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Given an n-vertex simple polygon we ad- 
dress the following problems: (i) find the 
shortest path between two points s and 
d inside P, and (ii) compute the shortest- 
path tree between a single point s and each 
vertex of P (which implicitly represents all 
the shortest paths). We show how to solve 
the first problem in O(log n) time using 
O (n) processors, and the more general sec- 
ond problem in O (log 2 n) time using 0 (n) 
processors for any simple polygon P. We 
assume the CREW RAM shared memory 
model of computation in which concurrent 
reads are allowed, but no two processors 
should attempt to simultaneously write in 
the same memory location. The algorithms 
are based on the divide-and-conquer para- 
digm and are quite different from the 
known sequential algorithms. 
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1 Introduction 

We study two variations of the Euclidean shortest 
path problem inside a simple polygon, giving effi- 
cient parallel algorithms for each. Specifically, giv- 
en an n-vertex simple polygon P, we address the 
following problems: (i) The Interior Shortest Path 
ISP problem: find the path with the shortest Eu- 
clidean distance between two points s and d in 
P, and (ii) The All Interior Shortest Paths AISP 
problem: compute the shortest-path tree between 
a single point s and each vertex of P (which impli- 
city represents all the shortest paths). As in [1-4, 
6, 8, 9] we are interested in solving these geometric 
problems as fast as possible using only a linear 
number of processors. 
The traditional sequential way of solving shortest 
path problems in the presence of polygonal barriers 
is to construct the visibility graph [13, 20] and then 
perform the shortest path computations on this 
graph. This approach results in an algorithm which 
runs in O(n 2) time [13, 20]. By restricting the input 
points to be interior to a single polygon, however, 
previous researchers [5, 7, 10, 11] have been able 
to design efficient sequential solutions which run 
much faster than the traditional approach. Namely, 
E1Gindy [7] has shown that if the input polygon 
is monotone with respect to some line, then one 
can solve the ISP problem in O (n) time, which is 
optimal. If the input polygen is an arbitrary poly- 
gon, then after a preprocessing step which takes 
O(n loglog n) time [18] one can solve both the ISP 
problem [5, 11] and the AISP problem [10] in 
O (n) additional time. Unfortunately, all these algo- 
rithms use techniques similar to polygon bound- 
ary-tracing [12], which seem to be inherently se- 
quential. Thus, we need a different approach if we 
are to design efficient parallel algorithms for these 
problems. 
Using known parallel algorithms as the  building 
blocks, the traditional approach to shortest path 
problems can be applied in the parallel setting. This 
appraoch results in a parallel algorithm which runs 
in O(log2n) time using matrix-multiplication 
number of processors [2, 14, 16, 17] (which is cur- 
rently about O (n2"5)). For the special case of finding 
the shortest path between two points inside a 
monotone simple polygon, E1Gindy [8] has shown 
that one can achieve this same O(log 2 n) time 
bound using only 0 (n) processors. We improve on 
this result by showing how to find the shortest 
path between two points in an arbitrary simple 
polygon in O (log n) time using O (n) processors. We 
also show how to construct the shortest path tree 
between a point and all the vertices of a simple 

The Visual Computer (1988) 3:371 378 3 7 1  
�9 Springer-Verlag 1988 



polygon in O(log 2 n) time using O(n) processors. 
This tree implicitly stores the shortest path between 
the source point and each vertex, and can be used 
to compute all the shortest path distances in 
O(log n) additional time. Both of our algorithms 
are based on divide-and-conquer approaches 
which are quite different from known sequential 
algorithms, and which rely on additional geometric 
properties present in the problems. 
The computational model we use for all of our 
algorithms is the C R E W  P R A M  shared memory 
model in which synchronous processors share a 
common memory that allows for concurrent reads 
but does not allow two processors to simultaneous- 
ly write to the same memory cell. 
In the next section we give some of the definitions 
and preliminary observations we will be using 
throughout the remainder of this paper. For  terms 
not defined there the reader is referred to the book 
Preparate and Shamos [15]. In Sect. 3 we present 
an algorithm for finding the shortest path between 
two points in a simple polygon, and in Sect. 4 we 
present an algorithm for finding the shortest path 
tree between a point and every vertex of a simple 
polygon. We finally conclude with some open 
problems in Sect. 5. 

2 Preliminaries 

Let P=(Pl,  P2 . . . .  , p,) be a simple polygon. The 
shortest path interior to P between two points u 
and v, denoted by Path(u, v), is only defined if u 
and v are not exterior to P. The shortest path dis- 

tance between u and v is the length of Path(u, v). 
Let e~ = (Pi, q~) and ej = (p j, qj) be two distinct edges 
of P. We call a shortest path between an endpoint 
of ei and an endpoint of ej a point-to-point path 
between e~ and ej. We define the common path be- 
tween e~ and ej, denotes CPath(ei, ej), to be the 
maximal common intersection of the four point-to- 
point paths Path(p~,pj), Path(p~,qj), Path(q~,pj), 
and Path(qi, q j). We define the fundamental paths 
between e~ and ej, denoted Paths(ei, ej), to be the 
five paths Path(pi,pj), Path(pi,qj), Path(qi,Pj), 
Path(qi, qj) and CPath(ei, e3) (Refer to Fig. 1.) We 
conclude this section by presenting a property of 
these fundamental paths that is essential to the de- 
velopment of efficient parallel shortest path (s) algo- 
rithms. The proof is straightforward, and is thus 
omitted. 

Lemma 1. Let P be an n-vertex simple polygon, and 
let ei and ej be two distinct boundary edges of P. 
The portions of any point-to-point path between ei 
and ei, which are not on the common path 
C Path(ei, e j), are convex chains. 

3 Shortest path between 
two points 

In this section we present a parallel algorithm for 
computing the internal shortest path ISP between 
two points s and d inside a simple polygon P. The 
algorithm runs in O (log n) time using O(n) proces- 
sors in the C R E W  P R A M  model of computation. 
The algorithms proceeds in two phases. In the first 
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Fig. 1. The fundamental paths 
between two edges. The polygonal 
edges are shown dashed and 
fundamental paths are shown solid. 
CPath(eu ej) is the solid portion 
between ld and rd 
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phase we compute a triangulation TP of P and 
construct the dual graph TP' of TP, where each 
node in TP' corresponds to a triangle in TP and 
two nodes in TP' are adjacent if and only if the 
corresponding triangles in TP share an edge. TP' 
must be a tree since P is a simple polygon. We 
then determine the simple path S' in TP' from s' 
to d', where s'(d') denotes the node of TP' that 
corresponds to the triangle containing s(d). S' cor- 
responds to a simple polygon S that is completely 
contained in P and is called a triagulated sleeve. 
Let {ea, Ca, ..., e,,} be the set of triangulation edges 
of S, where ea(e,,) lies on the triangle containing 
s(d). We define a total order on the edges so that 
e~ < ej if and only if ej is closer to s than the edge 
ej. In the second phase, we employ the divide-and- 
conquer paradigm to compute the Path(s, d) in the 
triangulated sleeve corresponding to S'. 
Before presenting details of the algorithm, we de- 
scribe the geometric operation which forms the ba- 
sis for the divide-and-conquer approach to this 
problem. 

Lemma 2. Let S be a triangulated sleeve with diago- 
nals e~,ej, and e k such that e~<ej<ek. Given 
Paths(ei, ej) and Paths(ej, ek), we can compute 
Paths(ei,ek) in O(1) time using O(n) processors, 
where n is the number of vertices in S between e, 
and ek. 

Proof Four different situations may occur: 

(1) CPath(ei, ej) = ~b and CPath(ej, ek) = ~b 
(2) CPath(ei, ei) # cb and CPath(ej, ek) = cb 
(3) CPath(ei, ej) = ~b and CPath(ej, ek):# ~b 
(4) CPath(ei, ej) :# ~b and CPath(ej, ek) # q~ 

Situations (2-4) can be viewed as special cases of 
the first situation with one or two of the edges 
degenerating to a single point. Therefore we will 
only present a proof of the lemma for the first situa- 
tion. 
In this situation, each of the paths Path(p~,p~), 
Path(p~,pk), Path(qi, qj), and Path(qj, qk) are con- 
vex chains. Therefore we can compute the common 
tangents between each pair of the four paths in 
0(1) time using O(n) processors, where n is the 
total number of vertices, by using the algorithms 
presented by Atallah and Goodrich [4] for mani- 
pulating disjoint convex chains. 
In the following case analysis, we show that these 
tangents are sufficient for constructing Paths(ei, ek) 
from Paths(ei, e j) and Paths(e j, ek). 

i t ' / ' I  
e~ \ ~  

l ei 

Fig. 2. The case of empty CPath(el, e~) of Lemma 2 

qk 

ek 

qk 

If the supporting line of Path(Pi, p j) u Path(pj, Pk) 
does not intersect Path(qi, q j )u  Path(q j, qk) and the 
supporting line of Path(qi, q j) u Path(q j, qk) does 
not intersect Path(p~, p j) u Path(p j, Pk), then 
CPath(e~, ek) is also empty. We can then construct 
Paths(ei, ek) in O(1) additional time by "cutt ing" 
and "pasting" the appropriate pieces of the funda- 
mental paths (Refer to Fig. 2). 
Otherwise, the critical separating line of Path (p~, p j) 
and Path(q~,qk) must intersect Path(q~,qj) 
u Path(pi, pk ), the critical separating line of 
Path(p~, Pk) and Path(qi, qj) must intersect 
Path(p,, pj)u Path(qj, qk), or both. Due to the simi- 
larity of the three cases, we will only discuss the 
first. 

Case I. (The critical separating line of Path(p~, pj) 
and Path(qj, qk) only intersects Path(pj, pk) as in 
Fig. 3a): Let v3 be the intersection of the critical 
separating line of Path(pi, p j) and Path(q j, qk) with 
the chain Path(q j, qk), and let vl and v2 be the inter- 
sections of the chains Path(pj, Pk) and Path(q j, qk) 
with their critical separating line L respectively. It 
follows from the geometry that the line L must 
intersect Path(p~,p~), and the vertices v2, va must 
appear in the shown order on the boundary of 
Path(qj, q~). Therefore the subset of Path(qj, q,) 
joining v2 and v3 forms CPath(ei, ek). 

Case 2. (The critical separating line of Path(pi,pj) 
and Path(q j, qk) only intersects Path(pj,pk) as in 
Fig. 3b): Let vl and v2 be the intersections of the 
chains Path(q j, qk) and Path(pj, Pk) with their criti- 
cal supporting lines L respectively, and let v3 be 
the intersection of the critical separating line of 
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Fig. 3. a Case 1 of Lemma 2. b Case 2 of  Lemma 2. 
c Case 5 of Lemma 2 
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Path(pj, pk ) and Path(qi, qj) with the chain 
P a t h ( p  j ,  Pk). It follows from the geometry that the 
line L must intersect Path(qi, q~), and the vertices 
rE,v3 must appear in the shown order on the 
boundary of Path(pj, pk ). Therefore the subset of 
Path(p j, Pk)joining v 2 and v a forms CPath(ei, ek). 

Case 3, 4. (The critical separating line of Path (p~, p~) 
and Path(q j, qk) only intersects Path(qi, q j)): These 
cases are mirror images of the previous two cases. 

Case 5. (The critical separating line of Path(pi,pj) 
and Path(qj, qk ) intersects both Path(pj, pk ) and 
Path(qi,qj): Only the four different situations 
shown in Fig. 3c may occur. It is easy to show 
that the critical separating and supporting lines be- 
tween the four convex chains are sufficient to find 
C Path (ei, ek) and to compute the remaining funda- 
mental paths. 

Using the algorithms in [4], we can check which 
of these cases apply and compute the vertices 
Vl, V 2 . . . . .  V 6 in 0(1) time. We can then construct 
the fundamental paths between ei and ek by "cut- 
ting" and "pasting" the appropriate pieces of the 
old fundamental paths in 0(1) time. Thus the lem- 
ma follows. []  

We now present a detailed description of the algo- 
rithm. 

Algorithm ShortestPath (P, s, d) 

Input: A simple polygon P and two points s and 
d interior to P. 

Output: A list of vertices which form the shortest  
path from s to d in P. 

1st phase: 
Step 1.1 

Step 1.2 

Step 1.3 

Compute a triangulation TP of P. Such 
process can be performed in O(log n) 
time using O (n) processors [9]. 
Construct the dual TP' of TP, and let 
s'(d') denote the node of TP' that corre- 
sponds to the triangle containing s(d). 
Determine the path S' in TP' from s' 
to d', and arrange the set of edges 
{el, e2 . . . .  , era} which form the corre- 
sponding triangulated sleeve in order of 
increasing distance from s. Such process 
can be performed in O (log n) time using 
O(n) processors [19]. 

2nd phase: 
Step 2.1 

Step 2.1.1 
Step 2.1.2 

Step 2.1.3 

Step 2.1.4 

Step 2.2 

Compute the fundamental paths 
Path(el, era) as follows: 
If el = em, then return the obvious value. 
Find the median diagonal ek between 
el and e,,. 
Compute Paths(el, ek) and Paths(ek, e,,) 
in a recursive fashion. 
Merge Paths(el, ek) and Paths(ek,em), 
using the method described in Lem- 
ma 2, to form the fundamental paths 
Paths(el, e,,). 
Merge points s and d with Paths(el, din), 
using the method described in Lem- 
ma 2, to construct the shortest path be- 
tween s and d in O(1) time using O(n) 
processors. 

End of ShortestPath 

Lemma 3. The algorithm ShortestPath correctly 
computes the interior shortest path between s and 
d inP .  

Proof Lee and Preparata [12] proved that the 
shortest path between s and d is completely con- 
tained in the triangulated sleeve S. It follows from 
the correctness of the algorithms of [9, 19] and 
from Lemma 2 that the algorithm ShortestPath 
computes the reports correctly the interior shortest 
path between s and d in P. [] 

It follows from the triangulation algorithms in [9, 
19] that the first phase of the algorithm can com- 
pleted in O (log n) time using O (n) processors. The 
dominant operation of the second phase is merging 
two sets of fundamental paths to form a new set 
which can be performed in O(1) time using O(n) 
processors. Since this operations is performed 
O(log n) time, we can now state the main result 
of this section. 

Theorem 1. Given an n-vertex simple polygon P and 
two points s and d interior to P we can compute 
the shortest path between s and d in P in O(log n) 
time using O(n) processors in the C R E W  P R A M  
model. 

4 All shortest paths from a point 

In this section we present a parallel algorithm for 
computing the shortest path tree from a source 
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point s to the vertices of a simple polygon P which 
can be used to compute all the shortest path dis- 
tances in 0 (log n) additional time. Such a tree can 
be completely represented by the first(pi,s) for 
each vertex pi of P, where first(pi,s) denotes the 
vertex in Path(pi, s) adjacent to Pi. Therefore, the 
problem we solve in this section is to compute 
first(pi, s) for each vertex Pi of P. 
The algorithm proceeds in two phases. In the first 
phase we compute a triangulation TP of P and 
construct the dual graph TP' of TP, where each 
node in TP' corresponds to a triangle in TP and 
two nodes in TP' are adjacent if and only if the 
corresponding triangles in TP share an edge. TP' 
must be a tree since P is a simple polygon. We 
then process TP' so that we can efficiently locate 
and delete its centroid. The centroid is defined as 
a node v whose deletion divides TP' into subtrees 
such that the value of max {[ TP'(v, w)l: w is adja- 

W 

cent to v} is minimized, where TP' (v, w) is the sub- 
tree that contains w. The size of each subtree is 
clearly a fraction of [TP'[. In the second phase, 
we employ the divide-and-conquer paradigm to 
compute the first(p~, s) for each vertex of P. 
Before presenting details of the algorithm, we de- 
scribe how to process a tree in O(logn) time so 
that locating and deleting its centroid can be per- 
formed in 0(1) time. 

Lemma 4. Let T be a free tree with n nodes and 
constant degree c. In O(log n) time using O(n) pro- 
cessors we can assign labels to the vertices of T 
so that in O(1) time we can find the centroid vertex 
v of T. Moreover, we can update the labels of the 
vertices in each subtree in O(1) time so that we can 
repeat this centroid decomposition procedure in 0 (1) 
time using linear number of processors for each sub- 
tree in parallel. 

Proof Let T be a free tree and v be an interior 
node. The deletion of v decomposes T into a collec- 
tion of subtrees {T(v, w): w is adjacent to v}, where 
T(v, w) denotes the subtree that contains w. A cen- 
troid of T is defined to be a vertex v which mini- 
mizes the value of Cv = max {I T(v, w)l: w is adjacent 
to v}. w 
Efficiency of our method for reporting a centroid 
results from the following two properties of a cen- 
troid: 

(A) There can be at most two centroids of T, and 
if so, these two must be adjacent (in effect, an 

edge is the centroid). We will break ties by 
defining the centroid to be the vertex with the 
smaller name. 

(B) A vertex v which locally minimizes C,, relative 
to all the vertices adjacent to v, must be a cen- 
troid. Thus, it is sufficient to compute Cv for 
every node v in T, since given C~ for each v 
in T we can test if v is the centroid in 0(1) 
time with one processor by comparing Cv to 
Cw for each of the (at most c) nodes adjacent 
to v. 

The main idea of our method of computing the 
Cv values is to use the Euler tour technique [19]. 
We replace each edge in T by two oppositely di- 
rected edges, and let L be the Euler tour of the 
resulting directed graph, starting at an arbitrary 
node. We represent L as an array listing the vertices 
of T as they are visitet by the tour. L can be con- 
structed from T in 0 (log n) time using 0 (n) proces- 
sors by a simple list ranking procedure, since each 
vertex appears at most c times in L. We assign 
the integer" + 1" to the first occurrence of a vertex 
v in L and the integer "0"  to every other occurrence 
of v in L after that. We then compute the prefix 
sum for each element of L, which can be done in 
O(log n) time using O(n) processors. Let fv (resp. 
lv) denote the prefix sum of the first (resp. last) 
occurrence of v in L, for each v e T Using the values 
of the prefix sums we can compute Cv as follows: 

Cv = max {I T(v, w)l: w is adjacent to v} 
W 

where 

iT(v,w)l=f lw- fw if fw >f~ 
l l T l - l w + f w  if fw<fv 

Therefore, we can find the centroid of T, denoted 
by c v, in 0 (log n) time using 0 (n) processors. 
Deleting cv decomposes T into subtrees 
T1, T2, ..., T~, where Ti contains the node wi adja- 
cent to cv for i = 1  . . . .  ,c. Also ITil<_elTI for 
i = 1 . . . . .  c, where e < 1. We can easily compute the 
new values of fv for the vertices in each subtree 
as follows: 

i if f~<fi~ and l~<l~, 
f~= f , -  , - 1  if f~>f i ,  and l,<l~, 

if f~<fi~ and I,>1~, 

fv--fiv if fv>fiv and lv>lcv 
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The new values of lv for the vertices in each subtree 
are updated using a similar expression. 
This can clearly be done in O(1) time using O(n) 
processors, and allows us to repeat this centroid 
decomposition in constant time for each T~ using 
O(IT~I) processors. [] 

We now present a detailed description of the algo- 
rithm. 

Algorithm AllShortestPaths (P, s) 

Input: A simple polygon P and a point s interior 
to P. 

Output: first(pi, s) for each vertex p~ of P. 

I st phase: 
Step 1.1 

Step 1.2 

Step 1.3 

Step 1.4 

2nd phase: 
Step 2.1 

Step 2.1.1 

Step 2.1.2 

Step 2.1.3 

Compute a triangulation TP of P. Such 
process can be performed in O(logn) 
time using O (n) processors [9]. 
Construct the dual TP' of TP, and let 
s' denote the node of TP' that corre- 
sponds to the triangle containing s. 
Delete s' from TP' (which divides TP' 
into TP;, ..., TP/ with c<3).  Let ej 
= (pjx, p j2) be the edge shared by the tri- 
angle corresponding to s' and the trian- 
gulation corresponding to TPj with 1 _< 
j_<3. 
Process each subtree separately so that 
we can perform controid location and 
deletion in O(1) time as shown in Lem- 
ma 4. 

for each of the subtrees TP/(I_<j_<3) 
compute first(Pi,pj,) and first(pi,pj2) 
where Pie P~, in parallel as follows: 
If the subtree consists of one node, then 
we return the obvious values. 
Locate the centroid c v) of TPj and per- 
form the centroid decomposition as de- 
scribed in Lemma4.  Let CVj=(e(j,k)) 
(1 _< k < 3) be the triangle corresponding 
to the node cv), and let TP(j,k)be the 
triangulation sharing the edge 
etj, k)(l < k < 3  ) with the triangle cvj. 
Without loss of generality, we assume 
that TP(j,1) is the triangulation sharing 
the edge ej with the triangle containing 
S. 
Compute first(pi,pj~) and first(pi,pj2) 
(where pi~P(j,a)) in a recursive fashion, 

Step 2.1.4 

Step 2.1.5 

Step 2.2 

and then construct the set of fundamen- 
tal paths between e~j,1) and e j, 
Paths(e j, e~j, 1)). 
Compute first(pi, P(j, kh) and 
first(pi,p(j,k)2) (where PiePtj, k), and k 
--2, 3) in a recursive fashion. 
For each vertex p~eP(j,k) (k=2,  3) we 
compute first(pi, p~) and first(pi, pj2) 
by performing four binary searches in 
Paths(ej, e(j,1)) (one for every funda- 
mental path except CPaths(ej, e(j,1)). 
The details of the method for deciding 
which of the tangents to use in updating 
each first label are similar to that used 
in Lemma 3 and are thus omitted. 
Compute first(pi,s) for each pieP in 
parallel. This can be done in O(1) time 
by observing that if first(pi,pj~) 
=first(pi, pj~), where j =  1, 2, or 3, then 

first(pi, s)= first(pi, pj1); otherwise we 
can find first(p~, s) by testing if s is con- 
tained in the angle (first(p~,p.q),p~, 
first (Pi, Ph))" 

End of All Shortest Paths 

It follows from Lemma 4 and the triangulation al- 
gorithm of Goodrich [9] that the first phase of 
the algorithm can completed in O (log n) time using 
O(n) processors. The dominant operations of the 
second phase are: (A) constructing the set of funda- 
mental paths which can be performed in O(10g n) 
time using O ([P1 [) processors by a straightforward 
doubling procedure, and (B) updating first label 
for each vertex in Ptj, k)(k=2, 3) which can be done 
in O(log n) time using O([P(j,2)[ + [V(j,3)]) processors. 
Since these operations are performed 0 (log n) time, 
we can now state the main result of this section. 

Theorem 2. Given an n-vertex simple polygon P and 
a point s inside P we can find first(pi, s)for each 
vertex p~eP in O(log 2 n) time using O(n) processors 
in the C R E W  P R A M  model. 

5 Concluding remarks 

We have shown that the ISP and AISP problems 
belong to the class of NC problems (i.e., we can 
compute the shortest path(s) in polylog time using 
polynomial number of processors assuming a 
CREW PRAM model of computation.) Specifi- 
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cally, we give an algorithm for the ISP problem 
which runs in O(log n) time using O(n) processors 
and an algorithm for the AISP problem which runs 
in O(log 2 n) time using O(n) processors. It is inter- 
esting to note that, once we have computed for 
each vertex Pi in P the first vertex of P on the 
shortest path from pi to the source s (in the AISP 
problem), we can then compute all the shortest 
path distances in O (log n) time using O (n) proces- 
sors by a straightforward doubling procedure. 
The parallel algorithms presented in the previous 
sections do not provide an optimal speed-up when 
compared to the sequential algorithms in [-5, 7, 12] 
where the shortest path is computed in O (n) time 
after an O (n loglog n) preprocessing time. A natural 
challenge is to develop a parallel algorithm with 
an optimal speed-up. An interesting related prob- 
lem is to show that reporting the shortest path 
beween two points in the presence of obstacles also 
belongs to the class of NC problems. 
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