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Abstract 

We show that several well-known optimization problems involving 3-dimensional convex polyhedra and 
decision trees are NP-hard or NP-complete.  One of  the techniques we employ is a linear-time method for 
realizing a planar 3-connected triangulation as a convex polyhedron, which may be of  independent interest. 
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1. Introduction 

Convex polyhedra are fundamental geometric structures (e.g., see [22]). They are the product of 
convex hull algorithms, and are key components for problems in robot motion planning and computer- 
aided geometric design. Moreover, due to a beautiful theorem of Steinitz [22,41], they provide a strong 
link between computational geometry and graph theory, for Steinitz shows that a graph forms the edge 
structure of a convex polyhedra if and only if it is planar and 3-connected. 

Unfortunately, algorithmic problems dealing with 3-dimensional convex polyhedra seem to be much 
harder than their 2-dimensional counterparts. Certainly, the number of efficient algorithms dealing 
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with 3-dimensional convex polyhedra is much smaller than the number of algorithms dealing with 
2-dimensional convex polygons. In addition, the difficulty goes beyond simple notions of running 
time; it also impacts our notions of efficiently-representable structures. For example, although the 
published proofs of Steinitz's theorem can easily be converted to algorithms running in O(n 3) time in 
the real-RAM model, these algorithms produce polyhedra that may require an exponential number of 
bits to represent. 

In this paper we consider geometric optimization problems, where one wishes to construct a rep- 
resentation Q from a given geometric set P ,  such that Q is simpler than P and may be used to 
replace P.  This is a very loose definition, and the exact requirements which Q should satisfy of 
course depends upon particular optimization criteria and the geometric properties of P .  For example, 
there have been many results describing and analyzing various approximation schemes for polyhedra 
(e.g., see [1-4,14-16,27,29]). These schemes find applications in robotics and motion planning, solid 
modeling, surface approximations, and computational geography. We are in particular concerned with 
the combinatorial simplicity of the approximate object, e.g., it should not have too many faces. Since 
the resultant polyhedron is simpler to describe, algorithms that manipulate these objects run much 
faster than they would with the more-complex object. In addition, there has been considerable work 
in machine learning directed at the design of small linear decision trees to represent a multi-category 
point set (e.g., see [5,6,9,23,31,34-38]). 

In this paper we formally establish that several natural problems on convex polyhedra are provably 
difficult. Specifically we establish the NP-completeness of the following problems in R3: 
• Polytope Vertex Cover: given a polytope P and an integer k, is there a k-sized subset V of the 

vertices of P such that each edge of P is incident to a vertex in V? 
• Polytope Illumination 3 : given a polytope P and an integer k, is there a k-sized subset V of the 

vertices of P such that each point of P is visible from a vertex in V? 
• Decision Tree Construction: given a set of "red" points and "blue" points, is there a k-node linear 

decision tree that separates the red points from the blue points? 
Interestingly, a key ingredient in our proofs is a linear-time method for realizing any 3-connected 
planar triangulation as a convex polyhedron using a polynomial number of bits. This contrasts with 
the O(n 1"2) running time of the best known method for realizing general 3-connected planar graphs 
as convex polytopes [ 11 ]. 

We describe this realization method in the section that follows. In the subsequent section we establish 
the NP-completeness of the problem of finding the minimum number of vertex lamps needed to 
illuminate a convex polyhedron, which is a problem studied by Grtinbaum and O'Rourke and featured 
in O'Rourke's book on "art gallery" theorems [32], where they show that, for a convex polyhedron P 
with f faces in •3, [ (2f  - 4)/2] vertices are sometimes necessary and always sufficient to see the 
exterior of P .  In Section 4, we show that finding an optimal decision tree in R 3 is NP-complete, 
which refutes a common belief that this form of machine learning should be tractable for small- 
dimensional concepts. We conclude in Section 5, noting that our method for realizing 3-connected 
planar triangulations in linear time with a polynomial number of bits fixes a "gap" in a proof by Das 
and Joseph [14,15] that the problem of finding a minimum-facet convex polyhedron lying between 
two polyhedra in R 3 is NP-complete. 

3 This definition of polytope illumination differs from that of Schwarzenecker and Jung [39], who show that it is NP- 
complete to determine if a convex polytope P in 1I~ 3 can be illuminated by k points on a sphere containing P. 
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2. Realizing 3-connected triangulations as polyhedra 

In this section we show how to realize a 3-connected planar triangulation as a convex polyhedron in 
linear time. Our algorithm constructs a polyhedron that can be represented using a polynomial number 
of bits in the rational-RAM model. 

Theorem 2.1. Given an n-vertex 3-connected planar triangulation G = (V, E), one can realize G as 
a convex polyhedron P with a bit complexity that is polynomial in n. The running time is O(n) in the 
rational-RAM model. 

Before we prove this theorem we present the following graph-theoretic lemma, which has been 
proven in various forms (e.g., see [18,26]). 

Lemma  2.2. Given an n-vertex planar graph G = (V, E), one can compute in linear time an inde- 
pendent set of  vertices of  degree less than 12 whose size is at least In/241. 

Proof.  For completeness we include the proof here. If n ~< 11, then the result is clearly true. So, 
suppose n ~> 12. Let d(v) denote the degree of a node v in G. It is well known (e.g., see [8]) that if 
n ~> 3, then 

Z d(v) <~ 6 n -  12. 
vEV 

Let V' denote the set of nodes in G with degree less than 12. By the above inequality, ]V'I /> In~2]. 
One can construct an independent set of vertices from W, then, by a simple greedy strategy where 
one iteratively selects a vertex in V t and eliminates its adjacencies until all vertices in V t have been 
exhausted. This method is guaranteed to produce an independent set of size at least I[n/21/12 ~ = 
In/Z4]. [] 

The above lemma is crucial to our algorithm. Essentially it states that for planar graphs, "large" 
independent sets with "small" degrees can be computed quickly. We now present the proof of Theo- 
rem 2.1. 

The overall idea of our algorithm is as follows. We compute a large independent set of G, and 
"compress" each vertex in this set with one of its neighbors along a common incident edge. We show 
that one can always choose a neighbor so that this results in a smaller planar triangulation that is 
still 3-connected; hence, we can recursively construct an equivalent polyhedron P~ for the compressed 
graph G t. To construct P we then "expand" the previously compressed edges appropriately so that 
convexity is maintained. 

Although this approach seems fairly straightforward, implementing it in O(n) time is not so easy. 
Since we compress a constant fraction of the vertices in each level, there are O(log n) levels of 

recursion. Our algorithm ensures that at each level the number of bits required to represent each added 
vertex is within a constant multiple of the number of bits required to represent a vertex of the previous 
level. Thus, the total bit complexity of representing P is polynomial in n. 

We now give more details of our algorithm. Let the exterior face of the input triangulation contain 
the vertices u, v and w. At every level of the recursion, along with other properties, we will also 
ensure that u, v and w are on the xy-plane (u = (0,0,0),  v = (2,0,0)  and w = (1,2,0)),  and the 
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Fig. 1. The edges around a node s. Peripheral edges are drawn thick, contractible edges are drawn solid, non-contractible 
edges are drawn dashed, and pertinent external edges are drawn dotted. 

remaining vertices are above this plane, but strictly within the vertical "tube" whose horizontal cross 
section is congruent to the triangle uvw. 

Case 1: n = 4. Let the four vertices be u, v, w and t. In this case we construct a tetrahedron by posi- 
tioning u at (0, 0, 0), v at (2, 0, 0), w at (1,2, 0), and t at (1, 1, 1), which completes the construction. 

Case 2: n > 4. Using the method of Lemma 2.2, we compute a large independent set I of G{u, v, w}, 
so that I contains only interior vertices. Then, we repeat the following for each vertex s in I. Let s be 
incident to the vertices Sl, s2,. • •, st, where l < 12. We choose one of the vertices sj and compress the 
edge (s, sj), removing any parallel edges this produces. We cannot choose just any vertex, however, 
for compressing s with some sj's may violate 3-connectivity of the resulting planar graph. Consider 
the face f = sl, s2,. • •, st that would result if we were to remove the edges incident to s, and mark 
the edges (Sl, s2), (s2, s3), . . . ,  (sl, Sl) as peripheral edges. The vertex sj is selected as follows. If 
there are no edges connecting two non-adjacent vertices of f ,  then any vertex of f may be selected, 
say sl. If, on the other hand, there are indeed such "exterior" edges, then there has to be an edge 
(si, sk) such that the closed region defined by (si, sk) and the boundary of f does not further contain 
such exterior edges. Consider the relevant boundary of f between si and sk. It has to contain at least 
one intermediate vertex, and we select this to be sj. (See Fig. 1.) 

Let the resultant graph after all the edge compressions are performed be G t. We recursively construct 
an equivalent polyhedron P~ for this graph. We know that the vertices of P~ other than u, v and w 
are strictly confined within a vertical tube with cross section congruent to uvw. 

Let s ~ be some vertex of P~ created by the compression of some s and sj in G, and let f be 
the cycle of edges marked as peripheral by this compression. To complete the construction we must 
geometrically realize the reversal of the compression of s and sj. (See Fig. 2.) We compute for each 
peripheral edge e on f a plane p(e) as follows. If e E {(u, v), (v, w), (w, u)}, then p(e) is the vertical 
plane tangential to P~ at e. Otherwise, p(e) is the plane tangential to P~ at e supporting the face that 
is exterior to f and incident upon e. For each edge e E f ,  consider the halfspace defined by p(e) that 
includes P~. The intersection of these halfspaces defines a "pyramid" 7r over f .  We wish to expand s ~ 
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Fig. 2. The "pyramid" defined by a cycle f.  In this case the cycle f = (1, 2, 3, 4). All vertices, except 5 and 8, are on/9,, 
with s' = 1. The vertices 1, 5, 4 and 6 are co-planar, as are the vertices 1, 7, 2 and 5. The pyramid 7r is defined by f and 
the apex 5. The reversal of the compression expands s' into sj = 1 and s = 8. Moreover, in this illustration we have sk ---- 4 
and st = 2; hence, fl = A184 and f2 = ~182. This in turn implies that g(k) = A146, h(k) = ~143, g(l) = A172 and 
h(1) = A132. 

into sj  and s, so that the point 4 8j remains at s I, and s is selected inside 7r. Moreover,  we wish the 
convex  hull o f  this expanded set o f  vertices to correspond to the graph structure o f / 9 .  Let  sk and 

st be the vertices of  P that are incident upon the two triangular faces f l  and f2 containing the edge 
sis on their respect ive boundaries.  Of  course, f l  and f2 do not exist in P~, for they were compressed  
to single edges slsk and SlSl when we compressed  sj  and s. Let  g(k) and h(k) (respectively 9(1) 
and h(1)) denote the triangular faces of/91 incident to the edge slsk (respectively the edge slst) in/9~, 
with the convent ion that g(k) and g(1) be the faces that are to remain incident to sj, and h(k) and 
h(1) be the faces that are to become  incident to s, after we expand s I back  to sj and s. Moreover,  

define halfspaces "/1 and "Y2 bounded by planes containing 9(k) and g(1), respectively, and oriented 
to contain /91. Likewise,  define halfspaces 01 and 02 bounded by planes containing h(k) and h(1), 
respectively, and oriented away f rom/9~.  Let  7r I denote the (common)  intersection of  the pyramid 7r 
with "71, "72, 01 and 02. Since /gt is strictly convex,  7r / is non-empty.  This is vital, for 7r I exactly 
characterizes the set of  all legal p lacements  for s if  we choose to keep sj at s ~. Therefore,  we keep 
sj  at s I and choose s somewhere  inside 7r r. We can find s strictly inside 7d so that its resulting bit 
complexi ty  (using rational arithmetic) is at most  a constant factor larger than the bit complexi ty  needed 
to represent  each vertex of  f .  This is due to the fact that each edge on the boundary  of  7d can be 
represented in rational arithmetic with a bit complexi ty  that is at most  a constant factor larger than 
the bit complexi ty  needed to represent each vertex of  f .  Performing this edge expansion for each s ~ 
that resulted f rom an edge compression,  then, completes  the construction. 

4We ask the readers indulgence into this abuse of notation so that s (respectively sj) can denote a vertex in G and its 
corresponding point on P. 
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2.1. Implementing the compression algorithm 

In this subsection we show how to implement a single recursive level in our edge-contraction 
algorithm in O(n) time. Since the size of the graph decreases by a constant-factor with each recursive 
level, this will establish that the total running time of our drawing algorithm is O(n). 

The important step in our procedure is identifying, for a particular node s in our independent set I, 
an adjacent node sj such that the edge (s, s j) can be compressed without violating 3-connectivity. The 
crucial condition for this to be possible is that s and sj cannot already be members of a separating 
triangle, for then merging them would create a separating pair (and the graph would no longer be 
3-connected). As observed above, the set of adjacencies for s define a face f ,  whose edges we call the 
peripheral edges. Since the graph is triangulated, the crucial condition for s to be mergeable with sj is 
equivalent to the condition that sj cannot be adjacent to another vertex of f through a non-peripheral 
edge (i.e., an edge external to f) .  We say that such an adjacency disqualifies the merge of s and sj. 
It is not immediately clear, however, how we can efficiently test this condition for each candidate sj 
around f during the compression step for s, since some of these sj's may have a large number of 
adjacencies in the graph. 

Our implementation is to break this computation into a batch component, which we perform in 
advance for all the s's in our independent set, and an on-line component, which we perform for each s 
in turn as we perform our edge compressions. Our batch computation is as follows: 
1. We identify, for each s in I, and each vertex sj adjacent to s, all the candidate adjacencies that 

would disqualify our being able to merge s and sj. There are d(s) (d(s ) -2)  -- O(1) such adjacencies 
for each s in I, where d(s) denotes the degree of s; hence, the total number of all such candidate 
adjacencies is O(n). We label each such candidate adjacency between sj and some si on f as 
(si, sj, s) meaning "adjacency (si, sj) would disqualify the merging of sj and s". 

2. We then radix sort into a list L all the labels computed in the previous step together with all the 
existing adjacencies in G, lexicographically. This takes O(n) time (e.g., see Cormen et al. [13]). 

3. For any match of a real adjacency (si, sj) with a candidate disqualifying adjacency (s~, sj, s) we 
mark the edge (Sj, 8) as "disqualified". We remove all the (si, sj) and (si, 8j, 8) labels from the 
sorted list L for each such match. This step also takes O(n) time. 

4. Finally, we group together in one list Li,j each sublist of the sorted list L that identify the same 
candidate disqualifying adjacency (si, sj) (for several different s's in our independent set). We 
store a pointer to the list Li,j in the records of each s in I that contributes an element to Li,j. The 
total number of such fields is O(1) for any such s and the total space needed for all the Li,j's is 
clearly O(n). 

The meaning for each list Li,j is that this is a disqualifying adjacency that currently does not exist in G, 
but may exist at some point during the compression phase. Thus, for the compression computation for 
a node s in I, we choose an edge (sj, s) that is not marked "disqualified" and compress it. For each 
new adjacency (si, 8j) this creates, we consult the list Li, j (if it exists), and for each (si, sj, s t) label 
in Li,j (with s t ~ s) we mark the edge (sj, s t) as "disqualified". We then discard the list Li,j. 

We have already argued why there will always be some edge incident upon s that is not marked 
"disqualified"; hence, the above computation can always proceed to the next s in I. The total time 
needed is O(n) for the preprocessing step, and then an additional O(n) time during the compression 
step (for once an Li,j list is consulted it is then discarded). Therefore, we can complete a recursive 
step in our 3-D drawing algorithm in O(n) time, as claimed. 
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Since we can perform each level in the recursion in O(n) time, by Lemma 2.2, this results in a 
linear-time algorithm for drawing G as a convex polyhedron. Moreover, the fact that there are only 
O(log n) levels in this recursion implies that our method produces a polyhedron that can be represented 
using a polynomial number of bits (using rational arithmetic). 

3. Polytope illumination 

In this section we prove that polyhedron illumination is NP-complete. Specifically, in this problem 
we are given a convex polyhedron P in •3 and an integer k and asked if there are k vertices on P 
such that each point on the boundary of P can be connected to a vertex in this set by a line segment 
that does not intersect the interior of P.  Intuitively, the vertices in this set are "lamps" that illuminate 
the entire boundary of P.  We refer to the set of vertices illuminating the boundary of P in this way 
as a lamp cover. 

We begin by showing that the well-known vertex cover problem 5 remains NP-complete even for 
3-connected planar graphs, and show how this can be used to further extend the NP-completeness of 
vertex covering to convex polyhedra in •3. This extends the previous results of Garey and Johnson [20] 
and Garey et al. [21], which showed that the vertex cover problem remains NP-complete for planar 
graphs with degree at most three. 

3.1. Vertex cover  f o r  3-connected p lanar  graphs 

Our reduction is actually a chain of reductions, starting from the (standard) vertex cover problem. 
So, let G = (V, E) and k be the graph and integer parameter defining an instance of the vertex 
cover problem. Without loss of generality, we can assume that IYl /> 4 We begin our chain of 
transformations by augmenting G by adding three new vertices Vl, v2, and v3 that we define to be 
adjacent to all the vertices in G. Clearly, the resulting graph G ~ is 3-connected. 

Claim 3.1. G has a vertex cover  o f  size k < n i f  and only i f  G ~ has a vertex cover  o f  size k + 3. 

Proof. The "only if" direction is trivial. So, suppose G ~ has a vertex cover of size k + 3. Since 
IV] ~> 4, we must include each vi we added to create G ~, for if any such vi's is not included, then 
each vertex in the original G would have to be included in the cover, which would contradict our 
assumption for k. Therefore, G has a vertex cover of size k. [] 

Thus, the vertex cover problem remains NP-complete for 3-connected graphs. So, let us now use 
G and k to together denote an instance of vertex cover with G being 3-connected. We will reduce 
this version of vertex cover to the version of the problem where the graph is 3-connected and planar. 

Our reduction is an adaptation of the proof of Garey et al. [21], who give a reduction from general 
graphs to planar graphs that does not preserve 3-connectivity. We begin by drawing G in the plane so 
as to have c = O(n 2) edge crossings (e.g., using a simple straight-line strategy). We replace each edge 

5 Recall that this is the problem where one is given a graph G = (V, E) and an integer k > 0 and asked if there exists a 
subset V' C_ V of size k such that, for each edge (v, w) C E, v C V' or w E V'. 
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Fig. 3. The cross-over gadget. 

Fig. 4. The way the cross-over gadget replaces an edge crossing. 

IJ 

crossing by the "gadget" illustrated in Fig. 3 as illustrated in Fig. 4. Performing all these replacements 
results in a 3-connected planar graph G ~. 

Claim 3.2. G has a vertex cover  o f  size k i f  and only i f  G I has a vertex cover  o f  size 16c + k. 

Proof. A close inspection of the gadget we use to replace each edge crossing shows that the edges 
of the gadget can be covered with 16 nodes only if we include at most one member of {v, v/} and at 
most one member of {w, wP}. Thus, if there is a vertex cover of size k in G, we can create a vertex 
cover of size 16c + k by including the 16 nodes in each cross-over gadget so as to also cover each of 
the edges joining cross-over gadgets (and original vertices of G). Suppose, conversely, that G p has a 
vertex cover of  size 16c÷k.  As we have already observed, each cross-over gadget can be covered with 
16 nodes only if we include at most one member of {v, v'} and at most one member of {w, w'}. That 
is, covering each gadget with 16 nodes establishes a "parity" along any chain of gadgets derived from 
a single edge in G. Thus, by a counting argument, which is similar to one given by Garey et al. [21 ], 
we can conclude that G must have a vertex cover of size k. [] 

Therefore, the vertex cover problem remains NP-complete for 3-connected planar graphs. We can 
further restrict our graphs, however, and the problem still remains NP-complete. 
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Fig. 5. The stellation of a face. 

3.2. Polytope vertex cover  

Given an embedded 3-connected planar graph G, define the stellation of a face f in G as the 
insertion of a vertex in the interior of f that we then make adjacent to each vertex on f .  Moreover, 
if f is a triangle, then we also allow any of edges of f to be subsequently removed, so long as we 
still preserve the 3-connectivity of G. (See Fig. 5.) Define a stellation of the entire graph G to be 
the result of performing a collection of independent, non-interfering face stellations on a subset of the 
faces of G. Further define the t-stellation of G to be the result of performing t consecutive stellations 
on G. 

An interesting property of stellations is that they have a natural analogue with respect to convex 
polyhedra. In particular, if a 3-connected planar graph G is represented as a convex polyhedron in R 3, 
then the stellation of a face f of G can be accomplished geometrically by introducing a point p "above" 
f so that the convex hull of p unioned with P results in the updated graph G t. Indeed, the proof of 
Steinitz's theorem (e.g., see [22]), showing that a graph can be drawn as a convex polyhedron in R3 
if and only if it is 3-connected and planar, is essentially equivalent to showing that any 3-connected 
planar graph (or polyhedron) can be constructed from a planar embedding of /£4  (or tetrahedron) in a 
series of O(n 3) stellations, inverse stellations, or their duals. We show that the vertex cover problem 
remains NP-complete for c-stellations of 3-connected 3-regular planar graphs, for any constant c ~> 4. 

We have shown, in Section 2, that any 3-connected planar triangulation can be drawn as a convex 
polyhedron in IR 3 using a polynomial number of bits. By a simple duality argument, this immediately 
implies that any 3-connected 3-regular planar graph can also be drawn as a convex polyhedron in IR 3 
using a polynomial number of bits. Since performing a stellation of a convex polyhedron in IR 3 will 
increase the bit complexity of its representation by at most a constant factor, this also implies that the 
c-stellations of a 3-connected 3-regular planar graph can be drawn as a convex polyhedron in R3 using 
a polynomial number of bits if c is a constant. Thus, by showing that vertex cover remains NP-complete 
for e-stellations of 3-connected 3-regular planar graphs we will establish the NP-completeness of the 
Polytope Vertex Cover problem, where we are given a convex polyhedron P and an integer k and 
asked if there is a subset V of the vertices on P such that each edge on P has at least one end in V. 
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Fig. 6. The stellations forming the subgraph of G' associated with a face in G. 

Our reduction will be from the vertex cover problem for 3-connected planar graphs. So, let G be 
a 3-connected planar graph and let k be a given integer parameter. Our reduction is a modification 
of  an argument of  Garey and Johnson [20], who showed that vertex cover remains NP-complete for 
planar graphs with degree at most 3. For each vertex v in G, we replace v by a cycle Cv of size d(v), 
where d(v) denotes the degree of  v, so that each vertex on Cv retains exactly one adjacency of v. 
The graph that results from this transformation will be a 3-connected 3-regular graph. We stellate each 
face defined by the interior of  a Cv by introducing a new vertex v t in its interior. We furthermore 
stellate each triangle T incident on v ~ so as to eliminate all the edges of  T. (See Fig. 6.) The resulting 
graph, G t, is a c-stellation of  a 3-connected 3-regular graph (the last step can be accomplished by first 
stellating the odd-numbered triangles around v ~ and then doing the even-numbered ones, with possibly 
one more to do after that if the number of  triangles is odd). 

Cla im 3.3. G = (V, E) has a vertex cover of size k if and only if G' has a vertex cover of size 
k + 21El 

Proof.  Suppose G has a vertex cover of size k. For any v in G in this cover, we can put in a cover 
for G ~ all the vertices in the cycle Cv we created for v, together with the interior vertex v ~ (these 
vertices are shown in black in Fig. 6). If v is not in the cover for G, then we can cover the subgraph 
of  G ~ associated with v by using the vertices introduced in the stellation of each triangle incident 
on v t (these vertices are shown in white in Fig. 6). The set of all such vertices will clearly form a 
cover of  G ~. We use d(v) + 1 vertices for each vertex v in the cover for G and d(v) vertices for each 
vertex v not in the cover, where d(v) denotes the degree of  v; hence, the total size of  this cover is 

k + ~-~v~G d(v) : k + 21El. 
Conversely, suppose G ~ has a vertex cover of  size k + 21E]. The subgraph in G t determined by a 

vertex v in G can be covered with d(v) vertices (using the nodes colored white in Fig. 6), and d(v) 
nodes are necessary. To cover an edge of G t outside of  such a subgraph (i.e., an edge corresponding to 
an edge of  G), however, requires that we use a vertex from some Cv (i.e., a black vertex). But if such 
a vertex is included in a cover for the subgraph of G ~ corresponding to a vertex v, then covering this 
subgraph now requires d(v) + 1 vertices. But we can cover such a subgraph using d(v) + 1 vertices 
using only the vertices of  C~ and the new vertex v t (the black vertices). We can thus define a cover 
of  G by including each vertex v whose corresponding subgraph in G has at least d(v) + 1 vertices 
and this cover will have size at most k in G. [] 
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Fig. 7. An example stellation used in forming P. 

As we mentioned above, given the result of Section 2 regarding drawing 3-connected 3-regular 
planar graphs as convex polyhedra, Claim 3.3 immediately applies to the Polytope Vertex Cover 
problem. 

Theorem 3.4. The Polytope Vertex Cover problem is NP-complete. 

3.3. Polytope illumination 

We are now ready to prove our result regarding polytope illumination. Recall that in this problem 
we are given a convex polyhedron P in ~3 and an integer k and asked if there are k vertices on P 
such that each point on the boundary of P can be connected to a vertex in this set by a line segment 
that does not intersect the interior of P.  We show that deciding if a given k number of vertices suffice 
for P is NP-complete. Our proof is based upon a reduction from Polytope Vertex Cover. 

So, suppose we are given a polyhedron Q and an integer k such that we would like to know if there 
is a k-node vertex cover on Q. Our reduction is to form a c-stellation of Q, where, for each face f 
on Q, we form a vertex F in its interior and form triangles with the nodes on f .  We then perform 
two more stellations, so as to form for each t r iangle/kabF incident on F ,  three consecutive triangles 
A a x F ,  A x y F  and AybF. Call this transformed polyhedron, P.  (See Fig. 7.) 

Claim 3.5. Q has a vertex cover of size k if and only if P has a lamp cover of size k + ~,  where .T 
is the number of faces on Q. 

Proof. Suppose Q has a vertex cover of size k. We can form a lamp cover for P by including each 
vertex in the cover for Q together with each vertex F created in the stellation of a face f of Q. This 
lamp cover will have size k + .T. 

Conversely, suppose P has a lamp cover of size k + .T. Consider the subgraph in P associated with 
any face f from Q. If F is not included in a lamp cover, then illuminating this portion of P requires 
at least [3e/2q vertices, where e ~> 3 is the number of edges on f .  But, by including F in a lamp, we 
can illuminate this portion of P using just one vertex! The only other faces that are not illuminated 
are faces that correspond to edges of Q (that no stellation vertex F can see). Since we can assume 
without loss of generality that the lamp cover for P includes each stellation vertex F ,  we can further 
assume that each other vertex in the lamp cover is also a vertex in Q (for if this were not the case, 
we can substitute such a vertex (labeled x or y above) with a vertex that is also in Q and illuminate 



134 G. Das, M.T. Goodrich/Computational Geometry 8 (1997) 123-137 

more faces of P). Thus, taking the vertices in the lamp cover for P that are also vertices in Q forms 
a vertex cover for Q of size k. [] 

This immediately implies the following theorem. 

Theorem 3.6. The Polytope Illumination problem is NP-complete. 

Proof. The line of reasoning above establishes that this problem is NP-hard. A simple argument 
establishes the membership of this problem in NP; hence, the problem is NP-complete. [] 

4. Optimizing decision trees 

The next geometric optimization problem we consider is that of defining an efficient decision tree 
that can be used as a discriminator for a given set to multi-category points in R 3 (indeed, we define the 
problem for two categories: "red" and "blue"). It is well known, for example, that constructing a best 
decision tree in general settings [24,25] or in arbitrary dimensions [7,28] is NP-complete, but in the 
context of fixed-dimensional decision-tree approximations, however, each of these NP-completeness 
proofs fail. Indeed, each of their respective optimization problems are polynomial-time solvable in 
a fixed-dimensional setting. Thus, some may have been tempted to believe that global decision tree 
optimization might actually be tractable in fixed dimensions. Nevertheless, we can show the following 
theorem. 

Theorem 4.1. Given a set S of  n points in ]~3, divided into two concept classes "red" and "blue", 
deciding if is there a linear decision tree T with at most k nodes that separates the red points from 
the blue points is NP-complete. 

Proof. First, let us observe that this problem is in NE This is because each candidate split in a linear 
decision tree is determined by 3 points, hence, there are O(n 3) candidate splits. We can therefore 
guess k splits and a tree structure with one of these splits at each node, and we can then test that this 
decision tree separates all the red and blue points. 

To prove the problem NP-hard we reduce Polytope Vertex Cover to it. For the sake of simplicity, let 
us allow as input point sets where red points and blue points can "overlap". A complete classification 
of such a pair of points must therefore have a split that passes through this common location in space. 
(This restriction can be relaxed by forcing such pairs to be separated by an small rational amount e, 
with the red points slightly inside the polytope and the blue points slightly outside the polytope.) 
Our reduction is based upon judiciously placing such pairs of points on the edges of Q, the Poincar6 
dual to P,  i.e., Q is a convex polyhedron whose 1-skeleton is the graph-theoretic planar dual to the 
1-skeleton of P.  Thus, a face cover in Q corresponds immediately to a vertex cover in P.  We place 
two red-blue pairs along each edge of Q so that the only way four such pairs can be co-planar is if 
they all lie on the same face of Q. Let S denote this set of red and blue points. Note that, since Q is 
a convex polyhedron, each face of Q contains at least six pairs of points in S. This construction can 
all be done in polynomial time. 

We claim there is a k-node decision tree for S if and only if there is a k-face face-cover for Q. First, 
note that if there is a k-face face-cover for Q, then there must be k planes that collectively contain all 
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the pairs in S; hence, there is a k-node decision tree for S. For the more difficult direction, suppose 
there is no k-face face-cover for Q; that is, any face cover requires more than k faces. This implies that 
any decision tree restricted to splits containing faces of P must have more than k nodes. Note, however, 
that each such split contains at least six pairs of points in S whereas any other type of split contains 
at most three pairs of points in S. Therefore, since each pair of points in S must be contained in some 
split, there must be more then k nodes in any decision tree that completely separates the pairs in S. [] 

5. Conclusion 

We have examined several geometric optimization problems in ~3 and shown them to be NP- 
complete or NP-hard. A key technique in each of our proofs is a linear-time method for realizing 
c-stellations of 3-connected 3-regular planar graphs or, alternatively, triangulated planar graphs, as con- 
vex polyhedra in ~3 using only a polynomial number of bits. An interesting open problem is whether 
it is possible to produce such representations of arbitrary 3-connected planar graphs in linear time. 

Incidentally, another well-known instance of a geometric optimization problem for polyhedra, which 
we did not consider is polyhedral separability, which has been the subject of extensive research, e.g., 
see [1,10,17,19,28-30,33]. For example, a heavily-studied instance of this problem is that one given two 
concentric polyhedra in ~3, and one wishes to find a separating polyhedra with minimum faces nested 
between the two. This nested polyhedral separability problem was first considered by Klee [33], and 
was motivated by the study of sequential stochastic automata [40]. In two dimensions, this problem 
can be solved in polynomial time [2]. Das and Joseph [14,15] claim an interesting result that this 
problem is NP-hard, even for nested convex polyhedra. Part of the reduction needed to establish this 
claim requires constructing a convex polyhedron from a 3-connected planar triangulation, and the 
version presented in [14] does not appear to run in polynomial time. Theorem 2.1 can be used to 
correct this flaw in the proof. 

Since the results in [14,15] appeared, there have been several efforts to design good approximation 
algorithms for the problem. In particular, Mitchell and Suri designed an efficient algorithm in [29] 
which achieves an approximation ratio of O(log n). This bound was matched by a simple randomized 
scheme of Clarkson [12], and extended to terrains by Agarwal and Suri [1]. More recently, Br6nnimann 
and Goodrich [10] show how to achieve an approximation ratio of O(1) for the convex polyhedral 
case. 
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