
Ž .JOURNAL OF ALGORITHMS 23, 51]73 1997
ARTICLE NO. AL950797

Dynamic Ray Shooting and Shortest Paths in Planar
Subdivisions via Balanced Geodesic TriangulationsU

Michael T. Goodrich†

Department of Computer Science, Johns Hopkins Unï ersity, Baltimore, Maryland
21218

and

Roberto Tamassia‡

Department of Computer Science, Brown Unï ersity, Pro¨idence, Rhode Island
02912-1910

Received October 29, 1993

We give new methods for maintaining a data structure that supports ray-shooting
and shortest-path queries in a dynamically changing connected planar subdivision
SS . Our approach is based on a new dynamic method for maintaining a balanced
decomposition of a simple polygon via geodesic triangles. We maintain such
triangulations by viewing their dual trees as balanced trees. We show that rotations
in these trees can be implemented via simple ‘‘diagonal swapping’’ operations
performed on the corresponding geodesic triangles, and that edge insertion and
deletion can be implemented on these trees using operations akin to the standard
split and splice operations. We also maintain a dynamic point location structure on
the geodesic triangulation, so that we may implement ray-shooting queries by first
locating the ray’s endpoint and then walking along the ray from geodesic triangle
to geodesic triangle until we hit the boundary of some region of SS . The shortest
path between two points in the same region is obtained by locating the two points
and then walking from geodesic triangle to geodesic triangle either following a

U This research was announced in preliminary form in the 9th ACM Symp. on Computa-
tional Geometry, San Diego, May 19]21, 1993.

† Work by this author was supported in part by the National Science Foundation under
Grants CCR-9003299 and CCR-9300079, and by the NSF and DARPA under Grant CCR-
8908092. E-mail: goodrich@cs.jhu.edu.

‡ Work by this author was supported in part by the National Science Foundation under
Grants CCR-9007851 and CCR-9423847, by the U.S. Army Research Office under Grants
DAAL03-91-G-0035 and 34990-MA-MUR, and by the Office of Naval Research and the
Defense Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA
Order 8225. E-mail: rt@cs.brown.edu.

51

0196-6774r97 $25.00
Copyright Q 1997 by Academic Press

All rights of reproduction in any form reserved.

GOODRICH AND TAMASSIA52

boundary or taking a shortcut through a common tangent. Our data structure uses
Ž . Ž 2 .O n space and supports queries and updates in O log n worst-case time, where

n is the current size of SS . It outperforms the previous best data structure for this
Žproblem by a log n factor in all the complexity measures space, query times, and

.update times . Q 1997 Academic Press

1. INTRODUCTION

An exciting trend in algorithmic research has been to show how one can
efficiently maintain various properties of a collection of geometric objects

Žwhile updating that structure in a dynamic fashion e.g., see the survey on
dynamic algorithms in computational geometry given by Chiang and

w x.Tamassia 6 . The main objective in this research is to design space-effi-
cient data structures that can, for a particular collection of geometric
objects, quickly process each operation to be performed, be it an insertion
or deletion of a geometric object into the collection, or a query requesting
combinatoric or geometric information about the collection. Examples of
such problems include dynamic convex hull maintenance, dynamic point
location, and dynamic range searching.

Let L be a set of line segments in the plane, and let SS be the
subdivision of the plane defined by R2 _ L. Suppose further that SS is a
connected planar subdivision; i.e., when joined at overlapping endpoints,
the segments of L form a connected planar graph, which would occur, for

Žexample, if SS were a Voronoi diagram or Delaunay triangulation e.g., see
w x.8, 21, 22 . Note that SS has at least one unbounded region, and, without
loss of generality we can assume that there is just one such external region,
for otherwise we can ‘‘clip’’ all the unbounded regions by a large-enough
bounding box. Moreover, by viewing each line segment in L as actually
being two segments}a left segment and a right segment}then we can
view each face of SS as a simple polygon. Indeed, we can view SS as being
the union of a set of simple polygons. We assume a standard representa-

w xtion for the subdivision SS , such as doubly connected edge lists 22 , with
this double-sided view. This representation allows us to identify, for any
vertex ¨ , the segment incident upon ¨ ; it allows us to identify, for any
Ž . Ž .double segment e, the face s on the two sides of e; and it allows us to
identify, for any face f , a counterclockwise listing of the vertices and
segments that form f ’s boundary.

There are several useful queries that one may wish to perform on SS ,
including the following:

v Point-location query: given a point p in the plane, return the region
Ž Ž . .in SS containing p or an O 1 representation of the region containing p .

BALANCED GEODESIC TRIANGULATIONS 53

v Ray-shooting query: given a ray r, determine the first segment in L
intersected by r.

v Shortest-path query: given two points p and q belonging to the same
region in SS , find the shortest polygonal chain joining p and q that does
not cross any segment of L.

ŽIn addition to being useful in computer graphics applications e.g., see
w x.23 , ray-shooting queries are in some sense generalizations of point-loca-
tion queries, for point locations can easily be implemented using ray-shoot-
ing queries.

The specific dynamic computational geometry problem we address in
this paper is to maintain a connected planar subdivision SS subject to
insertion and deletion of vertices and edges, and to ray-shooting and
shortest-path queries. From now on, we denote with n the current size
of SS .

1.1. Pre¨ious Work

In the static setting, there are several optimal techniques for efficiently
w xperforming shortest-path and ray-shooting queries 1, 3, 4, 11, 12, 19 , even

w xin parallel 10, 15 . In particular, the data structures of Chazelle and
w x w xGuibas 3 and of Guibas and Hershberger 11, 14 support respectively

Ž .ray-shooting and shortest-path queries in simple polygons in O log n time
Ž . w xusing O n space. More recently, Chazelle et al. 2 give an elegant scheme

Ž .for building a static ray-shooting data structure that uses O n space and
Ž 2 .answers ray-shooting queries in O log n time. Their method is based

upon a decomposition of a simple polygon into ‘‘geodesic triangles’’ so as
to allow a simple ‘‘walk-through’’ strategy for answering ray-shooting
queries. They also show how to apply some more-sophisticated data

Ž .structuring techniques to achieve an O log n query time using only a
w xconstant factor more space. Hershberger and Suri 16 further show how to

Ž .achieve an O log n query time using nothing more than this walk-through
Ž .strategy in an O n -sized triangulation of the interior P, although they

Ž .may possibly introduce triangulation vertices called Steiner points that are
Ž .not vertices of P and this is necessary in some cases .

In the dynamic setting, the best result to date for connected subdivisions
w x Ž .is the data structure of Chiang et al. 5 , which uses O n log n space and

supports ray-shooting queries, shortest-path queries, and insertion and
Ž 3 . Ždeletion of vertices and edges in O log n time amortized for vertex

.updates . We also mention that the hidden-surface removal algorithm by
w xReif and Sen 23 is based on a polylog-time dynamic ray-shooting tech-

nique for monotone subdivisions.

GOODRICH AND TAMASSIA54

1.2. Our Results

In this paper we present a dynamic data structure for connected subdivi-
sions that supports ray-shooting and shortest-path queries. The repertory
of update operations includes insertion and deletion of vertices and edges.
This repertory is complete for connected subdivisions, in that any con-
nected planar subdivision SS can be constructed ‘‘from scratch’’ using only

Žthese operations with each intermediate subdivision being a connected
. Ž .planar subdivision . The space requirement for our structure is O n , and

Ž .the worst-case running time for all operations queries and updates is
Ž 2 .O log n . Our data structure outperforms the previous best data structure

w x Ž5 for this problem by a log n factor in all the complexity measures space,
.query times, and update times . It is also conceptually simple, as it is based

on dynamically maintaining a ‘‘balanced’’ geodesic triangulation of each
region in the subdivision so as to answer ray-shooting queries by a simple
walk-through strategy.

2. GEODESIC TRIANGULATIONS

Ž .A geodesic path or shortest path between two points p and q inside a
simple polygon P is the shortest path joining p and q that does not go

Ž .outside P. We denote such a path as p p, q . Given three vertices u, ¨ ,
and w of a simple polygon P, which occur in counterclockwise order

˜around P, the geodesic triangle Du¨w they determine is the union of the
Ž . Ž . Ž . Ž .paths p u, ¨ , p ¨ , w , and p w, u . See Fig. 1. Let t be such a geodesic
˜triangle Du¨w. In general, t will consist of a simple polygon made up of

three concave chains and three polygonal chains emanating away from the
Ž .three vertices where the concave chains are joined see Fig. 1 . We refer to

the inner polygonal region as the deltoid region of t , due to its resem-
w xblance to the well-known quartic curve 17 , and we refer to the three

Žchains emanating out from the deltoid region as tails. These definitions
w xdiffer somewhat from those of Chazelle et al. 2 , for their geodesic triangle

is what we are calling a deltoid region, and our geodesic triangle is
.something they refer to as a ‘‘kite.’’ Note that a geodesic triangle may

Ž Ž . Ž . Ž ..actually be just a path e.g., if p w, u s p u, ¨ j p ¨ , w , in which case
w xit would have an empty deltoid region and one empty tail. Let P u, ¨

denote the counterclockwise-oriented subchain of P from a vertex u to a
vertex ¨ . Note that, by the Jordan curve theorem, we also have the

Ž .following see Fig. 1 :

Obser̈ ation 2.1. Let p , p , and p , respectively, denote the tails ofu ¨ w
˜ Žgeodesic triangle Du¨w incident upon u, ¨ , and w which occur counter-

BALANCED GEODESIC TRIANGULATIONS 55

˜FIG. 1. Geodesic triangle Du¨w. The deltoid region is shaded.

. w xclockwise around polygon P . There are no vertices of P ¨ , w in p , nou
w x w xvertices of P w, u in p , and no vertices of P u, ¨ in p .¨ w

A geodesic triangulation of a simple polygon P is a decomposition of P ’s
Žinterior into geodesic triangles whose boundaries do not cross. See Fig.

.2a. Two geodesic triangles may have a nonempty intersection, however, if
portions of their respective boundaries overlap.

A geodesic triangulation is combinatorially and topologically like a
triangulation of a convex polygon. Hence, it immediately induces a degree-3
tree T , where each node in T corresponds to a geodesic triangle and we

˜ ˜join the node corresponding to Du¨w with the node corresponding to D xyz
Ž . Ž .if they share two of their vertices e.g., if x s ¨ and z s w . See Fig. 2b.

The nodes of T corresponding to the geodesic triangles whose boundaries
are intersected by some ray in P will always form a path in T. We say that

Ž < <.a geodesic triangulation is balanced if the diameter of T is O log T . As
w xobserved by Chazelle et al. 2 , one can efficiently perform a ray-shooting

query for a ray r by a simple walk-through strategy, where one first locates
the geodesic triangle whose interior contains the starting point for r and
one then iteratively traverses geodesic triangles along the direction r until
one hits the boundary of P. The geodesic triangles traversed correspond to
nodes that form a subset of nodes in a path of T ; hence, this strategy

GOODRICH AND TAMASSIA56

Ž . Ž .FIG. 2. a Geodesic triangulation of a polygon. b Dual tree associated with the geodesic
triangulation, where the white-filled nodes denote geodesic triangles with an empty deltoid
region.

Ž < <.crosses at most O log T geodesic triangles in a balanced geodesic triangu-
lation.

Our approach is to maintain a geodesic triangulation of polygon P so
that its dual tree T is a balanced binary tree}in particular, a red]black

w x w xtree 7, 13, 20, 25 . Sleator et al. 24 observe that, given a triangulation of a
convex polygon P, then any two adjacent triangles Du¨w and Dwzu in this
triangulation can be replaced by the triangles D¨wz and D zu¨ , and such a
‘‘diagonal swap’’ corresponds to a rotation in the tree dual to this triangu-
lation. We extend this result to geodesic triangulations, and observe
likewise that a rotation in T will correspond to swapping of diagonals

BALANCED GEODESIC TRIANGULATIONS 57

determined by two adjacent geodesic triangles; i.e., it corresponds to
˜ ˜replacing adjacent geodesic triangles Du¨w and Dwzu by the geodesic

˜ ˜triangles D¨wz and D zu¨ . We show that vertex insertion and deletion can
be implemented by inserting and deleting edges and vertices in T , and that
edge insertions and deletions can be performed using operations on T that
are analogous to a sequence of split and splice operations. If we maintain
geodesic paths in auxiliary structures, then we can perform each rotation

Ž . Žand insertion in T in O log n time using splits and splices on the
.geodesic paths involved in the rotation . We therefore achieve a running
Ž 2 .time for queries and updates that is O log n in the worst case.

3. RED]BLACK TREES

Since our structure is built using the red]black tree data structure as a
schematic, let us begin by reviewing this structure and showing how simple
list updates can be performed using it. We use the formulation of Tarjan
w x Ž .25 . For any node ¨ in a rooted tree T , let p ¨ denote the parent of ¨ in

Ž .T. Likewise, for any tree T , let r T denote the root node of T. A
red]black tree is a rooted binary search tree T whose nodes are assigned
integer ranks that obey the following constraints:

Ž .1. If ¨ has a nil child pointer, then rank ¨ s 1 and ¨ ’s nil child
pointer is viewed as pointing to a node with rank 0.

Ž . Ž Ž ..2. If ¨ is a node with a parent, then rank ¨ F rank p ¨ F
Ž .rank ¨ q 1.

Ž . Ž Ž Ž ...3. If ¨ is a node with a grandparent, then rank ¨ - rank p p ¨ .

Ž Ž .. Ž .A node ¨ is called black if rank p ¨ s rank ¨ q 1 or ¨ is the root; ¨ is
Ž Ž Ž .. Ž ..red otherwise i.e., if rank p ¨ s rank ¨ . Let n be the number of nodes

Ž .of T. It is easy to see that rank ¨ is proportional to the logarithm of the
Ž Ž .. Ž .number of descendents of ¨ , so that rank r T s O log n .

3.1. Tree Updates

Ž .Given a node ¨ in T , we recall that in a split ¨ operation one divides
binary tree T into binary trees T , and T , where T contains the nodes of1 2 1
T with in-order rank smaller than ¨ , and T contains the nodes with larger2

Žin-order rank we don’t actually maintain in-order labels, however; we just
use this ordering notion to describe the relative positions of nodes in

. Ž .red]black trees . A splice T , ¨ , T operation is the inverse of a split1 2
w xoperation. Tarjan 25 shows that red]black trees support the split and

Ž Ž . . Ž .splice operations in O rot n log n time, where rot n denotes the time
complexity of performing a rotation in T. Recall the definition of a left

GOODRICH AND TAMASSIA58

FIG. 3. Illustrating left and right rotations.

rotation at a node x in T , where we let A denote the subtree rooted at x ’s
right child, we let y denote x ’s right child, we let B and C respectively
denote the subtrees rooted at y’s left and right child, and we transform T
so that x has A and B as subtrees rooted at its left and right child, with x

Ž .now being y’s left child and x ’s old parent now being y’s parent so as to
have C as the subtree rooted at y’s right child. A right rotation at a node y

Žis defined symmetrically we assume that binary trees are always oriented,
. Žso that the notions of ‘‘left child’’ and ‘‘right child’’ are well defined . See

.Fig. 3. Tarjan’s methods are based upon using left and right rotations and
various pointer manipulations to update red]black trees subject to split
and splice operations. Note that in the standard red]black tree setting

Ž . Ž .rot n is O 1 , but this will not be the case in our application, where
auxiliary data structures need to be updated after each rotation.

In our use of red]black trees, we must assume that each internal node
has degree 3; thus, let us assume that the root of a red]black tree T
actually has a parent, which is a degree-1 ‘‘dummy node.’’ In addition, we
desire that our tree-modification operations be based strictly on the use of
tree rotations, and not use the more general pointer changing as is used in

w xthe standard implementations 7, 13, 20, 25 . Fortunately, such implemen-
tations are easy to come by, as we show next.

3.2. Nondestructï e Tree Updates

In this subsection we describe how to perform all red]black tree update
operations using rotations only. We begin with the splice operation.

w xTarjan’s method 25 for performing a splice of trees T and T depends1 2
upon the relative ranks of T and T . If they are the same rank, then one1 2

Ž . Ž .simply creates a new node z, setting r T and r T as its left and right1 2
Žchildren, respectively. Otherwise without loss of generality assume that

Ž Ž .. Ž Ž ...rank r T) rank r T , one searches down the rightmost path in T1 2 1
Ž . Ž Ž ..from r T to find a node ¨ whose rank equals rank r T . Then one1 2

creates a new node z replacing ¨ in T , setting z ’s left child to ¨ and z ’s1
Ž . Ž . Ž .right child to r T . One then sets rank z s rank ¨ q 1 and proceeds2

back up T to perform any necessary rank increases and rotations needed1
Ž Ž .to keep the tree balanced. The total time required is O rot n q

BALANCED GEODESIC TRIANGULATIONS 59

< Ž Ž .. Ž Ž .. <. Ž Ž . .rank r T y rank r T s O rot n q log n , and it results in a tree of1 2
� Ž Ž .. Ž Ž ..4rank at most max rank r T , rank r T q 1.1 2

In our implementation we assume the node z is already created and that
Ž . Ž .T and T are initially the children of z. If rank T s rank T , then we1 2 1 2

Ž Ž . Ž ..are done before we start. Otherwise again suppose rank T) rank T ,1 2
Ž .we perform a sequence of right rotates at the parent of r T until we2

Ž .reach a point where r T and its sibling have the same rank. We then1
w xcomplete the procedure as in Tarjan’s implementation 25 . Clearly,

Ž Ž .Ž < Ž . Ž . < ..the total time needed is O rot n rank T y rank T q 1 s1 2
Ž Ž . .O rot n log n .
Likewise, let us describe a nondestructï e version of a split of tree T at a

node ¨ g T , which returns a tree whose left subtree is a red]black tree for
the elements left of ¨ in T , and whose right subtree is rooted at a node s,
where s’s left child is ¨ and s’s right subtree is a red]black tree for the

Ž . Ž .elements right of ¨ in T see Fig. 4 . Recall that a left resp., right fringe
Ž .node for a leaf-to-root path p is a node that is a left resp., right child of

a node on p but is itself not on p . We perform a nondestructive split on T
by performing a series of rotations to move ¨ up to its final position in T.

Ž .FIG. 4. Schematic illustration of a nondestructive split in a red]black tree: a, b
Ž .intermediate rotations; c the final tree.

GOODRICH AND TAMASSIA60

Ž .Any time a pair of nodes on the left fringe resp., right fringe of the path
from the root of T to ¨ become siblings during this series of rotations, we

Ž .perform a nondestructive splice of their respective subtrees see Fig. 4b ,
as described above. This allows us to replace each splice in Tarjan’s

w ximplementation 25 of split with a nondestructive splice.
The analysis for our implementation of this operation follows by a

simple adaptation of Tarjan’s analysis. By the properties of rank in a
red]black tree, the sum of the running times for performing the splices of

Ž . Ž Ž .subtrees to the left resp., right of ¨ telescope so as to sum to O rot n
.log n . Thus, the total time for performing a nondestructive split is

Ž Ž . .O rot n log n .
Finally, we must contend with the fact that the root of our red]black

tree implementations has a ‘‘dummy node’’ parent and the leaf nodes
Ž .represent objects that belong to a circular order not a strict linear order .
Ž .For any leaf node ¨ , we define an operation e¨ert ¨ on a red]black tree T

Ž .that creates ¨ as the new dummy node parent of r T . In particular,
Ž . Ž .e¨ert ¨ is implemented as follows see Fig. 5 :

Ž .1. Perform a split at ¨ , letting T resp., T be the red]black tree1 2
Ž .storing the leaves of T with in-order rank smaller resp., larger than the

in-order rank of ¨ in T.
Ž .2. Let z be the current dummy node parent of r s r T , and let s

Ž .denote the parent of ¨ so s is the right child of r . Reorient T so that T
Ž .now has ¨ as its dummy node root-parent, with s s r T being the child of

Ž .¨ , so that s has r T as its left child and r as its right child, with r having2
Ž .z as its left child and r T as its right child.1

3. Perform a splice of z and T , resulting in a red]black tree, T X
1 1

rooted at r.
4. Perform a splice of T and T X.2 1

Ž Ž . .This clearly can be implemented in O rot n log n time.
We are now ready to describe our data structure.

FIG. 5. Illustrating the implementation of the evert operation.

BALANCED GEODESIC TRIANGULATIONS 61

4. THE RAY-SHOOTING DATA STRUCTURE

Let SS be a connected subdivision, represented using some dynamically
updatable representation of an embedded planar graph. This can be done,
for example, by a simple modification of the doubly connected edge lists

w xstructure 22 , where we store the edges of each face f in a red]black tree
Ž .B f ordered around f. This representation allows us to split a face f in
Ž .O log n time or, alternatively, to splice two faces f and f along a1 2

Ž .removed common edge in O log n time. In this section we describe our
data structure for performing ray-shooting queries in SS .

4.1. The Primary Structure

As mentioned in the Introduction, the main component of our data
Žstructure for SS is a geodesic triangulation of each region of SS see Fig.

.2a . With each region P of SS , we also store the dual tree T of the
Ž .geodesic triangulation see Fig. 2b . Each internal node m in T corre-

˜sponds to a geodesic triangle, and we join the node corresponding to Du¨w
˜with the node corresponding to D xyz if they share two of their vertices

Ž .e.g., if x s ¨ and x s w . At each such m we store pointers to the vertices
u, ¨ , and w of m’s associated geodesic triangle. Each leaf corresponds to

Ž .an edge of P and is joined to the parent geodesic triangle that has this
edge on its boundary. In particular, if one of the edges of a geodesic
triangle t is also an edge of P, then we say that t is a border triangle, and
for each such border triangle t , we add an adjacency in T from the node

Ž .associated with t to a leaf node associated with the edge of P on t .
Thus, the counterclockwise orientation of the edges around P determines

Ž .the left-to-right in-order orientation of the leaves of T. In addition, we
distinguish some border triangle r in P as the root triangle, so as to root
T at the node associated with r. We associate with this ‘‘dummy parent’’
node a pointer to the record in the doubly connected edge list structure
presenting P in SS . The main idea of our primary structure, then, is to

w xmaintain this rooted tree T as a red]black tree 7, 13, 20, 25 , ignoring the
Ž .dummy leaf node associated with r.

4.2. The Secondary Point Location Structure

As a secondary data structure we maintain a dynamic point location data
structure on the deltoid regions determined by the geodesic triangulations
of all the faces in SS . In particular, we use the structure of Goodrich and

w x Ž .Tamassia 9 , which uses O n space, and supports point-location queries
Ž 2 . Ž .in O log n time, edge insertion and deletion in O log n time, and vertex

Ž .insertion and deletion in O log n time as well. The only caveat to using
this structure is that it requires each face in the subdivision to be

Ž .monotone say, with respect to the x axis . That is, it requires the

GOODRICH AND TAMASSIA62

underlying subdivision to be monotone. Of course, a deltoid region need
not be monotone. Nevertheless, we have

LEMMA 4.1. The geodesic triangulation of a connected subdï ision can be
refined to a monotone subdï ision by inserting at most one edge in each deltoid
region.

Proof. The deltoid region consists of three concave chains. If two of
Žthese chains were not monotone, then since these two chains must be

.incident on the same vertex the third chain could not be concave and still
define a closed region with the other two chains. Since this third chain is
concave, it can be divided into two monotone chains by splitting at some
vertex ¨ . Therefore, by connecting ¨ to one of the other two chains we
decompose this deltoid region into two monotone polygons. Doing this for

Xeach deltoid region, then, refines SS into a monotone subdivision SS .

Thus, our secondary structure consists of the dynamic point location of
w xGoodrich and Tamassia 9 built upon the union of the deltoid regions in

all the geodesic triangles in SS , together with at most one edge per deltoid
region so as to make each face in the resulting subdivision SS

X monotone
with respect to the x axis.

4.3. The Tertiary Deltoid Structures

The final component of our data structure is a tertiary structure built for
the deltoid regions. In particular, for each deltoid region d , we maintain

Žeach of the three concave chains for d in a balanced tree structure e.g., a
w x.red]black tree 7, 13, 20, 25 . Each internal node in such a tree corre-

sponds to a subchain of a concave chain and stores the length of the
associated subchain. In fact, let us assume for the remainder of this paper
that an augmented balanced binary tree, called a chain tree, will be used to
represent any polygonal chain, where the leaves are associated with the
edges, and the internal nodes with the vertices of the chain. Each node
also corresponds to a subchain and stores its length. It should be clear that

Ž .this information can be updated in O 1 time per rotation, so that splitting
or splicing two chain trees takes logarithmic time. With this representa-
tion, it is possible to find the two tangents from a point to a convex chain
and the four common tangents between two convex chains in logarithmic

w xtime 22 .
We store a double link between the root of each tertiary tree t and the

node m in T associated with the geodesic triangle with deltoid region d
that has the edges of t as one of its concave chains. In addition, for any
edge e stored in a chain tree t representing a chain on deltoid region d , if

Ž .e is not an edge of SS i.e., it was added to form the geodesic triangulation ,
then we store a pointer from e’s record in t to e’s record in the tertiary

BALANCED GEODESIC TRIANGULATIONS 63

Žchain tree representing the deltoid region on the other side of e i.e., the
.side not in the interior of d .

Our entire data structure, DD, then consists of the primary geodesic
triangulation structures, the secondary point location structure, and the
tertiary deltoid structures.

Ž .LEMMA 4.2. The data structure DD requires O n space.

Ž .Proof. The primary structure requires only O n space, since it stores
Ž .O 1 amount of information for each geodesic triangle, and a geodesic

triangulation is topologically equivalent to a triangulation of a convex
Ž .polygon. The secondary structure requires O n space, since the total

Ž .number of edges in the subdivision SS is O n and we are building the data
w xstructure of Goodrich and Tamassia 9 on a subdivision that is a subgraph

of a triangulation of SS . This also implies that the total number of edges
Ž .defined by all the deltoid regions is O n , implying that the total space

Ž .used by all our tertiary structures is also O n .

4.4. Ray Shooting

Suppose we have data structure DD for our connected subdivision SS ,
and let r be a query ray for which we wish to perform a ray-shooting query.
See Fig. 6. We begin by performing a point location for the origin p of r

Ž 2 . w xusing the secondary point-location structure. This takes time O log n 9
and identifies a deltoid region d containing p. By then following parent
pointers up in a tertiary chain tree from any edge in d we can identify the
node m in T that is associated with a geodesic triangle having d as its
deltoid region.

This sets up a generic local ray shoot, where we are given a pointer to a
node m in T representing a geodesic triangle with deltoid region d and a

Ž .ray r whose endpoint is inside d possibly even on the boundary of d , and
we wish to locate the edge e of d that r hits first. We can identify this edge
by using the tertiary structures for the convex chains of d to determine, in
Ž . ŽO log n time, the first edge e on the boundary of d where r exits for it

.amounts to a simple binary search . If e is an edge of SS , then we are
done, for we have located the edge of SS that r hits. If e is not an edge of
SS , on the other hand, then we follow the pointer from the current record
for e to the record for e in the adjacent deltoid region, d X. By then
following parent pointers up this chain tree we can identify the node in T
that has this face as its deltoid region. This, of course, sets up another
instance of a local ray shoot; hence, we can now recurse on d X.

Ž .Each local ray shoot test requires O log n time, as does the extra
computation needed to set up the next ray shoot test, if needed. Since this

GOODRICH AND TAMASSIA64

Ž . Ž .FIG. 6. Illustration of a ray-shooting query: a geodesic triangulation; b path in the dual
tree visited during the execution of the query algorithm.

Ž .query traverses a subset of nodes along a path in T e.g., see Fig. 6 , the
Ž 2 .total time to perform such a ray-shooting query is at most O log n .

Therefore, we have

Ž 2 .LEMMA 4.3. A ray-shooting query in DD takes O log n time.

5. DYNAMIC BALANCED GEODESIC TRIANGULATIONS

In this section we show how to maintain the data structure DD while
performing edge insertion and deletion as well as vertex insertion and
deletion. In particular, we define the following update operations on a
connected subdivision SS :

BALANCED GEODESIC TRIANGULATIONS 65

Ž . Ž .InsertEdge e, ¨ , w, R; R , R : Insert edge e s ¨ , w into region R1 2
such that R is partitioned into two regions R and R .1 2

Ž . Ž .Remo¨eEdge e, ¨ , w, R , R ; R : Remove edge e s ¨ , w and merge1 2
the regions R and R formerly on the two sides of e into a new region R.1 2

Ž . Ž .InsertVertex ¨ , e; e , e : Split the edge e s u, w into two edges e s1 2 1
Ž . Ž .u, ¨ and e s ¨ , w by inserting vertex ¨ along e.2

Ž .Remo¨eVertex ¨ , e , e ; e : Let ¨ be a vertex with degree 2 such that1 2
Ž . Ž .its incident edges e s u, ¨ and e s ¨ , w are on the same straight line.1 2

Ž .Remove ¨ and merge e and e into a single edge e s u, w .1 2

Ž . Ž .AttachVertex ¨ , e; w : Insert edge e s ¨ , w and degree-1 vertex w
inside some region R, where ¨ is a vertex of R.

Ž .DetachVertex ¨ , e : Remove a degree-1 vertex ¨ and edge e incident
on ¨ .

The above repertory of operations is complete for connected subdivi-
sions. Also, AttachVertex and DetachVertex can be simulated by a ray-

Ž .shooting query followed by a sequence of O 1 InsertVertex, Remo¨eVertex,
w xInsertEdge, and Remo¨eEdge operations 5 . For example, to perform

Ž .AttachVertex at a vertex ¨ in SS to attach a node w along edge e s ¨ , w ,
we could perform a ray-shooting query to identify the point p on the edge
f of SS first hit by the ray emanating from ¨ in the direction toward w. We

Ž .could then perform an InsertVertex of p on f , an InsertEdge for ¨ , p , an
Ž . Ž .InsertVertex for w on ¨ , p , and a Remo¨eEdge for the edge w, p . Thus,

we will not discuss further the implementation of operations AttachVertex
and DetachVertex.

The only restrictions we place on these operations is that they should be
applied in a way that does not violate the planarity or connectivity of SS . In
the subsections that follow we describe how we can implement each of the

Ž .update operations above other than AttachVertex and DetachVertex .

5.1. Rotations

Before we describe our implementations for these operations, however,
we must describe how we implement rotations in our primary data struc-
ture, the red]black tree T , since the red]black tree update operations of
Ž .nondestructive splice, split, and e¨ert are all built upon rotations.

The important observation is that a rotation in T corresponds to a swap
Ž .of diagonals in two adjacent geodesic triangles see Figs. 7 and 8 . We can

determine the edges involved in such a diagonal swap by querying the
tertiary structures associated with the deltoid regions of the associated
geodesic triangles. If these deltoid regions share an edge, then we must

Ž .compute O 1 common supporting or cross tangents so as to determine the

GOODRICH AND TAMASSIA66

FIG. 7. A swap of diagonals in a triangulation of a convex polygon and the corresponding
Ž . Ž .rotation in the dual tree: a before the swap; b after the swap.

Ž . Ž .new diagonal edge see Fig. 8 . This can easily be done in O log n time
Žusing a well-known binary search approach e.g., see Preparata and Shamos

w x.22 . If these deltoid regions do not share an edge, then the diagonal swap
simply involves identifying the deltoid regions with their new geodesic

Ž .triangles. In any case the geodesic triangulation is modified with O 1
InsertEdge r Remo¨eEdge operations, and the boundaries of the geodesic

Ž . Ž .triangles are modified by O 1 splitrsplice operations see Fig. 8 . Thus, a
Ž . Ž . Ž .rotation in T requires O log n total time; i.e., rot n is O log n .

5.2. Vertex Insertion and Deletion

Ž . Ž .Operations InsertVertex ¨ , e; e , e and Remo¨eVertex ¨ , e , e ; e corre-1 2 1 2

spond to the insertionrdeletion of a node in the dual trees associated with
the regions that share edge e. The geodesic triangulation is modified by
two InsertVertex r Remo¨eVertex operations. The boundaries of the geodesic
triangles are modified by two insertionsrdeletions and, if the edge e is the
dual to the dummy parent of the root of the dual tree, a splitrsplice
operation.

BALANCED GEODESIC TRIANGULATIONS 67

Ž .FIG. 8. Update of a geodesic triangulation after a rotation in the dual tree: a before the
Ž .rotation; b after the rotation.

Specifically, let us examine the computations required to implement the
Ž .operation InsertVertex ¨ , e; e , e , for the implementation of Remo¨eVer-1 2

Ž .tex ¨ , e , e ; e is symmetric. In order to maintain a geodesic triangulation1 2
Ž .we let the adding of vertex ¨ on edge e s u, w create geodesic triangles

D̃u¨w and w¨u, respectively, in the two polygonal regions incident on edge˜
e. Since these geodesic triangle insertions are similar, let us concentrate on

˜the insertion of Du¨w. Its insertion in polygonal region P is equivalent to
a leaf-node insertion in the dual tree T for P. If e is not dual to the
dummy parent of the root of T , then we can then perform the rotations
Ž .and accompanying diagonal swaps needed to keep T as a balanced
red]black tree. If, on the other hand, e is the dual edge for the dummy

Ž .parent of the root of T , then we let ¨ , w become the new dual to the
Ždummy node parent of T , and we perform the rotations and diagonal

.swaps needed to perform a splice of the single-node tree dual the edge
Ž .u,¨ and the tree T. In either case, we can rebalance the dual tree for the

Ž .geodesic triangulation of P using O log n rotationsrdiagonal swaps, each
Ž .of which requires at most O log n time.

GOODRICH AND TAMASSIA68

LEMMA 5.1. Operations InsertVertex and Remo¨eVertex each take
Ž 2 .O log n time.

5.3. Edge Insertion and Deletion

Let us next consider edge insertion and deletion and begin our discus-
sion with the insertion case. We begin by noting that the insertion of an

Ž .edge e in polygonal region R of SS could intersect O log n edges of
our geodesic triangulation of R. Nevertheless, the operation

Ž . Ž 2 .InsertEdge e, ¨ , w, R; R , R can be implemented in O log n time as1 2
Ž .follows see Fig. 9 . Let d and f be edges of R such that d is incident to ¨

Žand f is incident to w, with d and f being on opposite sides of e i.e., d
.and f will be separated after e is inserted .

We begin our implementation of the insertion of e by everting the tree
T at the leaf for d, resulting in a geodesic triangulation of R correspond-
ing to a red]black tree T X rooted at d. We then perform a nondestructive
split on the dual tree T X at f so that the edge e is the diagonal between
the geodesic triangles corresponding to the parent and grandparent of f ,
respectively, which gives us a new dual tree TY.

We may then insert the edge e, cutting TY at the edge dual to e. This
results in two new regions R and R with corresponding dual trees T1 2 1

Ž . Ž .FIG. 9. Schematic illustration of operation InsertEdge e, ¨ , w, R; R , R : a initial1 2
Ž . Ž . Ž .geodesic triangulation and dual tree; b eversion; c split; d splice.

BALANCED GEODESIC TRIANGULATIONS 69

Ž .and T . Notice that the root of T resp., T has as one of its children the2 1 2
Ž .root of a red]black tree and as its other child the node d resp., f . We

complete the construction, then, by performing a splice on the two
children of the root of T and the root of T , respectively.1 2

Ž .Note that this construction requires that we perform O 1 e¨ert, split,
and splice operations on the dual trees for R and R . Each red]black1 2

Ž .tree rotation required to implement these operations in T requires O log n
time using the tertiary chain structures. Thus, this edge insertion can be

Ž 2 .implemented in O log n time.
ŽLet us therefore next consider the operation Remo¨eEdge e, ¨ , w, R ,1

. Ž .R ; R see Fig. 10 . Let T and T be the dual trees for the geodesic2 1 2
triangulations of R and R , respectively. We begin by performing an e¨ert1 2
operation on T to make the leaf corresponding to e become the root for2
this new tree T X in R . We then perform a nondestructive split on T at2 2 1
the leaf in T corresponding to e, which gives us a new tree T X. We then1 1
conceptually merge R and R by replacing the leaf for e in T X with the1 2 1
root of T X . That is, if we let r denote the root of T X , then we replace the2 2
leaf for e by r.

Ž . Ž .FIG. 10. Schematic illustration of operation Remo¨eEdge e, ¨ , w, R; R , R : a initial1 2
Ž . Ž .geodesic triangulations and dual trees; b eversion and split; c splices.

GOODRICH AND TAMASSIA70

Ž .We complete the construction by performing a splice at the new parent
for r, and then another splice at the grandparent of r. This gives us a
balanced tree for the entire region R. Notice that the implementation of

Ž .this operation required O 1 e¨ert, split, and splice operations. Thus, it too
Ž 2 .can be implemented in O log n time.

Ž 2 .LEMMA 5.2. Operations InsertEdge and Remo¨eEdge each take O log n
time.

6. SHORTEST-PATH QUERIES

In this section we show how to extend our approach so as to efficiently
answer shortest-path queries in SS . In this case we are given two query
point p and q and we wish to determine the shortest path between p and
q that does not cross any edges of SS . We may assume, without loss of
generality, that p and q belong to the same region in SS , since we can test

Ž 2 . w xif this is not the case in O log n time by point location 9 . So, suppose
we are given two query points p and q in a region P of SS , and we wish to

Ž .perform a shortest-path query for the pair p, q . We consider two
variations of this query: reporting the length of the path, and reporting all
the edges of the path.

In order to support shortest-path queries, we extend our data structure
so as to store tails of geodesic triangles. Specifically, we modify our data
structure, so that for each node m of tree T , in addition to information

Ž .already stored at m, we also store at m a possibly null chain tree
representing the tail of m’s geodesic triangle not shared by the geodesic
triangle stored at m’s parent. By Observation 2.1, this amounts to a simple
application of a space-saving technique pioneered by Lee and Preparata
w x18 , where one stores shared edges at the highest node in a tree where

Ž .they appear. This remains an O n -sized data structure, as can be estab-
lished by a simple modification of the proof of Lemma 4.2. In addition:

Ž .LEMMA 6.1. Rotations in T can be performed in O log n time.

Proof. The method for now performing rotations in T is identical to
our earlier implementation, except that now we must maintain for each m
in T , a chain tree representing the tail of m’s geodesic triangle not shared
by the geodesic triangle stored at m’s parent. In order to maintain this
invariant during a rotation we may need to perform a few additional splits

Ž .and splices, but they still take just O log n time. This is due to the fact
that in the diagonal swap of two geodesic triangles t and tX whose dual
nodes are involved in a rotation, the tails of the resulting geodesic

Ž .triangles can be decomposed into O 1 portions of tails and deltoid chains
Xfrom t and t .

BALANCED GEODESIC TRIANGULATIONS 71

Having established that rotations in T can still be implemented in
Ž .O log n time even in this augmented structure, we immediately have that

all the update operations described above run in the same time bounds as
before. So, we have only to describe how we perform a shortest-path query
for two given points p and q.

If p and q are vertices of R, the geodesic path algorithm is as follows:
First, we evert T so that the dummy node of T is associated with an edge

Ž 2 .incident on p. This takes O log n time. Next, perform a nondestructive
split at a leaf m of T incident upon q to bring m to be the grandchild ofq q
the root of T so that the geodesic path from p to q is the diagonal
separating the geodesic triangle for m from the geodesic triangle forq
Ž . Žp m see Fig. 9, as this is very similar to our operation for edge insertionq

.with ¨ s p and w s q . Now, the shortest path between p and q is a
diagonal in the geodesic triangulation for R. In fact, it is a diagonal
defining the boundary of the root geodesic triangle in T ; hence, the length

Ž .of the entire geodesic path and its k edges can be retrieved in time O 1
Ž .and O k , respectively, from the chain trees for this geodesic triangle and

its one nontrivial tail. Finally, after we have answered the query, we undo
the above rotations to reset the data structure to its original state. The

Ž 2 . Ž .overall time complexity is O log n , plus O k if the path is reported in
addition to its length.

If p and q are not vertices of R, we ‘‘attach’’ them to the boundary of R
by means of two horizontal ray shootings followed by two AttachVertex

Ž 2 .operations, which takes O log n time, and we apply the previous method.

Ž 2 .LEMMA 6.2. A shortest-path query takes O log n time to report the
Ž .length of the path, plus O k time to report the k edges of the path.

By combining Lemmas 4.2, 4.3, 5.1, 5.2, 6.1, and 6.2, we summarize our
results in the following theorem:

THEOREM 6.3. Let SS be a planar connected subdï ision with n ¨ertices.
Ž .There is an O n -space fully dynamic data structure for SS that supports

Ž 2 .point-location, ray-shooting, and shortest-path queries in O log n time, and
operations InsertVertex, Remo¨eVertex, InsertEdge, Remo¨eEdge, AttachVer-

Ž 2 .tex, and DetachVertex in O log n time, all bounds being worst case.

7. CONCLUSION

We have given a simple and efficient scheme for dynamically maintain-
ing a connected subdivision SS subject to ray-shooting and shortest-path
queries. Our method is based on maintaining geodesic triangulations of
each polygonal region in SS through the use of an elegant duality between

GOODRICH AND TAMASSIA72

diagonal swaps between adjacent geodesic triangles and rotations in
Ž .red]black trees. Since we implement each rotation in O log n time, this

Ž 2 .results in worst-case running times of O log n for queries and updates.
w xHershberger and Suri 16 have recently showed that one can triangulate

the interior of a simple polygon using additional interior points so that any
Ž .ray intersects O log n triangles. Applying our approach to this method

would not improve the running time of updates, however, since an edge
Ž .insertion would still require changing O log n edges, and we would still

require a dynamic point-location structure. Thus, this would still require
Ž 2 .O log n time. Therefore, this still leaves the important open question of

Ž 2 .whether one can achieve o log n time for both updates and ray-shooting
queries in a dynamic connected subdivision.

ACKNOWLEDGMENTS

We thank Gunter Rote and the anonymous referees for several useful comments.¨

REFERENCES

1. P. K. Agarwal and M. Sharir, Applications of a new partitioning scheme, in ‘‘Proceedings,
2nd Workshop Algorithms Data Structure, Lecture Notes in Computer Science,’’ Vol.
519, pp. 379]391, Springer-Verlag, BerlinrNew York, 1991.

2. B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J.
Ž .Snoeyink, Ray shooting in polygons using geodesic triangulations, Algorithmica 12 1994 ,

54]68.
3. B. Chazelle and L. J. Guibas, Visibility and intersection problems in plane geometry.

Ž .Discrete Comput. Geom. 4 1989 , 551]581.
4. S. W. Cheng and R. Janardan, Algorithms for ray-shooting and intersection searching, J.

Ž .Algorithms 13 1992 , 670]692.
5. Y.-J. Chiang, F. P. Preparata, and R. Tamassia, A unified approach to dynamic point

location, ray shooting, and shortest paths in planar maps, in ‘‘Proceedings, 4th
ACM]SIAM Symposium Discrete Algorithms,’’ pp. 44]53, 1993.

6. Y.-J. Chiang and R. Tamassia, Dynamic algorithms in computational geometry, Proc.
Ž . Ž .IEEE 80 9 1992 , 1412]1434.

7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, ‘‘Introduction to Algorithms,’’ MIT
Press, Cambridge, MA, 1990.

8. H. Edelsbrunner, ‘‘Algorithms in Combinatorial Geometry,’’ EATCS Monographs on
Theoretical Computer Science, Vol. 10, Springer-Verlag, Heidelberg, 1987.

9. M. Goodrich and R. Tamassia, Dynamic trees and dynamic point location, in ‘‘Proceed-
ings, 23rd Annual ACM Symposium Theory Computing,’’ pp. 523]533, 1991.

10. M. T. Goodrich, M. Ghouse, and J. Bright, Generalized sweep methods for parallel
computational geometry, in ‘‘Proceedings 2nd ACM Symposium Parallel Algorithms
Architecture,’’ pp. 280]289, 1990.

11. L. J. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon, J.
Ž .Comput. System Sci. 39 1989 , 126]152.

BALANCED GEODESIC TRIANGULATIONS 73

12. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time
algorithms for visibility and shortest path problems inside triangulated simple polygons.

Ž .Algorithmica 2 1987 , 209]233.
13. L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees, in ‘‘Proceed-

ings 19th Annual IEEE Symposium Foundation Computer Science,’’ Lecture Notes in
Computer Science, pp. 8]21, 1978.

14. J. Hershberger, A new data structure for shortest path queries in a simple polygon,
Ž .Inform. Process. Lett. 38 1991 , 231]235.

15. J. Hershberger, Optimal parallel algorithms for triangulated simple polygons, in ‘‘Pro-
ceedings 8th Annual ACM Symposium Computer Geometry,’’ pp. 33]42, 1992.

16. J. Hershberger and S. Suri, A pedestrian approach to ray shooting: Shoot a ray, take a
walk, in ‘‘Proceedings 4th ACM]SIAM Symposium Discrete Algorithms,’’ pp. 54]63,
1993.

17. J. D. Lawrence, ‘‘A Catalog of Special Plane Curves,’’ Dover, New York, 1972.
18. D. T. Lee and F. P. Preparata, Location of a point in a planar subdivision and its

Ž .applications, SIAM J. Comput 6 1977 , 594]606.
19. D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear

Ž .barriers, Networks 14 1984 , 393]410.
20. K. Mehlhorn, ‘‘Sorting and Searching,’’ Data Structures and Algorithms, Vol. 1,

Springer-Verlag, Heidelberg, 1984.
21. J. O’Rourke, ‘‘Computational Geometry in C,’’ Cambridge Univ. Press, Cambridge, 1994.
22. F. P. Preparata and M. I. Shamos, ‘‘Computational Geometry: An Introduction,’’

Springer-Verlag, New York, 1985.
23. J. H. Reif and S. Sen, An efficient output-sensitive hidden-surface removal algorithm and

its parallelization, in ‘‘Proceedings 4th Annual ACM Symposium Computer Geometry,’’
pp. 193]200, 1988.

24. D. D. Sleator, R. E. Tarjan, and W. P. Thurston, Rotation distance, triangulations, and
Ž .hyperbolic geometry, J. Amer. Math. Soc. 1 1988 , 647]682.

25. R. E. Tarjan, ‘‘Data Structures and Network Algorithms,’’ CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, Vol. 44, Society for Industrial Applied Mathematics,
1983.

