
Parallel algorithms
for shortest
path problems
in polygons

H o s s a m E 1 G i n d y 1.
a n d M i c h a e l G o o d r i c h 2

1 School of Computer Science, McGill University,
Montreal, Quebec H3A 2K6, Canada
z Department of Computer Science, The Johns
Hopkins University, Baltimore, Maryland, USA

Given an n-vertex simple polygon we ad-
dress the following problems: (i) find the
shortest path between two points s and
d inside P, and (ii) compute the shortest-
path tree between a single point s and each
vertex of P (which implicitly represents all
the shortest paths). We show how to solve
the first problem in O(log n) time using
O (n) processors, and the more general sec-
ond problem in O (log 2 n) time using 0 (n)
processors for any simple polygon P. We
assume the CREW RAM shared memory
model of computation in which concurrent
reads are allowed, but no two processors
should attempt to simultaneously write in
the same memory location. The algorithms
are based on the divide-and-conquer para-
digm and are quite different from the
known sequential algorithms.

Key words: Computational Geometry
Parallel algorithms - Simple polygon -
Shortest path

* Research supported by the Faculty of Graduate
Studies and Research (McGill University) grant
276-07

1 Introduction

We study two variations of the Euclidean shortest
path problem inside a simple polygon, giving effi-
cient parallel algorithms for each. Specifically, giv-
en an n-vertex simple polygon P, we address the
following problems: (i) The Interior Shortest Path
ISP problem: find the path with the shortest Eu-
clidean distance between two points s and d in
P, and (ii) The All Interior Shortest Paths AISP
problem: compute the shortest-path tree between
a single point s and each vertex of P (which impli-
city represents all the shortest paths). As in [1-4,
6, 8, 9] we are interested in solving these geometric
problems as fast as possible using only a linear
number of processors.
The traditional sequential way of solving shortest
path problems in the presence of polygonal barriers
is to construct the visibility graph [13, 20] and then
perform the shortest path computations on this
graph. This approach results in an algorithm which
runs in O(n 2) time [13, 20]. By restricting the input
points to be interior to a single polygon, however,
previous researchers [5, 7, 10, 11] have been able
to design efficient sequential solutions which run
much faster than the traditional approach. Namely,
E1Gindy [7] has shown that if the input polygon
is monotone with respect to some line, then one
can solve the ISP problem in O (n) time, which is
optimal. If the input polygen is an arbitrary poly-
gon, then after a preprocessing step which takes
O(n loglog n) time [18] one can solve both the ISP
problem [5, 11] and the AISP problem [10] in
O (n) additional time. Unfortunately, all these algo-
rithms use techniques similar to polygon bound-
ary-tracing [12], which seem to be inherently se-
quential. Thus, we need a different approach if we
are to design efficient parallel algorithms for these
problems.
Using known parallel algorithms as the building
blocks, the traditional approach to shortest path
problems can be applied in the parallel setting. This
appraoch results in a parallel algorithm which runs
in O(log2n) time using matrix-multiplication
number of processors [2, 14, 16, 17] (which is cur-
rently about O (n2"5)). For the special case of finding
the shortest path between two points inside a
monotone simple polygon, E1Gindy [8] has shown
that one can achieve this same O(log 2 n) time
bound using only 0 (n) processors. We improve on
this result by showing how to find the shortest
path between two points in an arbitrary simple
polygon in O (log n) time using O (n) processors. We
also show how to construct the shortest path tree
between a point and all the vertices of a simple

The Visual Computer (1988) 3:371 378 3 7 1
�9 Springer-Verlag 1988

polygon in O(log 2 n) time using O(n) processors.
This tree implicitly stores the shortest path between
the source point and each vertex, and can be used
to compute all the shortest path distances in
O(log n) additional time. Both of our algorithms
are based on divide-and-conquer approaches
which are quite different from known sequential
algorithms, and which rely on additional geometric
properties present in the problems.
The computational model we use for all of our
algorithms is the C R E W P R A M shared memory
model in which synchronous processors share a
common memory that allows for concurrent reads
but does not allow two processors to simultaneous-
ly write to the same memory cell.
In the next section we give some of the definitions
and preliminary observations we will be using
throughout the remainder of this paper. For terms
not defined there the reader is referred to the book
Preparate and Shamos [15]. In Sect. 3 we present
an algorithm for finding the shortest path between
two points in a simple polygon, and in Sect. 4 we
present an algorithm for finding the shortest path
tree between a point and every vertex of a simple
polygon. We finally conclude with some open
problems in Sect. 5.

2 Preliminaries

Let P=(Pl, P2 , p,) be a simple polygon. The
shortest path interior to P between two points u
and v, denoted by Path(u, v), is only defined if u
and v are not exterior to P. The shortest path dis-

tance between u and v is the length of Path(u, v).
Let e~ = (Pi, q~) and ej = (p j, qj) be two distinct edges
of P. We call a shortest path between an endpoint
of ei and an endpoint of ej a point-to-point path
between e~ and ej. We define the common path be-
tween e~ and ej, denotes CPath(ei, ej), to be the
maximal common intersection of the four point-to-
point paths Path(p~,pj), Path(p~,qj), Path(q~,pj),
and Path(qi, q j). We define the fundamental paths
between e~ and ej, denoted Paths(ei, ej), to be the
five paths Path(pi,pj), Path(pi,qj), Path(qi,Pj),
Path(qi, qj) and CPath(ei, e3) (Refer to Fig. 1.) We
conclude this section by presenting a property of
these fundamental paths that is essential to the de-
velopment of efficient parallel shortest path (s) algo-
rithms. The proof is straightforward, and is thus
omitted.

Lemma 1. Let P be an n-vertex simple polygon, and
let ei and ej be two distinct boundary edges of P.
The portions of any point-to-point path between ei
and ei, which are not on the common path
C Path(ei, e j), are convex chains.

3 Shortest path between
two points

In this section we present a parallel algorithm for
computing the internal shortest path ISP between
two points s and d inside a simple polygon P. The
algorithm runs in O (log n) time using O(n) proces-
sors in the C R E W P R A M model of computation.
The algorithms proceeds in two phases. In the first

qi

/ \ ? / \ / \ ~ - - - \
/ \11 //' \ f / - \\ \,,, / \e,

ei/ ~ \' / . . , , . . \\ ,/'rrd - j ~/
/ ,, \

Pi - - N / \ \ ' , 1) ~v / /
N / ", ,q ,, t

Pj
Fig. 1. The fundamental paths
between two edges. The polygonal
edges are shown dashed and
fundamental paths are shown solid.
CPath(eu ej) is the solid portion
between ld and rd

372

 A mp r
phase we compute a triangulation TP of P and
construct the dual graph TP' of TP, where each
node in TP' corresponds to a triangle in TP and
two nodes in TP' are adjacent if and only if the
corresponding triangles in TP share an edge. TP'
must be a tree since P is a simple polygon. We
then determine the simple path S' in TP' from s'
to d', where s'(d') denotes the node of TP' that
corresponds to the triangle containing s(d). S' cor-
responds to a simple polygon S that is completely
contained in P and is called a triagulated sleeve.
Let {ea, Ca, ..., e,,} be the set of triangulation edges
of S, where ea(e,,) lies on the triangle containing
s(d). We define a total order on the edges so that
e~ < ej if and only if ej is closer to s than the edge
ej. In the second phase, we employ the divide-and-
conquer paradigm to compute the Path(s, d) in the
triangulated sleeve corresponding to S'.
Before presenting details of the algorithm, we de-
scribe the geometric operation which forms the ba-
sis for the divide-and-conquer approach to this
problem.

Lemma 2. Let S be a triangulated sleeve with diago-
nals e~,ej, and e k such that e~<ej<ek. Given
Paths(ei, ej) and Paths(ej, ek), we can compute
Paths(ei,ek) in O(1) time using O(n) processors,
where n is the number of vertices in S between e,
and ek.

Proof Four different situations may occur:

(1) CPath(ei, ej) = ~b and CPath(ej, ek) = ~b
(2) CPath(ei, ei) # cb and CPath(ej, ek) = cb
(3) CPath(ei, ej) = ~b and CPath(ej, ek):# ~b
(4) CPath(ei, ej) :# ~b and CPath(ej, ek) # q~

Situations (2-4) can be viewed as special cases of
the first situation with one or two of the edges
degenerating to a single point. Therefore we will
only present a proof of the lemma for the first situa-
tion.
In this situation, each of the paths Path(p~,p~),
Path(p~,pk), Path(qi, qj), and Path(qj, qk) are con-
vex chains. Therefore we can compute the common
tangents between each pair of the four paths in
0(1) time using O(n) processors, where n is the
total number of vertices, by using the algorithms
presented by Atallah and Goodrich [4] for mani-
pulating disjoint convex chains.
In the following case analysis, we show that these
tangents are sufficient for constructing Paths(ei, ek)
from Paths(ei, e j) and Paths(e j, ek).

i t ' / ' I
e~ \ ~

l ei

Fig. 2. The case of empty CPath(el, e~) of Lemma 2

qk

ek

qk

If the supporting line of Path(Pi, p j) u Path(pj, Pk)
does not intersect Path(qi, q j)u Path(q j, qk) and the
supporting line of Path(qi, q j) u Path(q j, qk) does
not intersect Path(p~, p j) u Path(p j, Pk), then
CPath(e~, ek) is also empty. We can then construct
Paths(ei, ek) in O(1) additional time by "cutt ing"
and "pasting" the appropriate pieces of the funda-
mental paths (Refer to Fig. 2).
Otherwise, the critical separating line of Path (p~, p j)
and Path(q~,qk) must intersect Path(q~,qj)
u Path(pi, pk), the critical separating line of
Path(p~, Pk) and Path(qi, qj) must intersect
Path(p,, pj)u Path(qj, qk), or both. Due to the simi-
larity of the three cases, we will only discuss the
first.

Case I. (The critical separating line of Path(p~, pj)
and Path(qj, qk) only intersects Path(pj, pk) as in
Fig. 3a): Let v3 be the intersection of the critical
separating line of Path(pi, p j) and Path(q j, qk) with
the chain Path(q j, qk), and let vl and v2 be the inter-
sections of the chains Path(pj, Pk) and Path(q j, qk)
with their critical separating line L respectively. It
follows from the geometry that the line L must
intersect Path(p~,p~), and the vertices v2, va must
appear in the shown order on the boundary of
Path(qj, q~). Therefore the subset of Path(qj, q,)
joining v2 and v3 forms CPath(ei, ek).

Case 2. (The critical separating line of Path(pi,pj)
and Path(q j, qk) only intersects Path(pj,pk) as in
Fig. 3b): Let vl and v2 be the intersections of the
chains Path(q j, qk) and Path(pj, Pk) with their criti-
cal supporting lines L respectively, and let v3 be
the intersection of the critical separating line of

373

qi

Pi

//./.~t q~
i qJ / /

Pk

~ ~ / /

~, / . / . / e~

b Pi " ~

qk

ek

Pk

O

Fig. 3. a Case 1 of Lemma 2. b Case 2 of Lemma 2.
c Case 5 of Lemma 2

374

Path(pj, pk) and Path(qi, qj) with the chain
P a t h (p j , Pk). It follows from the geometry that the
line L must intersect Path(qi, q~), and the vertices
rE,v3 must appear in the shown order on the
boundary of Path(pj, pk). Therefore the subset of
Path(p j, Pk)joining v 2 and v a forms CPath(ei, ek).

Case 3, 4. (The critical separating line of Path (p~, p~)
and Path(q j, qk) only intersects Path(qi, q j)): These
cases are mirror images of the previous two cases.

Case 5. (The critical separating line of Path(pi,pj)
and Path(qj, qk) intersects both Path(pj, pk) and
Path(qi,qj): Only the four different situations
shown in Fig. 3c may occur. It is easy to show
that the critical separating and supporting lines be-
tween the four convex chains are sufficient to find
C Path (ei, ek) and to compute the remaining funda-
mental paths.

Using the algorithms in [4], we can check which
of these cases apply and compute the vertices
Vl, V 2 V 6 in 0(1) time. We can then construct
the fundamental paths between ei and ek by "cut-
ting" and "pasting" the appropriate pieces of the
old fundamental paths in 0(1) time. Thus the lem-
ma follows. []

We now present a detailed description of the algo-
rithm.

Algorithm ShortestPath (P, s, d)

Input: A simple polygon P and two points s and
d interior to P.

Output: A list of vertices which form the shortest
path from s to d in P.

1st phase:
Step 1.1

Step 1.2

Step 1.3

Compute a triangulation TP of P. Such
process can be performed in O(log n)
time using O (n) processors [9].
Construct the dual TP' of TP, and let
s'(d') denote the node of TP' that corre-
sponds to the triangle containing s(d).
Determine the path S' in TP' from s'
to d', and arrange the set of edges
{el, e2 , era} which form the corre-
sponding triangulated sleeve in order of
increasing distance from s. Such process
can be performed in O (log n) time using
O(n) processors [19].

2nd phase:
Step 2.1

Step 2.1.1
Step 2.1.2

Step 2.1.3

Step 2.1.4

Step 2.2

Compute the fundamental paths
Path(el, era) as follows:
If el = em, then return the obvious value.
Find the median diagonal ek between
el and e,,.
Compute Paths(el, ek) and Paths(ek, e,,)
in a recursive fashion.
Merge Paths(el, ek) and Paths(ek,em),
using the method described in Lem-
ma 2, to form the fundamental paths
Paths(el, e,,).
Merge points s and d with Paths(el, din),
using the method described in Lem-
ma 2, to construct the shortest path be-
tween s and d in O(1) time using O(n)
processors.

End of ShortestPath

Lemma 3. The algorithm ShortestPath correctly
computes the interior shortest path between s and
d inP .

Proof Lee and Preparata [12] proved that the
shortest path between s and d is completely con-
tained in the triangulated sleeve S. It follows from
the correctness of the algorithms of [9, 19] and
from Lemma 2 that the algorithm ShortestPath
computes the reports correctly the interior shortest
path between s and d in P. []

It follows from the triangulation algorithms in [9,
19] that the first phase of the algorithm can com-
pleted in O (log n) time using O (n) processors. The
dominant operation of the second phase is merging
two sets of fundamental paths to form a new set
which can be performed in O(1) time using O(n)
processors. Since this operations is performed
O(log n) time, we can now state the main result
of this section.

Theorem 1. Given an n-vertex simple polygon P and
two points s and d interior to P we can compute
the shortest path between s and d in P in O(log n)
time using O(n) processors in the C R E W P R A M
model.

4 All shortest paths from a point

In this section we present a parallel algorithm for
computing the shortest path tree from a source

375

point s to the vertices of a simple polygon P which
can be used to compute all the shortest path dis-
tances in 0 (log n) additional time. Such a tree can
be completely represented by the first(pi,s) for
each vertex pi of P, where first(pi,s) denotes the
vertex in Path(pi, s) adjacent to Pi. Therefore, the
problem we solve in this section is to compute
first(pi, s) for each vertex Pi of P.
The algorithm proceeds in two phases. In the first
phase we compute a triangulation TP of P and
construct the dual graph TP' of TP, where each
node in TP' corresponds to a triangle in TP and
two nodes in TP' are adjacent if and only if the
corresponding triangles in TP share an edge. TP'
must be a tree since P is a simple polygon. We
then process TP' so that we can efficiently locate
and delete its centroid. The centroid is defined as
a node v whose deletion divides TP' into subtrees
such that the value of max {[TP'(v, w)l: w is adja-

W

cent to v} is minimized, where TP' (v, w) is the sub-
tree that contains w. The size of each subtree is
clearly a fraction of [TP'[. In the second phase,
we employ the divide-and-conquer paradigm to
compute the first(p~, s) for each vertex of P.
Before presenting details of the algorithm, we de-
scribe how to process a tree in O(logn) time so
that locating and deleting its centroid can be per-
formed in 0(1) time.

Lemma 4. Let T be a free tree with n nodes and
constant degree c. In O(log n) time using O(n) pro-
cessors we can assign labels to the vertices of T
so that in O(1) time we can find the centroid vertex
v of T. Moreover, we can update the labels of the
vertices in each subtree in O(1) time so that we can
repeat this centroid decomposition procedure in 0 (1)
time using linear number of processors for each sub-
tree in parallel.

Proof Let T be a free tree and v be an interior
node. The deletion of v decomposes T into a collec-
tion of subtrees {T(v, w): w is adjacent to v}, where
T(v, w) denotes the subtree that contains w. A cen-
troid of T is defined to be a vertex v which mini-
mizes the value of Cv = max {I T(v, w)l: w is adjacent
to v}. w
Efficiency of our method for reporting a centroid
results from the following two properties of a cen-
troid:

(A) There can be at most two centroids of T, and
if so, these two must be adjacent (in effect, an

edge is the centroid). We will break ties by
defining the centroid to be the vertex with the
smaller name.

(B) A vertex v which locally minimizes C,, relative
to all the vertices adjacent to v, must be a cen-
troid. Thus, it is sufficient to compute Cv for
every node v in T, since given C~ for each v
in T we can test if v is the centroid in 0(1)
time with one processor by comparing Cv to
Cw for each of the (at most c) nodes adjacent
to v.

The main idea of our method of computing the
Cv values is to use the Euler tour technique [19].
We replace each edge in T by two oppositely di-
rected edges, and let L be the Euler tour of the
resulting directed graph, starting at an arbitrary
node. We represent L as an array listing the vertices
of T as they are visitet by the tour. L can be con-
structed from T in 0 (log n) time using 0 (n) proces-
sors by a simple list ranking procedure, since each
vertex appears at most c times in L. We assign
the integer" + 1" to the first occurrence of a vertex
v in L and the integer "0" to every other occurrence
of v in L after that. We then compute the prefix
sum for each element of L, which can be done in
O(log n) time using O(n) processors. Let fv (resp.
lv) denote the prefix sum of the first (resp. last)
occurrence of v in L, for each v e T Using the values
of the prefix sums we can compute Cv as follows:

Cv = max {I T(v, w)l: w is adjacent to v}
W

where

iT(v,w)l=f lw- fw if fw >f~
l l T l - l w + f w if fw<fv

Therefore, we can find the centroid of T, denoted
by c v, in 0 (log n) time using 0 (n) processors.
Deleting cv decomposes T into subtrees
T1, T2, ..., T~, where Ti contains the node wi adja-
cent to cv for i = 1 ,c. Also ITil<_elTI for
i = 1 c, where e < 1. We can easily compute the
new values of fv for the vertices in each subtree
as follows:

i if f~<fi~ and l~<l~,
f~= f , - , - 1 if f~>f i , and l,<l~,

if f~<fi~ and I,>1~,

fv--fiv if fv>fiv and lv>lcv

376

The new values of lv for the vertices in each subtree
are updated using a similar expression.
This can clearly be done in O(1) time using O(n)
processors, and allows us to repeat this centroid
decomposition in constant time for each T~ using
O(IT~I) processors. []

We now present a detailed description of the algo-
rithm.

Algorithm AllShortestPaths (P, s)

Input: A simple polygon P and a point s interior
to P.

Output: first(pi, s) for each vertex p~ of P.

I st phase:
Step 1.1

Step 1.2

Step 1.3

Step 1.4

2nd phase:
Step 2.1

Step 2.1.1

Step 2.1.2

Step 2.1.3

Compute a triangulation TP of P. Such
process can be performed in O(logn)
time using O (n) processors [9].
Construct the dual TP' of TP, and let
s' denote the node of TP' that corre-
sponds to the triangle containing s.
Delete s' from TP' (which divides TP'
into TP;, ..., TP/ with c<3). Let ej
= (pjx, p j2) be the edge shared by the tri-
angle corresponding to s' and the trian-
gulation corresponding to TPj with 1 _<
j_<3.
Process each subtree separately so that
we can perform controid location and
deletion in O(1) time as shown in Lem-
ma 4.

for each of the subtrees TP/(I_<j_<3)
compute first(Pi,pj,) and first(pi,pj2)
where Pie P~, in parallel as follows:
If the subtree consists of one node, then
we return the obvious values.
Locate the centroid c v) of TPj and per-
form the centroid decomposition as de-
scribed in Lemma4. Let CVj=(e(j,k))
(1 _< k < 3) be the triangle corresponding
to the node cv), and let TP(j,k)be the
triangulation sharing the edge
etj, k)(l < k < 3) with the triangle cvj.
Without loss of generality, we assume
that TP(j,1) is the triangulation sharing
the edge ej with the triangle containing
S.
Compute first(pi,pj~) and first(pi,pj2)
(where pi~P(j,a)) in a recursive fashion,

Step 2.1.4

Step 2.1.5

Step 2.2

and then construct the set of fundamen-
tal paths between e~j,1) and e j,
Paths(e j, e~j, 1)).
Compute first(pi, P(j, kh) and
first(pi,p(j,k)2) (where PiePtj, k), and k
--2, 3) in a recursive fashion.
For each vertex p~eP(j,k) (k=2, 3) we
compute first(pi, p~) and first(pi, pj2)
by performing four binary searches in
Paths(ej, e(j,1)) (one for every funda-
mental path except CPaths(ej, e(j,1)).
The details of the method for deciding
which of the tangents to use in updating
each first label are similar to that used
in Lemma 3 and are thus omitted.
Compute first(pi,s) for each pieP in
parallel. This can be done in O(1) time
by observing that if first(pi,pj~)
=first(pi, pj~), where j = 1, 2, or 3, then

first(pi, s)= first(pi, pj1); otherwise we
can find first(p~, s) by testing if s is con-
tained in the angle (first(p~,p.q),p~,
first (Pi, Ph))"

End of All Shortest Paths

It follows from Lemma 4 and the triangulation al-
gorithm of Goodrich [9] that the first phase of
the algorithm can completed in O (log n) time using
O(n) processors. The dominant operations of the
second phase are: (A) constructing the set of funda-
mental paths which can be performed in O(10g n)
time using O ([P1 [) processors by a straightforward
doubling procedure, and (B) updating first label
for each vertex in Ptj, k)(k=2, 3) which can be done
in O(log n) time using O([P(j,2)[+ [V(j,3)]) processors.
Since these operations are performed 0 (log n) time,
we can now state the main result of this section.

Theorem 2. Given an n-vertex simple polygon P and
a point s inside P we can find first(pi, s)for each
vertex p~eP in O(log 2 n) time using O(n) processors
in the C R E W P R A M model.

5 Concluding remarks

We have shown that the ISP and AISP problems
belong to the class of NC problems (i.e., we can
compute the shortest path(s) in polylog time using
polynomial number of processors assuming a
CREW PRAM model of computation.) Specifi-

377

cally, we give an algorithm for the ISP problem
which runs in O(log n) time using O(n) processors
and an algorithm for the AISP problem which runs
in O(log 2 n) time using O(n) processors. It is inter-
esting to note that, once we have computed for
each vertex Pi in P the first vertex of P on the
shortest path from pi to the source s (in the AISP
problem), we can then compute all the shortest
path distances in O (log n) time using O (n) proces-
sors by a straightforward doubling procedure.
The parallel algorithms presented in the previous
sections do not provide an optimal speed-up when
compared to the sequential algorithms in [-5, 7, 12]
where the shortest path is computed in O (n) time
after an O (n loglog n) preprocessing time. A natural
challenge is to develop a parallel algorithm with
an optimal speed-up. An interesting related prob-
lem is to show that reporting the shortest path
beween two points in the presence of obstacles also
belongs to the class of NC problems.

References
1. Aggarwal A, Chazelle B, Guibas L, O'Dunlaing C, Yap C

(1985) Parallel computational geometry. Proc 25th Ann
Symp Foundat Comput Sei, pp 468~477

2. Atallah M J, Cole R, Goodrich MT (1987) Cascading divide-
and-conquer: a technique for designing parallel algorithms.
Proc 28th Ann Syrup Foundat Comput Sci, pp 151-160

3. Atallah MJ, Goodrich MT (1988) Efficient parallel solutions
to some geometric problems. J Parallel Distrib Comput
3: 492-507

4. Atallah MJ, Goodrich MT (1986) Parallel algorithms for
some functions of two convex polygons. 24th Ann Allerton
Conf Commun Control Comput, Urbana-Champaign (Oc-
tober 1986), pp 758 767

5. Chazelle B (1982) A theorem on polygon cutting with appli-
cations. Proc 23rd Ann Syrup Foundat Comput Sci, pp 339-
349

6. Chow A (1980) Parallel algorithms for geometric problems.
PhD Diss, Comput Sci Dept, Univ Illinois at Urbana-Cham-
paign

7. E1Gindy H (1985) Hierarchical decomposition of polygons
with applications. PhD Diss, School Comput Sci, McGill
Univ (June 1985)

8. E1Gindy H (1986) A parallel algorithm for the shortest path
problem in monotone polygons. Tech Rep MS-CIS-86-49,
Dept Comput Inf Sci, School Eng Appl Sci, Univ Pennsylva-
nia (June 1986)

9. Goodrich MT (1988) Triangulation a simple polygon in par-
allel. J Algorithms (in press)

10. Guibas L, Hershberger J, Leven D, Sharir M, Tarjan R
(1986) Linear time algorithms for visibility and shortest path
problems inside simple polygons. Proc 2nd Symp Comput
Geom, York Heights (June 1986), pp 1-13

11. Lee DT, Preparata FP (1984) Euclidean shortest paths in
the presence of rectilinear barriers. Networks 14:393~410

12. Lee DT, Preparata FP (1984) Computational geometry
a survey. IEEE Trans Comput C-33:872 1101

13. Lozano-Perez T, Wesley MA (1979) An algorithm for plan-
ning collision-free paths among polyhedral obstacles. Com-
mun ACM 22: 561~570

14. Pan V, Reif J (1985) Efficient parallel solution of linear sys-
tems. Proc 17th ACM Symp Theor Comput, pp 143-152

15. Preparata FP, Shamos MI (1985) Computational geometry:
an introduction. Springer, Berlin Heidelberg New York

16. Quinn MJ, Deo N (1984) Parallel graph algorithms. Comput
Surv 16:319 346

17. Savage C (1984) Parallel algorithms for graph theoretic
problems. PhD Diss, Math Dept, Univ Illinois, Urbana, III

18. Tarjan RE, Van Wyk CJ (1986) An O(n loglog n)-time algo-
rithm for triangulating simple polygons. Tech Rep CS-TR-
052-86, Dept Comput Sci, Princeton Univ

19. Tarjan RE, Vishkin U (1985) An efficient parallel biconnecti-
vity algorithm. SIAM J Comput 14:86~874

20. Welzl E (1985) Constructing the visibility graph for n line
segments in O (n 2) time. Inf Proc Lett 20:167 171

378

