rightmost descendant.dbes not exist or is an ancestor
of y, thenu is a left child with pareny, otherwiseu is a right child with parenk. See
Figure 18. Thus with one processor assigned to each enkytafan be decided quickly
of every node whether it is a left or right child and which node is its parent. Then the
parent—child pointer can be installed in the parent’s record.

Since the tube associated with each node can be easily construct&dptioget can
then be determined. O

4.10. Apockethas at mosttwelve edges, including its infinite horizontal edges, it meets
at most three cells of V@P) to the right of the beachline, and hence it meets at most
three beachline segments. Hence, given a query poiatsingle processor can decide
easily whethew is in the pocket, and if so, whethgris to the right of the beachline,

and if so, which cell of Vo¢P) containsx. Assigning processors to all the entriesAn

it is therefore easy to determine whetkes to the right of theg P, L)-beachline, and if

so, which site inP is closest.

18 ThereforeA[i — 1] and A[k + 1] contain records fou andw, respectively.

590 R. Cole, M. T. Goodrich, and €@ Dunlaing

Fig. 19.Skeleton treeb, u, v, w splitting nodesb, w bottom.u has one child in T’, v has childreru andw
inT’.

4.11. An important sampling technique will alloy/n processors to solve location
problems in bounded parallel time. The sampling involves takirskedeton tree T
whose nodes are nodesDfand which have the same ancestor relatiof as

Letk be a proper divisor afi (for convenience we assume tinas a power of 2 (2.1)).
A k-sampleof T is the subsequence of leaves obtained by taking dstarglementA[i]
indexing a featuref, and choosing eithef if it is a cusp or its lower cusp if it is a
segment. We call the leaves thus samplediaekedleaves ofT .*° The marked leaves
form a subsequence such that between any two leaves in the sequence (in inorder) there
areO(k) nodes ofT . Thespanof an internal node is its set of marked leaf descendants:
this is easily calculated from the indexeand j of the leftmost and rightmost entries in
A covering the descendantsaf

An internal nodev is asplitting nodef its two children both have nonempty span. It
is abottom nodéf it is but none of its descendants is a splitting node. Notice that every
bottom node has exactly two marked descendants. See Figure 19. There is a binary tree
T’ whose nodes are the splitting nodeslofand whose leaves are the bottom nodes of
T. The parent of a node ifi’ is its closest splitting-node ancestorlinA splitting node
which is not a bottom node can have one or two childrefn’in

If vis a splitting node, it§’-pocket is defined aR,\ (R, U R,,) whereu andw are
its children inT’, or R,\ R, if v has just one childi in T’; if v is a bottom node, it3’
pocket is simply the tub®,. The highest splitting node in T'—which need not be the
root of T—is the root ofT’: the complement oR;. defines one other kind of pocket, the
enclosing pocket

LEMMA 4.12.

(i) T'is abinary tree with @n/k) nodes
(i) Each pocket contains @) vertices of theg P, L)-fringe.
(iii) Using the covering array An processors can identify the nodes ofand the
parent—child relations in @1) parallel time

19 The arrayA covers the beachline; a leaf can be marked because several of the sampled elerarts of
associated with this leaf; #\[i - - - j] is the subinterval ofA associated with the feature, théfi] is where the
marking information should be written; this information can be calculated by the processor atta¢tigd to
the others remaining idle.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 591

(iv) The vertices and cusps inthi, L)-fringe can be mapped to the pockets containing
them in Q1) parallel time

(v) Wherf® k = /n, the location problem for any query point q can be solved by k
processors in QL) parallel time

PrROOFE (i) We show that it is a binary tree in the sense that every nod@éliras at most
two children inT’. The notion of “left” and “right” child is irrelevant where a node has
just one child; otherwise, the children are independent nodé@s ahd it is natural to
order them the same way 1.

Suppose that has two different children andw in T'. Thenw is their closest ances-
tor in T which is a splitting node, so they are independentaistheir lowest common
ancestor (LCA). It follows readily that has no other children ii”: If x were another
splitting-node descendantofthen say without loss of generality that battandx were
descendants of the right child ofin T: then their LCAy would also be a descendant
of the right child, so it would differ fromv, and hencex could not be independent af
(y is not splitting), sax would be a descendant of.

Since every bottom node has two marked descendarits there are at most/2k
bottom nodes, wheré < nis the number of beachline cuspsTifwere a full binary tree
it would follow that it had fewer than/k nodes. However, it might not be. Consider the
full binary treeT” obtained fromT’ as follows: ifv is a splitting node, not a bottom node,
with just one childu in T’, then one of its children it , sayw, has exactly one marked
descendant, andis descended from the other child. Addas a leaf off 7, sou andw are
siblingsinT”. TheninT” every leaf has at least one marked descendaifit; bas at most
n/k leaves, and” is a full binary tree, so it, and therefolg, has at most2/k nodes.

(ii) Let v be a splitting node. If it has two childranandw in T’, then letT” be the
subtree ofT atv, with the subtrees at andw deleted. Then the leaves &f come in
three intervals along the beachline, each containing no marked cusp, so it has at most
3k — 3 leaves, and hence, since it is (nearly) a complete binary tree, fewerkmaés
altogether. However, these are all the nodes inlthpocket at.

If v has just one childi in T, let T” be the subtree of at v with the subtree at
u deleted. TherT” is (nearly) a complete binary tree, and its leaves are among two
intervals of beachline cusps. These cusps contain exactly one marked cusp, so there are
again at mostiénodes inT”, hence in the pocket at

If v has no children ifT’, then itis a bottom node, and its leaf cusps form an interval
containing exactly two marked cusps, and again the pockegtvahich equals the tube
atv, contains at mostkénodes ofT .

Finally, if v is the highest splitting node, Iat” be T with the subtree at deleted:
thenT” is (nearly) a complete binary tree whose leaves form two intervals along the
beachline and which has no marked leaf descendants, so it has atkmastes. These
are all the nodes df in the enclosing pocket.

(i) Let I, andl, be two adjacent marked leavesf This means that the range of

20 0r,/n/2, whichever is an integer.

592 R. Cole, M. T. Goodrich, and €@ Dunlaing

entries ofA covering eithet; (respl,) or else its inorder predecessor contains an index
r (resp.r + k), wherer = 1 modulok, andl; andl, are distinct.

Their LCA v in T must be a splitting node, since both its children possess marked
descendants. Furthermoreyifs a splitting node, then taking &sthe rightmost marked
leaf descendant of its left child, andlashe leftmost marked leaf descendant of its right
child, these are contiguous marked leaves aigltheir LCA. Thus the splitting nodes
are exactly the LCAs of adjacent marked leaves.

Suppose that - --s — 1 is an interval of lengttk wherer = s = 1 modulok. There
are leaves; andl,, possibly the same leaf, which are marked becaisesp.s) is in the
interval covering them or covering the segment above them. If these are distinct, then
they are adjacent marked beachline leaves, and the processors allocated to the interval
can detect this, and since the LCA lies between these marked leaves in inorder, one of
the processors can identify it and attach the information to the array entry colsering

Note that ifl; is a marked leaf (not the last), then a single processor can access the
nearest marked legf following it: it calculates the largest= 1 (modulok) in the range
coveringly, and accessésg by inspectingAlr + k].

If uandv are the LCAs of adjacent pails I, andl,, |3 of marked leaves, then either
u is an ancestor of in T, anduv is its right child inT’, or u is the left child ofv in T".
This concludes (iii).

(iv) Each splitting node is associated with a pair of adjacent marked leaves, hence
with a block of at leask processors. Since its pocket contald&) nodes, forming at
most three intervals of contiguous nodesTofin inorder), the nodes in’s pocket can
be labelled (with the index of the leftmost entryAncovering the segment whose inner
vertex isv) in bounded parallel time.

Each bottom node is associated with a unique pair of adjacent marked leaves, so it is
easy to assign a block &fprocessors to label the interval of nodes in its pocket.

(v) Given the query poing, the processors are first distributed over the nodés of
andq is located to the correct pocket ®f. The processors are then distributed to the
nodes within the pocket, argdlocated in the correct pocket of. O

5. Constructing the (P, Q)-Contour by Progressive Refinement. We have seen that

the fringe can be separated into pockets so that planar point location can be executed in
constant time using/n processors. Here we discuss the progressive subdivisions of the
fringe obtained by sampling at progressively smaller intervals. By iterating the process
log log(n) times all the contour vertices are constructed. Hheigethe number of sites in

P U Q; the arrays covering the beachlines have $)@); for clarity we assume they

have sizen.

5.1. The interval lengths involved will progress through the sequiendeg, . . . where
ko = n (assumed a power of 2), and, for eack 1 is either/k; or \/ki /2, whichever is
an integer, until the value 1 is reached. Thus there are about 1@ logfinement steps.

LEMMA 5.2. No pocket edge crosses the contour more than.once

PrROOF The horizontal pocket edges (those to the left of the beachline) do not cross
the contour; the other pocket edges satisfy the hypothesis of Lemma 2.13. O

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 593

Any pocket has from two to six edges to the right of the beachline. Since the contour is
to the right of the beachline, it cannot cross the other pocket edges. Hence the boundary
of each pocket meets the contour at most six times and therefore the pocket meets the
contour in at most three connected intervals which weazaitour fragments

The data-structure described in the previous section can be used to calculate the points
where pocket edges cross the contour, but first the pocket edges which cross the contour
are identified. In view of Lemma 5.2, for bounded edges it is enough to establish that their
endpoints are on opposite sides of the contour. For the unbounded edges (the separating
rays, 2.18), with only one endpoint, the following method is used.

LEMMA 5.3. Let R be one of the separating rays associated with the beagchbrieis
entirely within a cell oMor(P). Then it can easily be determined whether R crosses the
contour

PrROOF Letebe the side o (P) perpendicular tdR; thenR crosses the contour if and
only if eis notan edge oH (P U Q), which can be assumed to be already constructed
(4.2). O

LEMMA 5.4. The contour fragmentsit the first stage of the constructipran be defined
in constant parallel time

ProOR We consider the first stage, wherg/a-sampling is used. Assigyn proces-

sors to each of th®(,/n) pocket edges on the&, L)-fringe. We have seen how those
unbounded edges which cross the contour can be identified; a bounded pocket edge
crosses the contour if and only if its two ends lie on opposite sides of the contour, which
can be decided in constant time (4.1; Lemma 4.12).

The problem reduces to usingn processors to compute for a (possibly unbounded)
line-segmeniX, known to cross the contour, and entirely contained in the cell of a site
g in Vor(Q), the pointc where it crosses the contour.

Assigning the processors to tle, L)-fringe, the intervals of intersection (at most
three) of X with each pocket are determined. Eith¢ris unbounded and the last, un-
bounded, interval begins closerdqahan P, or there is an interval with one end closer
to g and the other td®—this is the interval containing. It can then be computed by
reassigning the processors to the fringe edges within the pocket and determining in the
same way the cell of V@P) containingc, and hence calculating

Thus the endpoints of all the contour fragments on(t@eL)-fringe are determined.
Similarly for the(P, L)-fringe. O

We now consider the process of refining the samplings to compute ultimately all the
contour vertices. Consider a refinement step. We have had (implicitly) a skeleton tree
T’ obtained by sampling evelgyth element ofA. At the next level of refinement there
is a skeleton tre@” where every;ith entry in A is sampled. Recall that the pockets
are defined in terms of the “tube&|, associated with the nodes of the various skeleton
trees. These tubes are fixed in relation to the original fringeTraad have nothing to
do with the samplings.

594 R. Cole, M. T. Goodrich, and €@ Dunlaing

LEMMA 5.5. Assuming that the tree’Ts nonempty

(i) Every marked cusp at one level will be marked at the.next
(i) Every node in TisanodeinT.
(iii) The T’-pockets subdivide the’‘pockets

ProoF (i) Essentially trivial, sincds; ., dividesk;. (ii) Therefore every splitting node
at theith level is a splitting node at th@ + 1)st.

(iii) Given any nodes, y of T, x is a descendant gfif and only if R, € Ry. The root
node ofT’ is a descendant of that @f’, hence the enclosing pocket fof contains that
for T”. Letv” be a node off 7, and letK denote thel ”-pocket atv”, not the enclosing
pocket ifv” is the root of T”. If no node inT’ is an ancestor of” (includingv”), then
the root node off " is a proper descendant of, hence a descendant of one of its (one
or two) children inT”: henceK is contained in the enclosing pocket fof. If v” has
some ancestor i/, let v’ be the lowest such ancestor. Létbe a child ofv’ in T': U’
need not exist, but if it does, then it cannot be an ancestof of T’ (being lower than
V). If U andv” are independent, theR,» N Ry = @, soK N Ry = @. If " andv” are
not independent, theu is a proper descendant of in T”, so the tuber, is contained
in the tube at some child af” in T”, and once agailK N Ry = @. SinceK € R,
andK is disjoint from the tube at any child ef in T’, K is contained in thd’-pocket
atv'. O

5.6. LetR be a pocket of th¢P, L)-fringe at a fixed level in the refinement process.
We want to compute where the contour intersects all the subpocket boundaries within
R, where the subpockets are thoselsf

Note that the structure of” can be built in bounded time, and for any nodeTdf
the enclosing pocket ifi” has been precomputed (Lemma 4.12).

There areD (k;) processors available to carry out this taskRoOne deals separately
with each of the (at most three) fragments, intervals of the contour intersdrtinbe
fragments can be assumed to be stored with the recong feinerev is the node of the
(P, L)-fringe owning the pocket. The points where the contour crosses the pocket are
stored sorted by-coordinate. Because the contour is monotonic inyttirection, the
highest pair of endpoints, if they exist, define the highest fragment, the next pair define
the middle fragment, and the lowest pair define the lowest fragment. The corresponding
pockets (at the same refinement level) of ¢k L)-fringe containing these endpoints
can also be assumed stored with the endpoints, since locating the endpoints involved
locating these pockets.

Call a fragmenshort if there is aQ-fragment which contains it—in particular, all
of the fragment is in the same pocket, calRt of the (Q, L)-fringe. Otherwise it is
long (compare with Definition 3.2). By referring to the pockets of titg¢ L)-fringe
containing the fragment endpoints, it is easy to locateQHeagments containing them,
and hence determine whether a fragmerRiis short or long.

Let F be a short fragment iR; let R" be the corresponding pocket of th@, L)-
fringe containing=. RandR’ each contait® (k; 1) subpockets each containiyk; 1)
vertices in its respective fringe. The points whérerosses subpocket boundariedRn
and R’ can be calculated i©(1) time using thek; processors assigned R So, in

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 595

bounded time, for each short fragméntelative to the subdivisioi’, the points where
F crosses subpocket boundaries in tRe L)- and(Q, L)-fringes can be calculated.
Interchanging theales of P and Q, subpocket crossing points can be calculated for
all short fragments in théQ, L)-fringe.
Let F be a long fragment ifR. Its two endpoints are located in fragmeftsandF”,
say, of the(Q, L)-fringe. The processors assignedican compute the correct subdivi-
sionof FNF andF N F”in O(1) parallel time. Repeating this for all (up to three) long
fragments inR, the subdivision is completed, because any subpocket crossing point on
F is either inF’" or in F” or in a short fragment relative to thi€), L)-beachline.
Thus the procedure can be iterated with bounded time per iteration, at the last iteration
the pockets contain a bounded number of fringe edges, and we conclude

THEOREMbS.7. Given arrays covering th€P, L)- and (Q, L)-fringes the (P, Q)-
contour vertices can be located in (Ioglogn) parallel steps using n processors
(CREW.

5.8. Once a point where a fringe edge meets the contour has been calculated, infor-
mation about the vertex can be stored with the fringe. Suppose thatn edge of the

(P, L)-fringe; letu be€'s starting vertex; suppose that it is associated with fringe feature
f.If uis a cusp, therf = u; otherwiseu is the inner vertex associated with Leta

be the point where crosses the contour.

Then the following can be stored with: the coordinates o, and an index to the
(Q, L)-fringe segment whose region contamd_ets; ands, be the segments directly
above and below the leftmost and rightmost descendamimthe (P, L)-fringe; then
a is the lowest point wherés, meets the contour and the highest whégemeets the
contour; so this information (i.e., an index fQ can be associated wit ands; in the
(P, L)-fringe. In other words,

LEMMA 5.9. Edges of théP, L)-fringe which meet the contour can be pointer linked

Since the corresponding fringe features follow the same sorted order as the corre-
sponding contour vertices (Lemma 2.27(ii)), we can use broadcasting (Lemma 3.4) to
cover the sorted sequence:

LEMMA 5.10. Arrays covering

(i) Those contour vertices with two adjacent sites in P
(ii) All contour verticeshoth in sorted ordeican be constructed in time @g log(n)).

ProOFE (i) has been discussed; (ii) is obtained by constructing the array covering ver-
tices with two adjacent sites IQ, and merging the two. O

6. Building Vor(P U Q). In this section we address the problem of building the
Voronoi diagram: up to now we have concentrated on computing contour vertices. Given

596 R. Cole, M. T. Goodrich, and €@ Dunlaing

Fig. 20.lllustrating 6.3.

S = P U Q, we describe the representation of 8y, and show how to construct it
from Vor(P) and VorQ), once the(P, Q)-contour has been constructed. This turns
out to be easy.

We ignore the trivial cases in whicR or Q have fewer than three sites; therefore
Vor(P) and Voi(Q) each have at least one vertex.

6.1. The diagram V@) is to be represented as a plane graph, organized as follows
[17]: there are records for every site and vertex, and for each vertex there are three edge
records. In this scheme, bounded edges are represented twice, and unbounded edges
once, as directed edges.

Each vertex record contains the vertex coordinates. Suppose that a directed edge is
oriented away from a vertax then we call its “in-vertex.” If the edge is bounded then
we call its other end its “out-vertex.”

Let e be an edge with in-verten. The edge record contains pointersgpand ps,
wherep; is the site on its left angh, the site on its right.

6.2. Itis convenient to associate every Voronoi vertex with one of the adjacent sites,
canonically, as follows.

Consider a Voronoi vertex. Since none of the sites adjacenutare covertical (2.1),
none of the edges incidenti@re horizontal; and either two edges extend downwards and
one upwards or vice versa (Lemma 2.5). Thereforethe highest or lowest point in one
of the adjacent cells. It follows that there are at mg&t|2/oronoi vertices! This gives
a simple way to allocate space for ¥@): to each site let there be associated two vertex
records, one for the highest vertex inits cell (if the cell is bounded above), and one for the
lowest (if bounded below). With each site let there be space allocated for six edge records
(three for each vertex). Since the vertices and edges are stored together it is unnecessary
to include pointer linkages from vertexto the edges with in-vertex, and so on.

6.3. In order to calculate the diagram, recall (4.7) that we assumed one more link be-
tween the beachline and the corresponding Voronoi diagram: to each cusp of the beachline
is attached a pointer to an edge record. Specificaltyisii cusp incident to an (oriented)
fringe edgee, then there is a link frorm to the record for the Voronoi edgécontaininge

and oriented the same wayag|f eis unbounded, then there is only one corresponding
edgee, but it is oriented the same way asaway from the beachline.) See Figure 20.

21 |f the sites are in general position, then there af|2- k — 2 Voronoi vertices, wherk is the number of
corners of the convex huHi (P).

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 597

THEOREMG6.4. Let A and B be arrays covering th@, L)- and (Q, L)-fringes As-
suming the extra linkages from cusps to ed@S3) have been stored with thé, L)-
and (Q, L)-fringes and the(P, Q)-contour vertices have been located and stored in
their respective fringe.8),then the graph structure fafor(S) can be built in bounded
parallel time

ProOOF (This realizes the idea of “stitching” along the contour.) Processors attached to
the two beachlines combine the structures of ¥orand Vo Q), allocating new contour
edges and vertices, and discarding redundant parts of the diagrams as follows.

By Lemma 5.10 we can assume that the contour is sorted, so for every contour vertex
its two adjacent vertices (if they exist) can be accessed. First, records are created in
parallel for all contour vertices (they are stored in site records (6.2)).

Let v be a contour vertex stored iA or B; without loss of generality, two of the
adjacent sites are frol® and the other fronQQ. This means that is where an edge
a of the (P, L)-fringe meets the contour (we calla “contour attachment”). Let be
the (directed) edge of VOP) containinga; let z be its in-vertex. Ifa meets the P, L)-
beachline, ther is associated with the cusp where it meets the beachline; otheavise,
is associated with the inner fringe vertex represerting

A single processor can initialize records for the three new edges with in-veftiesy
are stored with the same sitew@ais), installing the sites adjacent to each of these edges.
Two of these edges are along the contour, the third is oppos#tentdirection.

For all contour “attachmentst in parallel, access the edgeontaininga in Vor(P)

(or Vor(Q)), mark its old inverse (if it exists) “deleted,” and calculate its new inverse
as the edgév, z), wherez is the in-vertex fore andv is the vertex whera crosses the
contour.

Again access all these attachments in parallel; following the same notatas bt
marked “deleted,” installv, z) as its inverse and malethe inverse fofv, z). Otherwise
e and its inverse both cross the contour twice, at verticaadv’, say; the records for
(v, v") and(v’, v) are made mutually inverse. This finishes calculation of the inverses
for all noncontour edges meeting the contour. For the contour edges the calculation is
trivial, since the contour vertices are sorted vertically.

The structure of VarS) consists of the Voronoi vertices and edges not marked
“deleted,” together with the linkages described above; these vertices and edges are stored
in the site records fos. O

7. Building the (P U Q, M)-Fringe. In Section 5 we used theP, L)- and (Q, L)-
fringes to construct théP, Q)-contour. To allowS = P U Q to adopt the role oP or
Q at a higher level of recursion, we need to compute(@eK)- and (S, M)-fringes,
whereK andM are vertical lines to the left and right &= P U Q.

In this section we show how to construct an ar@agovering the(S, M)-fringe; an
array covering th&S, K)-fringe is constructed symmetrically.

Recall what information is needed in the ar@y4.7):

e EachentnG[j] covering afeaturd ofthe(S, M)-beachline needs the ranige - k of
entries inG covering f. For the other data, we assurpe= i (that is, the information
need only be stored in the leftmost entry coverirg

598 R. Cole, M. T. Goodrich, and €@ Dunlaing

o If f is a segment, the sitg owning it is stored irG[i].

o If f isacusp, its coordinates are storedsfi].

e If it is a nonseparating segment, the coordinates of its inner vertae stored in
GJi], and the indices of the records &f covering the leftmost and rightmost cusp
descendants af.

e There is a representation built of @ as a planar graph; some linkages are needed
between th&S, M)-fringe and VotS): to each beachline cusp, a pointer to an edge
of Vor(S) which meets it (6.3).

7.1. Recall (2.15) that i§ is a beachline segment owned by a gitehen A is that
part of the Voronoi cell owned bp to the right ofs. For this section only we make the
notation more explicitAlt is that part of the cell op in Vor(P) bounded bys and
closer toL than top.

Recall also that when the contour vertices were computed, certain data were stored
with the (P, L)- and (Q, L)-fringes (5.8). Suppose that a contour verxeis where a
(P, L)-fringe edgee crosses the contour. Suppasés the fringe node (inner vertex or
cusp) at whicke begins; lefs; ands, be the segments adjacent to leftmost and rightmost
descendants af, let f be the feature (cusp or segment) of e L)-fringe owningu,
and lets be the segment of thg, L)-fringe whose region contains Then the coor-
dinates ofx, and a link tos, are stored withf ; and there are links betwedn s;, ands,
(x is the lowest contour vertex meetidg-- and the highest meeting-" (5.8)).

The following arrays are available, or will be constructed:

e An array A covering the(P, L)-fringe, with all data as required in 4.7 and 6.3, and

also information related to contour vertices as described above.

An array B covering the(Q, L)-fringe, similar toA.

An arrayC covering the(P, M)-fringe will be constructed fronA.

An array D covering the(Q, M)-fringe.

An array E covering the(Q, L)-fringe edges which cross the contour, sorted accord-

ing to the vertical order of the associated contour vertices. This is derived Brom

(Lemma 5.10).

e Aruling F forthe(S, M)-beachline. Recall that this is a sorted arrapgfS| /log(n))
horizontal lines, such that between any adjacent lines ther®édog(n)) beachline
cusps. Herarefers to the size of the “global” problem, different fro8). In Section 8
it will be shown how all necessary rulings can be precomputed.

e FromC andD an array covering theS, M)-beachline cusps will be constructed, and
then usingF an arrayG covering the(S, M)-beachline will be constructed. The last
step is to ensure th& has sizeD(|S|) uniformly for all setsS of sites processed. The
necessary information (4.7, 6.3) will be installedGn

REMARK 7.2. The problem of calculating the combined beachline may be dismissed as
a matter of “merging” two beachlines together. Of course, merging, in the conventional
sense, is heavily used in our algorithm, but since a single segmeni&fthw)-beachline

could be split into many segments of th& M)-beachline, there are difficulties in al-
locating array space. Indeed, this is the main difficulty of our paper. Without careful
treatment, it would lead to processor allocation problems.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 599

Fig. 21.lllustrating Lemma 7.3.

LEMMA 7.3.

(i) Given an array A covering théP, L)-fringe, an array C covering th&P, M)-
fringe can be constructed in parallel time(fog log(n)). For every segment ®f
the (P, M)-beachline there is a unique corresponding segment s of tReL)-
beachline

(ii) s and swill be mutually accessible

PrROOF Firstwe explain what “corresponding segment” means. Every segiadithe
(P, M)-beachline is contained in a unique regidfi- (2.15) of the(P, L)-beachline;
thens s the corresponding segment. See Figure 21. Imagine a verticA lgveeeping
from L to M, and consider how theP, V)-beachline changes. The only event changing
the beachline qualitatively is where a beachline segment disappears, being occluded by
the two adjacent segments (the point at which it disappears is a vertex &)Y3f As V
moves, the segments sweep through beachline regions and are occasionally extinguished.
We say that a segmesibf the (P, L)-beachlinepersistavhen its regionAf-t (2.15)
intersects théP, M)-beachline. The segmesitwhere it intersects is to the right ein
the same cell of VaiP). The order of beachline segments is preserves]:ig aboves,
in the (P, L)-beachline, thess; is aboves, in the (P, M)-beachline. Therefore, & is
an edge of théP, M)-fringe, ande is the edge of théP, L)-fringe which contains it,
then (Lemma 2.23) they both have the same orientation. An edge ¢0PtHe)-fringe
persists if all or part of it is to the right of the®, M)-beachline.
The arrayC is initially just a copy ofA, and processors are allocated to corresponding
entries in both arrays. Then:

(a) The persistent edges and segments are identified.

(b) Pointer links are installed between adjacent persisting segments; in this way, using
Lemma 3.4, all the entries i@ are redirected to cover persistent segments.

(c) The appropriate revised information (4.7) is store@in

(a) With one processor allocated to each (active) recofd, iif the record covers a
cusp (of the(P, L)-beachline), then that cusp is marked “absent”; if the record covers
a nonseparating segment with internal venteihen it is first determined i is on the

22\\fe omit a proof of this rather plausible fact. See [11].

600 R. Cole, M. T. Goodrich, and €@ Dunlaing

(P, M)-fringe by calculating its distance froi. Then it is marked “absent” if closer
to P than toM, otherwise “present.”

Next the processors determine which edges of Ehel)-fringe intersect théP, M)-
beachline. We can assume that the parent—child relation ofPthie)-fringe is stored
in C (Lemma 4.9). An unbounded edge whose endpoint is marked absent must intersect
the (P, M)-beachline. If a bounded edge, x) intersects théP, M)-beachline, where
x is the parent ob, thenv must be absent arxl present, since the orientation of the
edge must be away from the beachlindothfringes.

Thus if a(P, L)-beachline edge oriented away from a ventémtersects th¢P, M)-
beachline, the intersection poinitcan be calculated by a processor assigned smd
stored in the same record Gfasv (v can be a cusp or an internal vertex). At this time
also, the link required by (6.3), froni to the edge of VarP) containing it, can be in-
stalled, since that edge is accessible throughhus the cusps of th@, M)-beachline
are calculated and stored.

(b) With v andv’ as above, letl andw be the extremal descendant cusps of the
(P, L)-fringe, bounding beachline segmest$rom below ands, from above, say. Then
all of the (P, L)-beachline between andw is “occluded,” and the regionAg'- and
ALt (2.15) intersect the new beachline in segmehisnds), with the cuspy’ in com-
mon. In this ways' are recognized as segments which persist in(theM)-beachline.

A processor assigned tocan attach this information t® ands,, and provide pointer
links between them. See Figure 21. Applying Lemma 3.4, all the occluded parts of the
beachline can be mapped to the closest nonoccluded parts irQtifog log(n)). Sup-

pose that the occluded part of the beachline between segsjeantsls, is covered by

the subintervai - - - k of C. This part ofC should now cover just the single cusp

(c) To set up information as described in 4.7, the processors attached to the interval
i ---kwritetherangé- - - kin each array entry, and the coordinateg’afito the leftmost
entry. When this is done, the effect on those entrie€ efhich covereds is that they
now covers' (i =1, 2).

Ingeneral, isis a persistent segment asidhe corresponding segment of itfe, M)-
beachline, they are covered by exactly the same recor@s bierefore the connection
between corresponding segments is trivial: they are covered by corresponding records
in AandC, proving (ii).

Also, because edge orientations are the same ifRthe)- and(P, M)-fringes (2.23),
corresponding segments have the same inner vertex (if any).

Suppose that is this inner vertex. The only data which need to be changed are the
leftmost and rightmost cusp descendants.oHowever, this is easily done: suppose
thatu is the leftmost cusp descendantwfn the (P, L)-fringe. If j is the leftmost

index coveringu in A, C[j] now contains the intervdl - - - j’ of records covering the
cuspu’ which replacesi. Similarly for the rightmost descendant. This finishes the proof
of (i). O

Now we have arrays covering thi®, M)- and(Q, M)-fringes.

REMARK. The rest of this section is mostly concerned with finding short access paths
to various features of thes, M)-fringe. Sometimes these are not described in full, or
are left implicit: for example, if two arrays are merged together into one, it is assumed

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 601

Fig. 22.lllustrating Lemma 7.4.

that from any record of the source arrays or target array the corresponding element in the
other can be accessed directly. Again, some access paths can be inverted efficiently. For
example, there are links from both th®, L)- and(Q, M)-fringes into VoK Q) (6.3):

since every edge in VOR) intersects at most two edges in either fringe, by inverting the
access relations in parallel we can assume that from any fringe edge the others can be
quickly accessed.

LEMMA 7.4. Suppose thatjsand $ are adjacent segments on th8, M)-beachling
with s, above and sbelow their common cusp the segments being owned by sites p
and g, respectivelylf p is to the left of qthen c is the highest cusp for gtherwise it

is the lowest cusp for.p

PrROOFE Imagine thatp andq are the only sites. Ip is left of q, thenq is closer toM
and the beachline consists of three segments, the outer two owrgearu/the bounded
segment owned bg. Let R be the parabola (with focug containing the bounded seg-
ment. Any point above on R is closer top than tog, hence cannot be on the beachline,
whether or notp andq are the only sites; henaeis the highest beachline cusp owned
by g. Similarly if p is closer toM. (See Figure 22.) O

COROLLARY 7.5. Let g be a site which owns a segment s on(eM)-beachline

(i) If g € P (resp Q), then this segment is contained in a segment r of(feM)-
(resp (Q, M)-) beachline
(i) If g € Q,thenr contains no other segment of & M)-beachline”®

ProoF (i) Without loss of generalityg € P. Let U be the set of all points on the
(P, M)-beachline as close W as to any other site ii?: U is the disjoint union of all
segments owned by on the(P, M)-beachline. Any point on s is equidistant frong
andM, and as close tg as to any other site i§, hence as close as to any other sit€in
Thuss C U. Sinces is connected, it is contained in one of the connected components
of U, which is a(P, M)-beachline segment

(if) Suppose thag € Q. The upper end of is either that of , or it is a point on the
(P, Q)-contour, and by the above lemmaitis the highest beachline cusp owigethiog
r contains no segment abosen the combined beachline. Similarly for the lower dnd.

23 |n contrast, a segment of thi®, M)-beachline can be split into many segments of(eM)-beachline.

602 R. Cole, M. T. Goodrich, and €@ Dunlaing

Thus every segment of tH&, M)-beachline, if it is owned by a site froM, is con-
tained in a unique segment of th®, M)-beachline. The same cannot be said for sites
from P, and we use another method to identify such segments.

LEMMA 7.6. From arrays C and D covering theP, M)- and (Q, M)-beachlinesthe
cusps of thgS, M)-beachline can be calculated in(@g log(n)) parallel timg and the
contour cusps stored in a modified copy of D

PrROOF Firstlocate eactiP, M)-beachline cusp in th@, M)-beachline segmentlevel
with that cusp. This can be done, say, by forming copigs ehdD, redirecting entries
covering segments to cover adjacent cusps, and merging the two arrays together. Once
this is done, a cusp on one beachline can be marked “present” or “absent” according to
whether it is to the right or left of the segmexf the other beachline whose endpoints
spanu.

The remaining S, M)-beachline cusps can be calculatedi(l) parallel time as fol-
lows. Letc be a cusp (yet to be computed) where a segraeotthe (P, M)-beachline
intersects a segmest of the (Q, M)-beachline. Without loss of generality, abayes;
is to the right ofs,, and belowc, and sufficiently close ta, the converse holds. This
implies that neac the (S, M)-beachline is contained is abovec and ins, belowc,
andc is a cusp. See Figure 22.

Now c will be the highest cusp owned by the sdeowning s, in the combined
beachline: therefore the upper endpoinsofvill have been marked “absent.”

A processor assigned 8 or s, can calculate the one or two points wheagecan
intersects;. Figure 22 illustrates the idea: calculate the intersection points of the two
parabolas containing; ands;; if an intersection point is within the vertical spansf
ands;, then it is a contour cusp (for example, in Figure %5 a contour cusp, because
directly abovec the beachline is owned by € P and directly belowc by g € Q). The
new contour cusp or cusps, if they exist, can be stored as the cusps bounding the “new”
version ofs,, i.e., that part of, remaining in thgS, M)-beachline. O

The beachline description is next written to an aiGagf sizeO(|S)). Itis here that we
use a precomputed “ruling” array for tli§, M)-beachline. This is in order to compress
the arrayG to a manageable size. Otherwise, the crude way to consgwebuld be
to double the size ob before merging, the® would have enough room to store both
cusps and segments. The effect of this, over several levels of recursion, is to increase the
size requirement, and hence increase the processor requirente'%?3).2* As noted
previously, this was one of the main difficulties of our paper. In the earlier version [9],
not just a ruling for the beachline but the full beachline was precomputedniati(n)
processors overall (CREW).

LEMMA 7.7. Let C and D be arrays covering th@, M)- and (Q, M)-beachlines
and let F be a ruling for théS, M)-beachline Having identified the contour cusgn

24 Spolution to the recurrence(2k) = 3F (k).

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 603

array G covering th€S, M)-beachline can be calculated in parallel timg(log log(n))
(CRCW.

PrROOF Acusp ofthg’ S, M)-beachline is either a contour cusp or a cusp of fheM)-
or (Q, M)-beachline marked “present” as described in the previous lemma.

We suppose that a modified copy of D has been created, covering the contour cusps
and cusps of théQ, M)-beachline. IrD’ the records storing the closest adjacent contour
cusps can be identified i®(loglog(n)) parallel time (CRCW) by forward chaining
(Lemma 3.5). By this means, records covering an “absent” cusp 0€2h#1)-beachline
can be changed to cover an adjacent contour cusp, smw covers only cusps of the
(S, M)-beachline. By merging the cuspslixiwith the cuspsirt, for every cusp of the
(S, M)-beachline, the nearest cuspabovec in the (P, M)-beachline, and the nearest
cuspd’ abovec in D’ (if they exist), can be located. ¢f exists, is belowd’, and marked
“present,” thert’ is the closestS, M)-beachline cusp abowegotherwised’ is, if it exists.

Thus all the(S, M)-beachline cusps can be linked together in a single-linked list.
Now, by merging the cusps i@ and D’ with the ruling arrayf, this list is broken into
shorter lists; if a cuspand the closest cughabovec are separated by a line of the ruling,
then break the link connectingto d. Since between two adjacent lines of the ruling
there areO(log(n)) (S, M)-beachline cusps, the result is that {t% M)-beachline is
broken into linked lists of lengtd (log(n)). For each cusp, its rank (distance from the
end of the list) in the list containing it can be calculated by parallel list-ranking. This
takesO (log log(n)) parallel time (3.7).

Let an arrayG of sizeO(|S|) be prepared, subdivided into blocks of si2€log(n));
each block sufficiently large to cover all of the beachline between two adjacent lines
of the ruling. Let the beachline cusp of rankn its strip be copied into locationi Df
the corresponding block; so the cusp records will be in alternate locatidBs Tfiere
is room to store the segment records between them; and unused records at the end of a
block can be redirected to cover the last segment in the block. O

7.8. Nextwe install irG information about théS, M)-fringe, as described in 4.7 and
6.3. The first required data, namely, for every indgetke intervali - - - k of G covering

the feature covered bg[j], is trivial to compute and install. The coordinates of cusps
will have been installed i, and also, of course, the sites owning the various segments
in the beachline.

LEMMA 7.9. The segments in th&S, M)-beachline can be classified as “separating”
(2.18) or “nonseparating” in O(loglog(n)) time Links from H(S) to the separating
segments can be determined also

PROOF The separating rays can be calculated fidif5) and M in bounded parallel

time, and listed in sorted order (the sorted order derived #ai8)). By merging withG,

the separating segments can be determined. Obviously in determining these separating
segments, the appropriate links betweé&¢S) and the beachline are determined. O

7.10. Recall (Corollary 2.23) that given a pointn an edge of théS, M)-fringe, with

604 R. Cole, M. T. Goodrich, and €@ Dunlaing

adjacent sitep; and ps, the edge is oriented so that the beachline segment owned by the
site on the left p;, say), is above the segment owned by the other siteisia Voronoi
(fringe) vertex, then the edge orientationsare determined by the order of the three
beachline segments whose regions meet\ate assume that the three sifgsre ordered
sothe segments are in descending order along the beachline, that owméddtyest and
ps lowest; therw is the inner vertex owned by the middle segment. The fite®,, ps3
will be implicitly associated withv, with an implicit ordering, for the rest of this section.
We classify the(S, M)-fringe vertices aP PP, PPQ, ..., QQQ, according to
which sets contain the corresponding sites; so, for exampjg, i, € P andps € Q,
then the vertex is of typ® P Q. Vertices of typeP P P are to the left of the contour,
those of typeQ Q Q are to the right of the contour, and the others are on the contour.
We next show how to match every nonseparating segment with its inner vertex. There
are eight types of vertex to be considered; five are relatively straightforward and are
considered first.

LEMMA 7.11. Letv be an(S, M)-fringe vertex owned by a segmept§ v is of type
PP P, PQP (actually impossible QQQ, PP Q, or QP P, then it can be associated
with s, through linkages already present

PROOF Lets,, s, 53 be the(S, M)-beachline segments whose regions meet given
in descending order, s is owned byp;. We deal with the five possible cases, based
on the type of.

Casel:v oftype PPP The line-segmentsp; andvps meet the(S, M)-beachline in
s andsg, respectively; from Lemmas 2.13 and 2.22, all of tise M)-fringe between
the beachline and these line-segments is to the left of the contour, so all(&, the-
beachline betwees, ands; is owned by sites fronP, sov is associated witk, through
the (P, M)-fringe (s, is a segment of theP, M)-beachline).

Case2:v oftype PQP By the reasoning given for Case 1, this is impossigievould
be to the left of the contour).

Case3: v of type QQQ The segmens; is contained in a unique segment of the
(Q, M)-beachline (Corollary 7.5), andis its inner vertex in th€Q, M)-fringe. Hence
v can be taken from theQ, M)-fringe.

Cased: v of type PP Q By the same reasoning as for Case 1, the beachline between
s, ands; is owned by sites fronf?, and hence the cusp boundiggrom above is on the

(P, M)-fringe. Hences, can be accessed through & M)-fringe. Lets be the corre-
sponding segment of th@, L)-fringe. Therw is the highest contour vertex meeting the
region AQL (Lemma 2.27(ii)); this was associated w#twhen calculating the contour
(5.8), and hence can be accessed thraggh

Caseb: v of type QPR This is a symmetric variant of Case 4. O

7.12. We turnto vertices of typ@ P Q, P Q Q, andQ Q P. Recall that we are given an
arrayE covering all(Q, L)-fringe edges which meet the contour (at contour vertices of
one of these three types, of course), in the order in which the vertices occur on the contour.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 605

Fig. 23.lllustrating sample points on th&, M)-beachline (7.12).

Let v be one of these vertices; define a paihts follows; ifv is to the left of the
(S, M)-beachline, i.e., if it is more distant froid than to the three adjacent sites, then
v' = v. Otherwise, letp be the unique site fror® adjacent ta, and letv’ be the point
where the line-segmemiv intersects théS, M)-beachline. See Figure 23.

LEMMA 7.13. The points’ are in sorted order

PrROOFE Let J be an interval of the contour to the right of th®, M)-beachline. By
definition of the contour, the region enclosed betwdeand the beachline is entirely
owned by sites fronP. Thus, between the endpoints &f the (S, M)-beachline coin-
cides with the(P, M)-beachline. See Figure 23: the illustrated interval to the right of
the beachline includes verticesto v,.

Consider two contour vertices ah of type QP Q, P QQ, or QQ P, and consecutive
in vertical order (though perhaps separated by contour vertices of another type).

If there are no intermediate contour vertices, for example, witindv, in the figure,
then the vertices are both closest to the samegsiteP. The pointsv; andv;, are both
on the parabola with focug and directrixM, and, because the direction framto v, is
clockwise around, the direction from; to v, is also clockwise aroung, and therefore
v is abovevy,.

By a nearly identical argument, the poirtis below the upper endpoint df, andv,
is above the lower endpoint df.

If there are intermediate contour vertices, for example, wgtlindvs in the figure, we
suppose for simplicity that there is exactly one, as witlandvs. By Lemma 2.27 iii),
the segment containing, is above that containing, sov; is abovevs.

In the more general case, where there are several attachments betwarehvs,
say, the beachline features owning them are in sorted order along the beachline (Lem-
ma 2.27(ii)) and again using part (iii) of the lemma it can be argueduthiatabove all
these features ang below them.

Therefore our argument applies to the whole interdaland the endpoints of

606 R. Cole, M. T. Goodrich, and €@ Dunlaing

bracket the intermediate point§ and the argument is trivial for contour vertices left of
the beachline; combining these observations, our proof is complete. O

Case 6 Q P Qvertices) is now dealt with:

COROLLARY 7.14. Every vertex of type QP Q can be associated with the segment own-
ing itin O(log log(n)) parallel time

PrROOF Merge the pointa’ (according to their vertical ordering) with the&s, M)-
beachline; for every vertex of type QP Q, if v is to the right of the beachline, theh
is on the beachline segmestvhose inner vertex is. O

Recall also that théQ, L)- and(Q, M)-fringe edges are linked to the graph repre-
sentation of VofQ) (6.3). Each edge of V@) contains at most two edges on each of
these fringes; it is easy to invert these linkages in parallel, so we can assume that from
any edge of théQ, M)-fringe all of the other fringe edges (at most three) contained in
the same edge of VO®Q) can be accessed.

It remains to handle thB Q Q and Q Q P vertices (Cases 7 and 8).

LEMMA 7.15. Letv be a vertex of type PQQ or Q QMR can be associated with the
segment owning it in bounded time

PrOOF Without loss of generality is of typeP Q Q. A processor, accessinghrough
the (Q, L)-beachline, can access th®, M)-fringe edgee containinguv. The segment
s owning v is the unique (Lemma 7.5) segment contained in the segsienftthe
(Q, M)-beachline such thaa2 meetse on the left. O

Thus each(S, M)-beachline segment has either been classified as “separating” or
supplied with its inner vertex. It remains to supply for each inner vartie indices to
its leftmost and rightmost cusp descendants, and then the links betwé&n kg fringe
and Vo S) (6.3).

The following simple result is used in Lemma 7.17. It says, intuitively, that if two
convex curves bend in opposite directions, then they intersect at most twice.

LEMMA 7.16. Let L and R be two unbounded curyesonotonic in the y-directign
such thatthe sets A and B of points left df¢sp right of R) are convex(See Figur®4.)
Suppose also that one of the lings say is strictly convexso no three points on L are
collinear Then L and R intersect at most twice

PrOOF Leti and|j be two points of intersection df and R, with i higher thanj,
let H be the line through and j, and leta be a point abové and to the right of the
line H. Claim thata does not belong té\: for otherwise, take another pointeft of H
at the same height as sob belongs to the sef by definition; therefore the triangle
abj, whose corners belong t#, is contained inA and therefore, being interior to this
triangle, is interior toA, which it is not.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 607

Fig. 24.1llustrating Lemma 7.16.

In other words A contains no points aboveand to the right of the liné1; similarly,
B contains no points aboveand to the left of the lindd; so above, the intersection
AN B is contained inH. Therefore, abovg the intersectioi N R is contained inH,
and therefore empty, since otherwisé R would contain three collinear points. By the
same argument, N R contains no points beloy. The proof is nearly finished: if the
intersection contained a poirtbetweeri andj (in vertical order), then by considering
i andx rather than andj, j could not belong to the intersection. O

LEMMA 7.17. For each nonseparating segmentwith inner vertexv, indices to the
leftmost and rightmost cusp descendants o&n be calculated in @) parallel timeg
using the linkages established in the previous lemmas

PROOF We treat the seven possible typesads before.

Casel: type PPPR The cusp descendants are on e M)-beachline and can be
accessed from there.

Case3:type QQQ Letcbetheleftmostcusp descendant@fthe(Q, M)-beachline;
it is accessible through th&, M)-beachline, and it bounds (from above) a segnsént
which contains a unique segment of tf& M)-beachline; this iss, it is accessible
throughs;, and its lower endpoint (which is or is a contour cusp) is the leftmost
descendant af in the (S, M)-beachline. Similarly for the rightmost descendant.

Cased:type PPQ The leftmost descendant is as in Case 1. For the rightmost descen-
dant, first locate the segmenof the (Q, L)-beachline [, not M) such that € AR'".
The segmernt is easy to access (see 5.8); but we are looking for the segshenthe
(Q, M)-beachline whose region containsSee Figure 25.

By Lemma 2.27, the contour intersed@§'" in a connected interval; let R’ be the
monotonic convex curve obtained by extendintp infinity above and below. Leit’
be the parabola with focus and directrixM, whereq is the site whose cell contains
AtQ’L. ThenR andL’ satisfy the hypotheses fé&t andL in Lemma 7.16 and therefore
intersect at most twice. Therefolantersects th€Q, M)-beachline at most twice.

608 R. Cole, M. T. Goodrich, and €@ Dunlaing

N contour

-
contour _

Fig. 25.lllustrating Lemma 7.17, Case 4.

Therefore eithet intersects th€Q, M)-beachline at a contour cusgbelows,, or
it has a lower endpoind to the right of the(Q, M)-beachline. In the first casejs the
rightmost descendant of and it is the closest contour cusp belsyvhence accessible;
otherwisew exists and is a vertex of typg@ P Q. Lete be the(Q, M)-fringe edge meet-
ing w; it is accessible through VOR) and the(Q, L)-fringe. Thens; is the segment
whose region meetsfrom the right, and hence is accessible.

Caseb. This case is similar.

Case6:type QP Q Letebe the(Q, M)-fringe edge containing; it can be accessed
through the(Q, L)-fringe. Lets; ands, be the(Q, M)-beachline segments owning the
regions on either side @, they contain unique segmergsof the (S, M)-fringe, and
the cusp descendants sought are endpoints of these latter segments.

Caser:type PQQ Therightmost descendant can be accessed asin Case 3. For the left-
most descendant, thi&, M)-beachline segmest meeting it can be accessed throlgh
using asample point @, justas when calculating inner vertices, Case 6 (Corollary 7.14).

In other words, suppose thats the vertex of type® Q Q, andp is the site fromP
closest tawv. Then the line-segmemiv intersects théP, M) beachline in a unique point
v’; allthese “sample points” were already calculated for the purposes of Corollary 7.14;
by merging with thg’ S, M)-beachline, the segmesit containingv’ can be identified.

Case8. This case is similar. O

The last item we need consider is

LEmMmA 7.18. In O(loglog(n)) parallel time links can be installed from the cusps of
the (S, M)-beachline to the edges Wbr(S) containing them

PrROOF Letc be a cusp, and supposas the edge of VaiS) crossinge (6.3). If eis

not on the(P, Q)-contour, then the existing link from the cusp as a cusp of heM)-

or (Q, M)-beachline can be copied. To install links from the contour cusps, merge the
sorted list of contour vertices with thé&, M)-beachline cusps, both sorted in vertical

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 609

order. Thus every contour cusp is located between the two contour vertices closest in
vertical order; hence the edge of @) crossing the cusp can be accessed. O

8. Building a Ruling for the (P, L)-Beachline. In this section we see how to do the
essential preprocessing step of producing rulings for all the beachlines in advance. Recall,
once again, that a rulin® for the (P, L)-beachline is an array of siz@(|P|/log(n))
containing a sorted list of horizontal lines, such that between two adjacent lines there
are alway<9 (log(n)) cusps of théP, L)-beachline. Hera is the number of sites in the
global problem, and in general the number of siteR iwill be less tham.

8.1. We can assume thatis available in both horizontal and vertical sorted order. The
first is available sincé is just a block of contiguous sites from the horizontally sorted
array of sites, the second can be constructe@®{log(n) log log(n)) time, say, for all
blocks P of contiguous sites involved in the recursive construction of the diagram, by
recursive application of Valiant’s merging procedure [27] to sort the global set of sites
in vertical order.

Letm = |P|/log(n). There aran processors, and the plane is divided imdori-
zontal strips, where each strip contains(logsites fromP. The ruling for the beachline
will be calculated using a vertical recursive partitiorRofinder the control of a balanced
interval treel whose leaves cover the strips. The tree can have its nodes indexed from
1to 2m — 1, say, following the classical indexing of a heap. Thus each slab (i.e., union
of contiguous strips) in the recursive partitioning corresponds to a node of this tree and
a number in the range 1 tar?— 1. See Figure 26.

DEFINITION 8.2. LetU be a subset oP bounded by horizontal lines above and
B below. Theendsof the (U, L)-beachline are those pieces abodeand belowB,
respectively. See Figure 27.

8.3. We consider a single strip bounded between two lkhasdB. Let W be the sites

in the strip, andV, andW, the sites above and below the strip, respectively. That part of
the(P, L)-beachline betweeA andB is formed from the beachline fa¥, the lower end

for W, and the upper end fo,. Our goal in this section is to provide partial information
about the ends &, andW,, from which the ruling can be calculated. We do not compute
the ends exactly, since that would be difficult to perform efficiently forraditrips.

16

1910 2

15

Fig. 26.Interval tree, with node indexing.

610 R. Cole, M. T. Goodrich, and €@ Dunlaing

Fig. 27.Ends of a partial beachline.

LEMMA 8.4.

(i) The parent of a node indexed 1in | is indexed|k/2], and the node is a left
(right) sibling iff k is ever(odd).
(i) Given a strip Wthe set W of sites in P above W is the union of those slabs which
are the left siblings of all ancestors of W which are right siblings
(i) The set W of all sites below W is the union of those slabs which are the right
siblings of all ancestors of W which are left siblings

ProOOF (i) is part of the definition of and (ii), (iii) are straightforward. O

Consider a fixed stripV. To assess the contribution of the lower end/¥f to the
beachline withinW, we compute for every left-sibling sldb the restriction of its lower
end to the vertical interval covered by its right siblivg Having done this, we shall be
able to calculate all cusps contributed by left-sibling slabs to the vertical interval spanned
by the stripW. This provides an estimate of the number of cusps contributédybtp
the strip; similarly for the upper end o%.

The remainder of this section proceeds as follows:

(i) After some simple observations about the shape of the upper and lower ends, it
gives an optimal parallel algorithm constructing the ends lb@zontally sorted
setU of sites. Then the construction:

(i) Generates a sequence of paidk p), whereJ indexes a right-sibling slak/, and
p is a site in its left siblingJ, which possibly owr® a segment of the lower end
of U in the vertical interval spanned By: this sequence is sorted according to the
horizontal ordering of sitep.

(iif) Reorders this sequence by stable integer sorting, so for each right-sibling slab in-
dexedJ there is a horizontally sorted sequence of the palrg).

(iv) Thus computes for each left-sibling slab the portion of its lower end in the vertical
span of its right sibling/.

(v) Reorganizes this information and calculates the ruling.

25 The criterion for generating the paid, p) is based on the horizontal position pfin the slabU .

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 611

The task would be much simpler if all the slabs were available in horizontally sorted
order. However, the slabs are not disjoint, and their total size is abmg(m) log(n) =
|P|log(m). Thus we do not attempt to produce them all in sorted order withrjust
processors. Step (i) is intended to reduce the data to a manageable quaqtiRy)].

LEMMA 8.5. Let U be a subset of P bounded by horizontal lines A from above and B
from belowThen

(i) Each site in U owns at most one segment in each end
(i) The vertical ordering of cusps along each end matches the horizontal ordering of
sites in U.

ProOOF Following the reasoning of Lemma 7.4,gfands’ are segments in the upper
end, owned by sitep andp’, respectively, meeting at a common cedpundings from
below ands’ from above, therp is to the left ofp’ andc is the uppermost cusp owned
by p’. Furthermore, if one imagines the parabolic segmergsds’ continued below
¢, then they do not intersect again abgvesoc is the lowest cusp owned hyy in the
upper end. Thus is the lowest segment owned pyands’ is the highest owned by,
in the upper end: so each site owns at most one segment.

Left-to-right order of sites itJ corresponds to downward order for segments on the
upper end and upward order on the lower end. O

LEmmMA 8.6. IfU is ahorizontally sorted array of sites between horizontal lines A and
B, then its ends can be constructed

(i) Inlinear time by one processor
(i) Intime O(log(n)) with |U|/log(n) processors

PrROOF See Figure 28. (i) Divide-and-conquer based on the horizontal subdivision is
applied. We consider only the lower end for This is built by a recursive combination
procedure, whose recursive step involves taking suli$etsnd U, (vertical sections

=
E;

Fig. 28.lllustrating Lemma 8.6.

612 R. Cole, M. T. Goodrich, and €@ Dunlaing

from U contiguous in horizontal order, whekf, say, is to the left ofJ,) with lower
endsE; andE;, respectively, finding the unique poinbelow B where these ends cross
(Lemma 8.5), and catenating the truncated versions &ndE,. The pointc is unique

if it exists, and it exists if and only iE; is to the left of E, at B. If the ends are stored
in balanced trees, locating the pomtan be done, say, in tim@(log?(|U; U Us))):
find whether the median cusp & is above or below by locating it in E; in time
O(log(]Uz])), and repeat this proces3(log(|U1])) times. To catenate the partial ends
in time O(log(|U; U U3))) is a straightforward split-and-join operation [26].

The recursion implicit in this is: wittk = |U|, T(k) = 2T (k/2) + log?(k), whose
solution isO(K).

(i) (&) We first show how to do this witlJ | processors in the stated time. As in (i),
the recursive step involves subsetsandU, of U, whereU; is left of Uy; their lower
ends areE; and E,, respectively. WithU; U U,| processors the poitwhere the ends
cross can be calculated @(1) parallel time. This time the ends; and E; are just
stored in arrays. For simplicity suppode;| = |E| =.

First check whether exists by verifying thak; is to the left ofE, at B. Suppose that
y is a cusp of;. With \/r processors the two adjacent cugpsindy, of E, bracketing
y can be located i© (1) time, by the usual method of first sampling everyth cusp
to reduce the interval bracketingto size./r, and then inspecting every cusp in the
interval. Then it can be checked whettigris to the left or the right oE; aty, in which
casey is above (resp. below.

Thus withr processors a subinterval Bf containingc, with +/r cusps, can be iden-
tified. Applying the processors to all cusps in the subinterval, two adjacent cugas of
bracketingc can be isolated. Then two adjacent cuspEgpbracketinge can be isolated,
andc can then be calculated immediately.

This is just another application Qfr divide-and-conquer to a location problem, as
in Section 4.

(b) To obtain an optimal parallel algorithm we apply a mixed strategy which imitates
[28]. Again the recursive problem is to calculate the pointhere two end€; andEy,
from setdU; andU; of sites, cross.

The algorithm begins by separatibginto vertical slabs of size lag), assigning one
processor to each slab, and calculating its erd {log(n)) serial time by (i). When each
processor has calculated the lower end of the slab assigned to it, it stores the result in
sorted order in a balanced tree.

These ends are recursively combined using two strategies, an “early” and a “late”
strategy. The late strategy is adopted once the subseiadU, reach a threshold size
u. We calculateau later.

Inthe early stages, the ends are stored in balanced trees, as in (i). Given the ends for two
adjacent slabs stored in balanced trees, a single processor calculates the end for the com-
bined slab i (log?(u)) serial time as in (i). Since the early stage lasts until the threshold
sizeu is reached, the overall parallel time taken by the early stag@slag®(u)).

These balanced trees can have stored at each node the number of descendants that
node has; with this information a single processor can access a cusp of given rank (in
the endE represented in the tree) @(log(u)) time. In the late stages, the ends are
reorganized into an array representation. We discuss later how to convert from the early
to the late representation.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 613

Let U; andU, be as before, with corresponding eriels we want to calculate the
pointc (if any) where the lower ends cross. The lower é&ndand similarlyE,) is stored
in atwo-tier array. Letn; = |U;|/log(n); E; is divided into at most2; — 1 groups each
of size at most logn). The threshold siza will be chosen to ensure that; > log(n).

The cusps bounding the groups are stored in one array; the cusps within the groups are
stored inm; arrays each of size at most l@y.

To calculate the lower end &f, U U, using, say, & processors, first allocatg2m;
processors to eacli2m; th cuspy of the < 2m; cusps bounding a group of cuspsif
Taking a cusp bounding evegy2m; th group ofE,, y is bracketed to within/2m; groups
of cusps; repeating the procegss bracketed to a group; repeating this at most twice more
(sincem; > log(n)), yis bracketed to a segmentt®f, and hence itis determined whether
yis above or below. Repeating this process three more timiesbracketed to a segment
of E1; cis similarly bracketed to a segment®$. Thenc can be calculated immediately.

The lower endE of U; U U, is composed of all cusps iB; belowc, thenc, then
all cusps inE, abovec (assumingU; is to the left ofU,). This is a sequence of (at
most 2n; — 1) groups fromE,, followed by a group containing alone, followed by a
sequence of groups frof,. This results in at mostm, — 1 groups, as desired.

Each stage of the late strategy takisd) time, and there are IggJ | /u) of them; hence
the late stages tak®(log(n)) time. The early stages takg(log*(u)) time. The only
requirement is thatr®; > log(n), as mentioned above; this meangdg(n) > log(n),

i.e.,u = log?(n)/2. Then lod(u) is O(log(n)).

It remains to see how to convert from a balanced tree ofistvea two-tier array rep-
resentation, using/log(n) processors. Using the descendant count information stored
at each node, for ¥ i < u/log(n), an assigned processor can locate the cusp of rank
i log(n) in the tree. These cusps form the group boundaries and can be written directly
to an array using all available processors. Each processor can then traverse a group of
log(n) adjacent cusps stored in the tree; to traverse a grokpdjfacent cusps, and write
them into an array, can be accomplishe®itk + h) sequential time, wheteis the tree
height. Withk = log(n) the time isO(log(n)). O

8.7. We next see how to construct a list of pdils p), whereJ indexes a right-sibling
slabV, with left siblingU directly above it, ang is a site inU possibly contributing a
segment to the lower end within the vertical rang&/ofin other words, eithep owns
no segment on the lower enddf or it has and it intersects the vertical rangé/of

LEMMA 8.8. Such a list can be created and stored in an array of sizeR0), horizon-
tally sorted on the second key ip time O(log(n) log log(n)) with m processors

PrROOE There is one processor attached to each stopP. For each ancesttt of s
which is a left sibling, say its right sibliny has indexJ; the processor creates a pair
(J, p) for each sitep possibly contributing a lower-end segmenio

The processor allocated to stifirst sorts all sites irs in horizontal order, in se-
rial time O(log(n) loglog(n)). (This is the bottleneck—the rest @(log(n)) parallel
time.)

614 R. Cole, M. T. Goodrich, and €@ Dunlaing

The processors next construct the upper and lower ends for the strips. A processor
assigned to strip inspects all slabs corresponding to its ancestors in the interval-tree
traversing the tree from bottom to top. It generates a list of all slakgich are right
siblings of its ancestors ih, in bottom-up order: therefore the slaldsare visited in
descending vertical order. By essentially a merging process, it locates the cusps of the
lower end ofs in these slabs in linear tim@ (log(m) + log(n)) = O(log(n))), and for
each sitep and slabv wherep owns a segment intersectivg the processor creates a
pair (J, p), whereJ is the index (1 to &h — 1) of V in |, and attaches it to a list. Since
the processor take®(log(n)) time, it createO(log(n)) pairs(J, p). Therefore there
areO(mlog(n)) = O(|P]) such pairs created altogether.

For each sitep visited it counts the numbex(p) of such pairgJ, p), and writes it
in a record attached tp.

With asingle parallel prefix computation, the partial sums o€th®, added according
to horizontal order of sitep, can be calculated i@ (log(n)) time withm processors (3.7).

As noted above, the suln c(p) is O(|P|). An arrayC of this size can be created to
hold the pairgJ, p), and each sitg allotted an intervali[- - - j] of lengthc(p) in this
array, based on the prefix-sum calculation.

The list of pairg(J, p) can be written into the correctinten@]i - - - j] by the proces-
sor which created the(p) pairs. The arrayC contains the pairs in the order desiréd.

The arrayC can be sorted on the first indek by stable integer sorting in time
O(log(n) log log(n)), usingm processors (CRCW) (Proposition 3.6).

LEMMA 8.9. For each right-sibling slab V let Ube the set of sites in its left sibling U
which can own lower-end segments within its vertical sgdre lower ends of all such
sets U can be calculated in parallel time @g(n)) with m processors

PrOOF Let J be the index of a typical sla¥d. The subsequendd’ is represented by
a horizontally sorted block of pais], p) in C, so the calculation of Lemma 8.6 can be
executed. O

Of course, all the constructions described so far apply to calculating the relevant upper
ends as well.

LEMMA 8.10. Given the relevant parts of the upper and lower ends for all the slabs
of the vertical partition of P and using m processaré is possible to calculate in
O(log(n) log log(n)) time the merged list of all cusps of all these upper and lower.ends

ProOF Consider a paitJ andV of sibling slabsU the left sibling, so it is directly
aboveV. There wergU’|/log(n) processors assigned to calculate that part of the lower
end ofU within the span oV, whereU’ was the subset of sites in the slab which could
have owned segments of the lower end within this span. Also, the loweE eodtains
O(JU’]) segments and cusps.

One can arrange to merge the cuspg @fith thev = 14|V |/log(n) strip-boundaries
in V using(JU’| + v)/log(n) processors for all such pairs of slabs simultaneously. The

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 615

time taken isO(log(n) log log(n)) using Valiant’s merge algorithm [27], slowed down
by a factor of logn) to reuse the processors available.

This associates with each stgpn V the sorted list of cusps contributedsdy U;
also, the number(U, s) of cusps in this list. Similarly, with each strgin U the list of
cusps contributed teby the upper end d¥ can be calculated; also, the numbév, s)
of cusps in the list. These numbers can be written into an array of sizé€r@logm,
and with one processor per stgphe total numbec(s) of cusps contributed to the strip
s from O(log(m)) slabs above and below it can be calculated.

The sum of all these numberés) is O(|P|) (linear in the total number of pai(d, p)
described above). By applying parallel prefix, for each strépblock of size 2(s) can
be reserved in an array, and the various lists contributing to the strip can be stored to-
gether in the first half of the block. The second half will be used as temporary storage
for merging.

For each strips, we then want to merge together about Xfay lists: we iterate
Valiant's algorithm, as follows. For each stspc(s)/log(n) processors can be assigned
to merge together all the 2 log) lists of cusps contributing to the strip A single
merge step can be executed in tif®&log log(c(s)) using c(s)/log log(c(s)) proces-
sors by Valiant’s merge procedure, with optimized processor usage [18]; hence in time
O(log(n)) with the available number of processéfdterating over theD(log log(n))
phases the overall runtime @(log(n) log log(n)). Ultimately we obtain the sorted list
of cusps for each strip. O

DerFINITION 8.11. The rulingD of the beachline consists of the strip boundaries,
together with, for each strip containing more than(togcusps, a horizontal line through
every logn)th cusp.

THEOREM8.12. There are @m) lines in the ruling and between any two adjacent lines
there are Qlog(n)) cusps of théP, L)-beachline

PROOF Lett be the strip between two adjacent lines in the ruling. It is entirely con-
tained in a strigs containing logn) adjacent sites oP. The sites abovs, U,, say, have
been extracted from about I16g) disjoint slabs, and the total number of beachline cusps
contributed ta by these slabs i®©(log(n)).

Therefore the total number of beachline segments contributed from akdden)).
Now, because the interaction between different slabs has been lost, not all the cusps
counted it need figure in théP, L)-beachline, and there may be other beachline cusps
within t. However, the number afitesin U, contributing segments to the sttifis like-
wise O(log(n)). Likewise, the number of sites belacontributing beachline segments
tot is O(log(n)).

Hence the beachline between two adjacent lines of the ruling come<itmg(n))
sites and has siz®(log(n)). O

26 valiant's algorithm is not essential here; any logarithmic time, linear work algorithm will suffice.

616 R. Cole, M. T. Goodrich, and €@ Dunlaing

9. Comments and Open Problems. At time of writing we believe this to be the

best deterministic parallel algorithm. Obviously, one aspires t@dog(n)) time, n-
processor algorithm. The methods of this paper do not seem capable of such an improve-
ment. Fractional cascading [3] is the most obvious direction to seek such animprovement;
but fractional cascading is generally about pipelined merging with successively larger
samples. As remarked in paragraph 7.2, the business of combining fringes is related to
merging but much more complicated; we thus find difficulties with fractional cascading.

Sampling is indeed exploited in this paper; Section 8 is about constructing a sample
(a “ruling” for the beachline); but it is used just once rather than pipelined, and it is
constructed by CRCW methods unconnected with fractional cascading.

A lesser goal is to make the overall work optimal, using, sglyg log(n) processors.

The last section in this paper, in which we show how to construct the beachline rulings,
uses some processor-optimized parallel techniques, so it is not obvious how to apply
these techniques with/log log(n) processors.

Perhaps the methods of the last section could be sharpened to produce all beachlines
in advance, with the same time and processor bounds. This might streamline other parts
of the paper.

A significant note also is the essential way we exploit the CRCW architecture in
the construction of the rulings for which “forward chaining” and integer sorting are
employed [6]. These ar@ (log(n)) operations in the CREW architecture [12], [13].

The only other place where the CRCW property is required is in Lemma 7.7, where
we used forward chaining to solve the following problem. Given two sorted akaysl
Y, suppose that some entries in these arrays are marked “absent,” some "present”; we
want to merge the “present” entries from each array together, without compressing the
arrays. The trick we use is aliasing (broadcasting), identifying the “absent” entries with
nearby “present” entries; forward chaining enables this aliasing. Perhaps further geomet-
ric analysis would lead to an alternative aliasing scheme, and the CRCW requirement
would be confined to Section 8.

It remains to be seen whether, and how, these time and processor bounds can be
achieved in the CREW architecture.

One last point is that many of the results about the fringe data-structure derive from
the Jordan Curve theorem [16], [21], and perhaps this could be generalized, for example,
to the Voronoi diagram for line-segments [15].

Acknowledgements. Chee Yap made valuable contributions about the geometric prob-
lems, and Torben Hagerup supplied essential information on integer sorting. | am also
indebted to two anonymous referees whose careful reviews corrected many errors and
substantially improved this complicated paper.

Some of the diagrams in this paper were generated by a “beachline-driven” version of
Fortune’s Voronoi diagram algorithm [14], [11] suggested by the first author and imple-
mented in Dublin by Keith Brady, Andrew Farrell, the third author, and Colman Reilly.

References

[1] A.Aggarwal, B. Chazelle, L. Guibas, (@] Danlaing, and C. Yap (1988). Parallel computational geom-
etry. Algorithmicg 3(3), 293-328.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 617

(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[20]
[11]
[12]
(23]

[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]
[24]
[25]
[26]

[27)
(28]

M. J. Atallah (1985). Some dynamic computational geometry probl€uomputers and Mathematics
with Applications 11, 1171-1181.

M. J. Atallah, R. Cole, and M. T. Goodrich (1989). Cascading divide-and-conquer: a technique for
designing parallel algorithm&IAM Journal on Computind 8(3), 499-532.

M. J. Atallah and M. T. Goodrich (1988). Parallel algorithms for some functions of two convex polygons.
Algorithmica 3, 535-548.

F. Aurenhammer (1990). Voronoi Diagrams—a Survey of a Fundamental Geometric Data Structure.
Technical report, FB Mathematik Serie B, Freie UnivexsBérlin.

P. Bhatt, K. Diks, T. Hagerup, V. Prasad, T. Radzik, and S. Saxena (1991). Improved deterministic
parallel integer sortingnformation and Computatiqr94, 29—-47.

L. Boxer and R. Miller (1989). Parallel dynamic computational geomdoyrnal of New Generation
Computer System2(3), 227—-246.

A. Chow (1980). Parallel Algorithms for Geometric Problems. Ph.D. thesis, Computer Science Depart-
ment, University of lllinois.

R. Cole, M. Goodrich, and GO Danlaing (1990). Merging free trees in parallel for efficient Voronoi
diagram constructiorProc. 17th ICALP LNCS, vol. 443. Springer-Verlag, Berlin, pp. 432—445.

D. Evans and I. Stojmenav{1989). On parallel computation of Voronoi diagraiatallel Computing
12,121-125.

A. Farrell (1994). Fortune’s Voronoi sweepline algorithm for convex sites. M.Sc. dissertation, Depart-
ment of Mathematics, Trinity College, Dublin.

F. Fich (1993). The complexity of computation on the parallel random access mach8nthesis of
Parallel Algorithms ed. J. Reif. Morgan Kaufmann, Los Altos, CA.

F. Fich and V. Ramachandran (1990). Lower bounds for parallel computation on linked struetaces.
Annual ACM Sympon Parallel Algorithms and Architecture€rete, pp. 109—-116.

S. Fortune (1987). A sweep-line algorithm for Voronoi diagraAigorithmicg 2(2), 153-174.

M. T. Goodrich, CO Dunlaing, and C. Yap (1993). Constructing the Voronoi diagram of a set of line
segments in paralleRlgorithmicg 9, 128-141.

M. Greenberg and J. Harper (198A)gebraic Topology—A First CoursBenjamiry Cummings, Menlo

Park, CA.

L. Guibas and J. Stolfi (1985). Primitives for the manipulation of general subdivisions and the compu-
tation of Voronoi diagramsACM Transactions on Graphicd, 74-123.

C. Kruskal (1983). Searching, merging, and sorting in parallel computdfidE Transactions on
Computers32(10), 942-946.

C. P. Kruskal, L. Rudolph, and M. Snir (1985). The power of parallel prefix. 1885nat Conf on
Parallel Processingpp. 180-185.

R. E. Ladner and M. J. Fischer (1980). Parallel prefix computatloarnal of the Association for
Computing Machinery27, 831-838.

E. Moise (1977)Geometric Topology in Dimensio@sand 3. Graduate Texts in Mathematics, No. 47.
Springer-Verlag, New York.

C. O Dunlaing (1993). Parallel computational geometry.Liectures on Parallel Computatipred.

A. Gibbons and P. Spirakis. Cambridge International Series on Parallel Computation, Vol. 4. Cam-
bridge University Press, Cambridge, pp. 77-108.

|. Parberry (1987). On the time required to smnsemigroup elements on a parallel machine with
simultaneous writesTheoretical Computer Sciencgl, 239-247.

J. H. Reif and S. Sen (1992). Optimal parallel algorithms for 3-dimensional convex hulls and related
problems SIAM Journal on Computin@1(3), 466—485.

M. I. Shamos and D. Hoey (1975). Closest-point problefisc. 15th IEEE Sympon Foundations of
Computer Scieng@p. 151-162.

R. Tarjan (1983)Data Structures and Network AlgorithmBBMS—NSF Regional Conference Series

in Applied Mathematics, No. 44. SIAM, Philadelphia, PA.

L. Valiant (1975). Parallelism in comparison probler8$AM Journal on Computing(3), 348—355.

H. Wagener (1985). Optimally Parallel Algorithms for Convex Hull Determination. Manuscript, Tech-
nical University of Berlin.

