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Abstract 

We present a number of efficient parallel algorithms for constructing 2-dimensional convex hulls on a ran- 
domized CRCW PRAM. Specifically, we show how to build the convex hull of n presorted points in the plane in 
O(1) time using O(nlogn) work, with n-exponential probability, or, alternately, in O(log* n) time using O(n) 
work, with n-exponential probability. We also show how to find the convex hull of n unsorted planar points 
in O(log n) time using O(n log h) work, with n-exponential probability, where h is the number of edges in the 
convex hull (h is O(n), but can be as small as O(1)). Our algorithm for unsorted inputs depends on the use of 
new in-place procedures, that is, procedures that are defined on a subset of elements in the input and that work 
without reordering the input. In order to achieve our n-exponential confidence bounds we use a new parallel 
technique called failure sweeping. 

Keywords: Parallel algorithms; Convex hulls; Randomization; Computational geometry; CRCW PRAM 

1. Introduction 

The problem of constructing the convex hull of a set of n points in the plane is perhaps the most 
studied problem in computational geometry. The problem is generally defined as that of constructing 
the boundary of the smallest convex set containing all n points, and it can be solved sequentially in 
O(n log n) time. (See [12,25,26] for references.) This bound is, in fact, optimal, for Yao [29] shows 
that identifying the points on the boundary of a 2-dimensional convex hull has an Q(nlogn) lower 
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bound in the algebraic computation tree model. Nevertheless, Kirkpatrick and Seidel [22] show that 
one can beat this lower bound in some cases, in that they give a 2-dimensional convex hull algorithm 
that runs in O(n log h) time, where h is the size of the output (which can be as small as 3 in some 
cases). Such an algorithm is said to be output-size sensitive. Strictly speaking, their method does not 
contradict the lower bound arguments, however, as these arguments assume that the output size is 
linear. In addition, their method assumes that the input points are unsorted, whereas one can beat their 
bound for sorted [l&25,26] or even partially-sorted [16] inputs. The running time in the (fully) sorted 
case is O(n), for example. 

Two-dimensional convex hull construction has also been well-studied in parallel. Chow [9,10] is 
the first to study this problem, achieving O(log* n) time with n processors in the CREW PRAM 
model, the synchronous parallel shared-memory model that allows for simultaneous concurrent-reads 
but requires that all writes be exclusive. The work performed by this algorithm, i.e., the total number 
of computations, is suboptimal, however, as it is O(n log* n). The running time using n processors 
was subsequently (and independently) improved to O(log n) time by Aggarwal et al. [l] and Atallah 
and Goodrich [3], thus achieving optimal-work parallel methods. Miller and Stout [24] show how to 
achieve the same result on an EREW PRAM, the parallel model where both reads and writes must be 
exclusive. If the input is presorted, Goodrich [15] shows how to achieve O(log n) time with an opti- 
mal O(n/ log n) number of processors on a CREW PRAM, and Chen [7] shows how to achieve these 
same bounds in the EREW PRAM model. Recently, Berkman et al. [5] have shown how to achieve 
O(log log n) time with O(n/ log log n) processors in the CRCW PRAM model, the synchronous par- 
allel model where simultaneous concurrent reads and writes are allowed, with concurrent writes being 
resolved so that one succeeds arbitrarily ’ . 

None of these previous algorithms achieve the sequential output-sensitive work bounds described 
above, however. Nevertheless, using standard parallel techniques, one can use a parallel linear pro- 
gramming algorithm of Deng [ 1 l] to implement a parallel version of the algorithm of Kirkpatrick and 
Seidel [22] to run in O(log* n) time, using O(n log h) work. It is not clear how one could improve 
this time bound without the introduction of new techniques, however. Nor is it clear from this work 
whether randomization helps in the parallel construction of planar convex hulls. 

In this paper we present efficient parallel algorithms for convex hull construction in the randomized 
CRCW PRAM model. We address both the presorted and unsorted cases. For the presorted case 
we give an algorithm that runs in 0( 1) time using O(n log n) processors on a randomized CRCW 
PRAM, with n-exponential probability 4. We then show how to modify our algorithm so that, even 
though it assumes the input is a set of points, it can be implemented to run on a set of upper hulls 5 . 
We call such an algorithm point-hull invariant, and show how it can be used to derive a solution 
to the convex hull problem running in O(log* n) time with an optimal number of processors, with 
n-exponential probability. For the unsorted case we give an efficient output-sensitive parallel method 
that runs in O(log n) time using O(n log h) work with n-exponential probability. Our analysis does 
not depend on any assumptions about the input distribution. 

a There are other possible conflict resolution methods, as well (e.g., see [13]), but we will be assuming this “arbitrary” 
resolution rule throughout this paper. 

4 We say an event occurs with n-exponential probability if the probability that this will not occur is at most tend, where 
c > 1, d > 0 are constants. 

s An upper hull is a convex chain monotone in CC that “curves to the right” as one traverses it by increasing z. 
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Our methods are also based on various adaptations of a method of Alon and Megiddo [2] for 
performing linear programming in fixed dimensions in O(1) time using O(n) processors, with n- 
exponential probability, in a randomized CRCW PRAM model. The general approach of our methods 
is based on that of Kirkpatrick and Seidel [22]: namely, we use linear programming to “probe” the 
convex hull, either in parallel at many locations or in just a few places so as to split the problem 
and recurse. By adapting Alon and Megiddo’s method to be both point-hull invariant and in-place we 
allow for such probes to be repeated recursively. 

In addition, since we use algorithms on subproblems that have confidence bounds dependent on 
subproblem size, in order to achieve confidence bounds dependent on the total problem size we employ 
a technique we call failure sweeping. Intuitively, the main idea of this technique is to “sweep” those 
subproblems that have not been solved within the desired time into a limited space m, then solve them 
all with a number of processors that is super-linear with respect to m. Incidentally, subsequent to the 
initial announcement of our results in [14] we have learned that this technique has been independently 
discovered by Matias and Vishkin [23], who call it the thinning-out principle. 

Our method for the unsorted case also depends upon the use of new in-place techniques, whereby 
we mean methods that are defined on a subset S’ of elements in the input and work without reordering 
the input. Intuitively, we have a virtual processor “standing by” each element in S’, and this virtual 
processor does all the work necessary because of the inclusion of this element in S’. The significance 
of these techniques is that they allow one to perform each level in a parallel divide-and-conquer 
scheme very fast (in our case, O(1) time with very high probability) without ever needing to explicitly 
perform the “divide” step. Instead, one simply divides the subproblems logically, and by keeping a 
virtual processor with each element e, we can associate e with the correct subproblem. This contrasts 
with most previous parallel techniques, which require that the elements in a subproblem belong to a 
contiguous portion of some array. 

In Section 2 we present our method for the presorted case, which in turn motivates our approach for 
the unsorted case, which we describe in Section 4. Before we describe our methods for the unsorted 
case, however, we first present a number of general in-place techniques in Section 3. 

2. Convex hull algorithms for presorted input 

Given n presorted points in the plane (assume, without loss of generality, that they are sorted in 
increasing order of z-coordinates) in an array, we find their upper hull such that every point in the 
array has a pointer to the hull edge that it is beneath (or on). Thus, one edge may occur in this list 
many times, as it will be stored by every point below it. 

2.1. Preliminaries 

First, we review some elegant results that we use in our algorithm. 

Lemma 2.1 (The approximate compaction lemma (Ragde [27])). G iven an array of size n containing 
at most k nonzero elements, then there is a method that will either conclude that k > n’14 or compress 
these k elements into an area of size k4, in 0( 1) time on a CRCW PRAM (deterministic&y) with n 
processors. 
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The next lemma deals with the linear programming problem, where one is given m constraints (half- 
spaces) in @, and a linear (objective) function, and one desires the point in Sd where the objective 
function is maximized subject to the constraints. 

Lemma 2.2 (Alon and Megiddo [2]>. G iven n half-space constraints in Rd, for fixed d, linear pro- 
gramming can be performed in 0( 1) time with n processors on a CRCW PRAM, with (n-exponential) 

probability 1 - 2Cn”3, where c > 1 is a constant. 

Lemma 2.3 (Tail estimation (Chernoff bound [8,20])). Let X1, X2,. . . , X, E (0, 1) be n Bernoulli 
trials: independent trials with probability pi that Xi = 1, where pi E (0,l). Define X = cZn_l Xi, 
p = Cy=, pi. Then, for all 6 > 0, 

Prob (X > (1 + 6)~) < 
e6 ’ 

[ 1 (1 + 6)‘+6 ’ 

and, for all 6 such that 0 < 6 < 1, 

Prob (X < (1 - 6)~) < 
,-6 p 

[ 1 (1 - S)‘_” * 

We also make use of the following observations. 

Observation 2.4. The minimum (maximum) of n elements can be found by n2 processors in O(1) 
time, on a CRCW PRAM. 

Lemma 2.5 (Eppstein and Galil [13]). The first nonzero element of an array of s&e n can be found 
in 0( 1) time on a CRCW PRAM with n processors. 

Observation 2.6 (Brute force linear programming). It is possible to solve linear programming in d 
dimensions in 0( 1) time with nd+’ processors, for fixed d. 

Proof. Find the intersection of all d-tuples of constraints, then for each such tuple, check whether its 
intersection, which is a candidate solution, is violated by any other constraint in the subproblem. 0 

The final result we review is that of constant-time convex hull determination using an inefficient 
number of processors. 

Lemma 2.7. For any integer k 3 1, one can$nd the upper hull of n presorted points in the plane in 
time O(k), using n1+2/k processors, deterministically, on a CRCW PRAM. 

Proof. This result is part of the “folklore” of parallel computational geometry, We include a proof 
here for completeness sake. The proof is by the following inductive algorithm & (for which Al is 
the base algorithm), each step of which takes constant time: 
1. Split the input into n’/’ contiguous groups of size n’-(‘/k) each, and apply algorithm A&t 

to each such group if Ic > 1 (if Ic = 1, then each group contains just one point). If Ic = 1, 
then this step (trivially) uses n processors, and if k > 1, then, by induction, this step requires 
,l/k(,l-(1/k))1+2/(k-l) processors, which is nl+(‘lk). 
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2. For each pair of groups, find the common tangent using a method of Atallah and Goodrich [4] that 
computes the common tangent of two upper hulls of n points each in 0( 1) time using n’/’ processors 
(c = 1 will be sufficient here). This step can be implemented with n2/Ln1-(1/k) = n’+(‘/‘) 
processors. 

3. For each group, find the highest of the common tangents to this group that is to the left of the group, 
and the highest common tangent that is to the right of the group. If the two of these tangents cross 
above the hull for the group, then the group is said to be closed, otherwise it is said to be open. 

Note that the computation for each open group is now done, and that this step can be implemented 
using nllkn2lk = ,3/k processors, which is, of course, at most n’+(2/k). 

4. For each closed group, find the (unique) upper hull edge that is above it, that is between two hulls 
that are open. This can be done in O(1) time using n2jk processors. 
Thus, one can find the upper hull in O(lc) time using n1+(2/k) processors, as claimed. ??

2.2. A more eficient algorithm 

Having reviewed the above results, we now present an O(n log n)-processor algorithm that runs in 
O(1) time with n-exponential probability. So suppose we are given a set S of n input points in the 
plane, such that the points in S are sorted by increasing order of z-coordinate. We consider a complete 
binary tree T built “on top” of these points, ordered left-to-right. For each node w in T let S, denote 
the subset of S contained in the subtree of T rooted at U. For any node u in T define the bridge for w 
as the edge of the upper hull of S, intersected by a vertical line separating the points in the subtrees 
rooted at ‘u’s two children. Kirkpatrick and Seidel [22] design a beautiful sequential algorithm upon 
the observation that, by a duality between points and lines (e.g., see [12]), the problem of finding a 
bridge for an n-point set is dual to an n-constraint 2-dimensional linear program. Our methods will 
also be based upon this observation. 

Given n logn processors in a randomized CRCW PRAM, we can, for each w in T, simultane- 
ously solve the associated linear programming problem using Alon and Megiddo’s algorithm (see 
Lemma 2.2). Having done this, we can then assign logn processors to each node w, and check 
whether any of U’S ancestors store a bridge that covers (i.e., is strictly above) the bridge for V, in 
0( 1) time (this amounts to an OR). Finally, assigning log n processors to each point (leaf) p, we can 
find the lowest ancestor of p that is not covered by another edge: this will be the edge above p. (See 
Lemma 2.5.) 

Thus, it might seem that, as Alon and Megiddo’s algorithm takes O(1) time and has confidence 
bounds that are exponential in the size of the input, we have achieved our result. This is not quite the 
case, however, as Alon and Megiddo’s algorithm is, in general, not used on the entire input, but on 
subproblems, some of which are very small. Since the confidence bounds are only exponential in m, 
the size of the subproblem, they are not necessarily exponential in n. For example, if m = O(logn), 
then the confidence bounds are only polynomial in n, and for smaller subproblems they are not even 
polynomial in n. 

We overcome this lack of confidence by using Lemma 2.7 for any problems containing fewer than 
log’ n points, and by using a technique that we call failure sweeping for problems of size m such that 
log” n < m < n1i4. 

Before we describe our failure sweeping technique, however, let us analyze the processor bounds 
needed so far. For small problems, that is to say, problems of size m < log’ n we use an m4j3 
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processor, O(l)-time, algorithm (see Lemma 2.7, with k = 3). So the number of processors required 
for each level of height h < 3 log log n in the tree, (m = 2h) is m4/‘n/m = nrn’l”. As the highest 
level that uses brute force has m < log’ n, the total number of processors required is 

( 1 1 
<nlogn l+- - 

21/3 + 4,,3 + **. 7 
> 

which is O(n log n). Note that all these small problems are solved deterministically in 0( 1) time. Each 
other problem is solved using Alon and Megiddo’s algorithm, with a linear number of processors in 
0( 1) time, with probability of failure < 2-Cm”.‘, where c > 1 and m is the size of the problem 
(see Lemma 2.2). Thus, all these other problems require n processors per level, and hence O(n log n) 
processors in total, 

2.3. Improving conjidence by failure sweeping 

In this subsection we describe failure sweeping: a technique for improving the confidence bounds 
of an iterative or recursive randomized algorithm. 

Consider a randomized algorithm with expected running time t(n) when run on input of size n, 
and which has a failure probability p(n) so the probability of taking longer than et(n) for some 
constant c, is p(n). Also, assume that there is a “brute-force” technique for solving this problem with 
a super-linear, but polynomial, number of processors. (For the sake of concreteness, let us say we have 
an n3 processor “brute-force” method.) If this algorithm is run on n/m subproblems, each of size 
m = Q(p-’ (n)) (such that p(p-’ (n)) = n), then failure sweeping can improve the failure probability 
from p(m) to P( >, n and thus improve the confidence from 1 -p(m) to 1 - p(n). 

This is achieved as follows: the algorithm is run for et(m) steps on the subproblems, so the expected 
number of failures is (n/m)p(m) < 1, where a failure is a subproblem that has not yet been solved. 
The failures are then compacted into an area of size n’lT, where T 3 4, using Ragde’s algorithm (see 
Lemma 2.1). Then, we assign n’-‘jr processors to each failure, and use a “brute-force” method to 
solve them. 

For our convex hull problem, we use Alon and Megiddo’s algorithm on all problems of size 
3 logs n, and perform failure sweeping on each level of the binary tree that is of height h such that 
3 loglogn < h < (l/4) logn. From Lemma 2.2, we have p(n) = 2-cn”3, and from Observation 2.6, 
we have an appropriate brute force technique, so we can perform failure sweeping. 

Now, we use Ragde’s compaction algorithm, from Lemma 2.1, which will attempt to compact 
the failures into a space of size n 1/4 Assuming this compaction succeeds, we use the brute force . 
algorithm of Observation 2.6, with n314 processors assigned to each failure. (This is a sufficient 
number of processors for all problems of size m < n1j4 as the brute force technique requires m3 
processors.) 

After spending some constant cy amount of time on Alon and Megiddo’s technique at each level, 
the expected number of failures is 

~ = 2 z-cm’/’ 
, m 

but as m 3 log” n, we have p < l/nc-’ , so /I 6 1. 
Therefore, by the Chemoff bounds (Lemma 2.3), the number of failures is greater than n’/16 with 

probability 
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So the number of failures is less than n’/16 with probability 

l-f>l- 
0 a 2-n”‘h 

for all n greater than a constant, g, f is exponentially small in 
This gives us the following lemma. 

12. 

225 

Lemma 2.8. The 2D convex hull problem can be solved in 0( 1) time with O(nlogn) processors, 
with n-exponential probability. 

Over the next three subsections, we show how to use this result to derive an optimal algorithm that 
runs in O(log* n) time, with n-exponential probability. 

2.4. Making Alon and Megiddo’s method point-hull invariant 

Here we define the property of point-hull invariance and we show that our application of Alon and 
Megiddo’s linear programming algorithm [2] is point-hull invariant. 

Suppose we are given n halfplane constraints defined by the duals to n points in the plane, and a 
linear objective function dual to the problem of finding the bridge passing through a given vertical line. 
The linear programming algorithm of Alon and Megiddo [2], applied to this set, comprises repeatedly 
choosing a subset of the constraints, and finding the solution to this subset of constraints with respect 
to the given objective function. The initial subset is chosen at random from all the constraints, and 
later choices are made at random from those that violate the currently known solution. To find the 
solution to the chosen subproblem, one uses brute force (see Observation 2.6), with the subset being 
chosen so as to be small enough that this can be done in O(1) time with n processors. 

Their algorithm requires only a handful of primitive operations on points and lines. We wish to 
apply their method to objects that are themselves upper hulls, however. Thus, we must expand the 
set of primitive operations from operating on points and lines to operate on upper hulls. Fortunately, 
each such operation on points and lines corresponding to an analogous operation on upper hulls. In 
particular, 
??reading the z or y coordinate of a point * finding the intersection of a line with an upper hull; 
?? finding the line defined by two points H finding the common tangent of two upper hulls; 
0 intersecting two lines ti intersecting two hulls; 
??checking if a point is above a line e finding the intersection of a line with an upper hull. 

We define an algorithm on n points that would require only these operations to function with n 
upper hulls as input instead as point-hull invariant. Atallah and Goodrich [4] show that each of these 
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upper hull problems can be solved in O(1) time with O(n’lb) p rocessors, where b is a constant and n 
is the total number of edges in the upper hull. 

This gives us the following observation. 

Observation 2.9. Both the brute force algorithm and Alon and Megiddo’s technique (of Observa- 
tion 2.6 and Lemma 2.2, respectively) are point-hull invariant. In addition, the constant-time upper 
hull algorithm (of Lemma 2.8) is also point-hull invariant. 

As a result, given m upper hulls, each containing at most q points, we can run the constant-time 
convex hull algorithm of Lemma 2.8, using a modification of (the dual of) Alon and Megiddo’s 
algorithm such that in place of constant-time calls to the trivial operations on points, we call the 
constant-time operations on upper hulls due to Atallah and Goodrich [4]. This gives us the following 
lemma. 

Lemma 2.10. Given m upper hulls, each containing at most q points, one can find the upper hull of 
their union in 0( 1) time, with n-exponential probability, using O(mq’ib log m) processors, where b is 
any fixed constant. 

2.5. A near-optimal algorithm 

We now show how to find the convex hull of a set of presorted points in the plane in O(log* n) time 
with n processors on a CRCW PRAM. (In the next subsection, we show how to reduce the number of 
processors to n/log* n, making the algorithm optimal.) Our method uses the constant-time point-hull 
invariant algorithm of Lemma 2.10 as a subroutine. 
1. We split the input of n points into n/[logb nj contiguous groups of size [logb nj points each, 

where b is a constant that will be set in the analysis. Given that t is the expected amount of time 
required to solve these subproblems recursively, we spend time ct, where c is a constant, to solve 
the problem recursively for each of the subproblems in parallel. Any subproblem that has not been 
solved by this time we label a failure. 

2. We then perform failure sweeping on the subproblems. As with the constant-time algorithm, we use 
Ragde’s approximate compaction algorithm to sweep the failures into a space of size n1/4, then, if 
this compression is successful, we solve them using the brute force technique of Lemma 2.7. 

3. We complete the upper hull construction by applying Lemma 2.10, with m = n/ [logb nl and 
q = [logbl (and with b as in the lemma). This takes 0( 1) time using O(n/ logbe n) processors, 
with n-exponential probability. 
It should be clear that the above algorithm uses only O(n) processors. We also have the following 

lemma. 

Lemma 2.11. The above algorithm runs in time O(log* n), using O(n) processors, with n-exponential 
probability. 

Proof. The running time and processor bounds follow immediately by induction, provided the recur- 
sive calls succeed with the claimed probability. Let us therefore focus on establishing the probability 
bound by induction. The basis case is trivial, so assume that the probability claim is true for all prob- 
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bound by induction. The basis case is trivial, so assume that the probability claim is true for all prob- 
lems of size m < n. Then, we can define b so that the expected number of failures of recursive calls 
is 

p < 2-(*‘sb 7L)“b, implying that 

1-1< l/n. 

Thus, I_L < 1, and we can apply the Chemoff bound of Lemma 2.3 to bound the probability that the 
number of failures is greater than n1/16 as being at most 

fr < n1~1”((1/16)logn-loge) 
> 

so that jr < 2-n”b, for b > 16, and for all n larger than a constant. As described above, we then 
use Ragde’s algorithm [27] which will succeed in compressing all the failures into an area of size 
n’i4 9 to be solved by brute force, if and only if the number of failures is < n1/16 (by Lemma 2.1), 
and, as the rest of the procedure will succeed with probability 1 - jr, if the approximate compaction 
succeeds. 0 

2.6. An optimal algorithm 

Here, we show how to reduce the number of processors required in the algorithm above, by the 
use of two-level arrays, and halting the recursion early. This allows our algorithm to run optimally 
in O(log* n) time with O(n/log* n) processors. We halt the recursion as soon as the current problem 
size is less than or equal to log* n (where, here, n is the original problem size). In this base case, each 
processor is assigned O(log* n) contiguous points, for which it finds the convex hull using a sequential, 
deterministic algorithm (e.g., see [12,25,26]). We call this hull of O(log* n) points a mini-hull. Then, 
another array is set up, this time of size n/log* n, such that the ith element contains the extremal z 
coordinates of the ith mini-hull. Any access to these mini-hulls in the recursive case is via this array. 
This ith element also contains a record of the one or two edges that might cover this mini-hull in 
the recursive case, i.e., the (at most) two edges of the currently known hull that are not part of the 
mini-hull, but are directly above it. (It is simple to show that there can be at most two such edges.) 

Also, there must be one slight modification to the algorithm: in the final step of the method of 
Lemma 2.10 (finding the edge on the hull above each point), at each level of recursion, instead of 
finding the edge on the new hull that covers every point, we use the same technique to find the 
(at most two) edges that cover each mini-hull of size O(log* n). This information is then used to 
update the array of size n/log* n. Note that while finding the edges of the upper hull only requires 
O(n/logb-’ n) processors, this last step will require at most O(n/log* n) processors in total. Finally, 
after all recursion levels have been dealt with, we update the hull edge above every individual point, 
by checking whether each point is beneath either of the edges that covers its mini-hull. By arguments 
similar to those given above, then, we have the following theorem. 

Theorem 2.12. One can$nd the convex hull of n presorted points in the plane in time O(log* n) time 
with n-exponential probability, using O(n/log* n) processors on a randomized CRCW PRAM. 

In the next section we present the techniques that we will eventually use in our convex hull algo- 
rithms for unsorted point sets. 
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3. In-place techniques 

In this section we describe several techniques used in our algorithm for the general (unsorted input) 
case. These are all in-place techniques in that they do not require any reordering of the data, and none 
of them require that the points be at contiguous array locations. We achieve this in-place property 
through the use of a small work space of nonconstant size. This is a slight extension of the use of 
the term “in-place”, which is usually applied to sequential algorithms that only use O(1) additional 
memory. 

3.1. Random sampling 

Given m points, each with an associated processor, the random sample procedure is to choose a 

1. 
2. 

3 _ . 

4. 

5. 

sample of size O(lc), where k is o(m). This sample is to be uniformly random (that is to say, every 
point must have an equal probability of being included in the sample) and is to be stored in a work 
space of size 16k. The random vote procedure is to pick one of the points at random, such that every 
point has an equal probability of being chosen. 

Our random sample procedure is as follows: 
Each processor decides whether it will attempt a write, with probability 2k/m. 
Each processor that has decided to write chooses a random location in the work space, and attempts 
to write its id to that location if it is unoccupied. 
Every processor that performed a successful write then checks whether any other processors at- 
tempted to write to this location. This can be done by having the unsuccessful processors reattempt 
their write. 
Each processor that wrote to a location that did not suffer a collision, writes the coordinates of its 
point into that location. 
Each processor that did suffer a collision repeats steps 2-4 for a total of up to d attempts, where 
d is a constant. Note that all these steps can be performed in 0( 1) time with m processors, on the 
CRCW PRAM. 
By a Chemoff bound [8,20] (Lemma 2.3), fewer than 41c processors will attempt a write, with 

probability 

4 0 
2k 

>l-- , 
e 

and more than k processors, with probability 

-k 
>l-; . 

0 

Thus, given that m’ processors attempt to write, with k < m’ < 4k, the probability of such a 
processor suffering a collision is ,< l/4. So the number of processors that do suffer a collision is 
< k/2 with probability < (e/2)-” (from the Chernoff bound). Thus, m”, the number of processors 
that write and do not suffer a collision, is 3 k/2, with probability 3 1 - (e/2)-‘. This gives us the 
following lemma. 
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Lemma 3.1. A random sample of size O(k), f rom un array of size n, can be found in-place in 0( 1) 
time, with k processors on a randomized CRCW PRAM, using work space of size O(k). It is uniformly 
random with k-exponential probability. 

In order to perform a random vote, we take a random sample, and then pick any one element in it, 
using any method that does not favor some points over others. For example, as the location written 
to is uniformly random, the first location in the work space that has been written to could have been 
written to by any point with equal probability, and can be found in O(1) time (see Lemma 2.5). This 
gives us the following corollary. 

Corollary 3.2. An in-place random vote, choosing one out of n elements in an array, can be performed 
in O(1) time with n processors on a randomized CRCW PRAM. It uses O(k) work space and it is 
uniformly random with k-exponential probability. 

3.2. In-place approximate compaction 

Lemma 2.1 describes the result of an elegant approximate compaction technique due to Ragde [27]. 
Unfortunately, this technique is not in itself in-place, so here we present an in-place approximate 
compaction technique that uses Ragde’s method as a subroutine. We achieve the following result. 

Lemma 3.3. Given an array of size m, containing at most k nonzero elements, one can determine 
whether k > mE, or one can perform an in-place approximate compaction of these elements into 
an area of size k4, all deterministically, using max{ k, m4E+6 } processors on a CRCW PRAM, with 
workspace of size rn4&+‘, where 6 < 1 and E < (1 - 6)/4 are constants. 

Proof. We split the array into m4E-t6 groups of size m1-(4Ef6), and for every nonzero element in 
group i, we write a 1 into the ith location of an array of bits, of size m4”+‘. Note that there can 
be at most min{m 4E+6, k} nonzero bits in this array. We then perform approximate compaction (see 
Lemma 2.1) on this second array, to compress the bits into an area of size m4’. If the mapping fails, 
then k > mE. If it does not fail, we then split each original group into m6 groups of size m’-4E-26, 
and repeat the procedure, ignoring all of the original groups that were found to contain no nonzero 
elements. We can iterate this process at most l/S times, after which we will have compressed the 
nonzero elements into an area of size m4E, or determined that k > m”. 0 

3.3. In-place bridge finding 

Recall the bridge-finding problem: we are given a set of unsorted points, and we wish to find the 
bridge, the convex hull edge that intersects a vertical line passing through one specified point (which 
we call the splitter). We address a slightly more general version of the problem, namely, that of finding 
the bridge for each of q point sets (each with its own splitter), in an array of n points, such that the 
points corresponding to any one point-set cannot be assumed to be contiguous. 

In our algorithm for the unsorted input problem we must deal with many unrelated problems 
scattered through the input such that the processors of any one problem cannot be assumed to be 
contiguous, while Alon and Megiddo’s linear programming algorithm [2] assumes contiguous input 
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for one problem. In this subsection we show how to solve an m-constraint linear programming using 
m processors in-place in 0( I)-time, with m-exponential probability. Our technique takes a similar 
approach to that of Alon and Megiddo’s algorithm, but has the advantage of being simpler to implement, 
although it achieves the same time, work and confidence bounds. 

We solve the bridge-finding problem by considering the associated linear programming problem. 
This is solved by repeatedly picking and (deterministically) solving a base problem, until the solution 
has been found. The base problem consists of O(k) constraints, where Ic is sufficiently small that there 
are enough processors available to solve the base problem by brute force (see Observation 2.6). The 
work space used for the base problem is 16/c. In more detail, the problem is solved as below, with 
p 2 m processors and Ic = ~‘1~: 
1. Apply the random sample Lemma 3.1 to find a base problem of size O(k). 
2. Solve the base problem deterministically in O(1) time, which, by Observation 2.6, requires Ic” = p 

processors. 
3. After solving the base problem, check for every point (even if it was not previously a survivor), 

whether it violates the solution just found. All points that violate the solution in this manner are 
candidates to be in the next base problem, and are said to be survivors. 
At iteration j, having solved j - 1 base problems, each survivor decides whether to attempt to 
write into the base problem with probability pj = min{ 1,2&t} in the 2D case, and pj = 
min{ 1, 2kpj_r} in the 3D case. Then the base problem is chosen as above. (From above, pt = 
(2k)/p, and pj = 1 for j > 4.) 

4. Repeat steps l-3 for ,0 iterations (where ,0 will be set in the analysis). Then perform in-place 
approximate compaction (see Lemma 3.3) on the survivors, compressing them all into the base 
problem. (If there are too many to be so compressed, then repeat steps l-3 once more.) The 
solution to this problem will be the final solution. Note that if at any earlier point there are no 
survivors, then the solution to the last base problem is the convex hull facet sought. 
This completes our procedure. Let us, therefore, analyze this procedure. First we review a useful 

result due to Alon and Megiddo. 

Lemma 3.4 (Upper bound on the survivors (Alon and Megiddo [2])). The number of survivors, s, 
that violate the solution to the base problem, given that there were ml surviving points before the 
solution, is given by 

(2/3)+E Prob (s > m, ) < eenCnE). 

This gives us the following lemma. 

Lemma 3.5. With probability 3 1 - een(“), where 1 > r > 0 is a constant, the number of survivors 
will be reduced to < k’i5 within a constant number of iterations. 

Proof. This follows from repeated application of Lemma 3.4. •I 

Thus, by applying a duality between points and lines, we get the following lemma. 

Lemma 3.6. Let S be a set of m points, scattered throughout some array. Given a point p in S, the 
edge of the convex hull of S intersected by vertical line through p can be found in a constant number 
of iterations of solving base problems, in-place using m processors, with k-exponential probability. 
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Proof. From Lemma 3.5, after a constant, p, number of iterations, the number of survivors will be 
less than lc’15, with k-exponential probability. Once this is the case, we perform in-place approximate 
compaction, which then compresses the survivors into an area of size O(lc) (see Lemma 3.3), which is 
the space for the base problem. We then solve the base problem, and as it contained all the survivors, 
the solution to the base problem will be the solution to the entire problem. This can only fail if the 
number of survivors > k’i4, which from Lemma 3.5, is true with probability e-*(lcr). 0 

3.4. In-place approximate median-jinding 

The final in-place method we develop is for approximate median-finding. Suppose we are given 
a set X = {51,22,..., z,} of numbers. The approximate median-finding problem is to locate a 
number 2 such that the rank of z in X is between En and (1 - &)n, for some constant E. Sen [28] 
gives a randomized CRCW PRAM method for finding an approximate median in 0( 1) time using 
O(n) processors, with E = l/4 with n-polynomial probability. As Goodrich et al. [17] observe, Sen’s 
algorithm can be adapted to achieve an n-exponential success probability while remaining an O(l)-time 
computation using O(n) processors. 

We can easily convert this to an in-place median-finding method. We do this by applying the 
random-sample procedure of Lemma 3.1 to find a random sample of size 0( Ic) . We can then apply the 
adaptation of Sen’s algorithm to find a number 5 whose rank in the sample is between k/4 and 3k/4 
with k-exponential probability. We can apply Sen’s algorithm in this case, as the random sample is 
stored in a contiguous work space. It is easy to show, by the Chemoff bound of Lemma 2.3, that z has 
rank between n/S and 7n/8 in X with k-exponential probability. Note, this is true even if k > n, for 
in this case our method will “oversample” X, still yielding its result with k-exponential probability. 
This gives us the following lemma. 

Lemma 3.7. Given a set X = (~1, ~2,. . . , x,} of numbers, there is an in-place constant-time method 
forjnding a number x whose rank in X is between n/8 and 7n/8 with k-exponential probability, 
using k processors and a working space of size O(k). 

4. A convex hull algorithm for unsorted input 

Having presented our primary subroutines, we now give our method for finding the convex hull of 
an unsorted set of points. So, suppose we are given an array of n points in the plane, in no particular 
order. We wish to compute the upper convex hull of these points, ordered from left-to-right. 

At a very high level of abstraction, our algorithm is similar in structure to the sequential “marriage- 
before-conquest” algorithm of Kirkpatrick and Seidel [22], which runs in O(n log h) time, where h is 
the number of hull points. Our method runs in O(log n) time using O(n log h) work with n-exponential 
probability. 

Initially, every point has a virtual processor assigned to it, and every virtual processor is active, 
i.e., each one has a task to perform. But, if at some time during the computation a point is found to 
be strictly below a convex hull edge, then its associated processor ceases to be active: it ceases to 
perform any operations associated with the point, and is regarded as deactivated. 
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The algorithm consists of two phases. The first phase consists of a series of O(logn) constant-time 
in-place divide steps, and the second phase consists of a single compaction and deterministic convex 
hull computation for all remaining points. 

So, suppose we are given an array A containing all the input points (again, in no particular order). 
Each point in A is assigned to belong to problem j, which initially is “l”, and we have an work space 
Wj associated with problem j that is initially of size n. We perform Phase 1 on A as follows: 
1. Let Xj denote all the (possibly noncontiguous) elements in X assigned to problem j. We apply 

the in-place approximate median procedure of Lemma 3.7 to find a (splitting) point p whose Z- 
coordinate has rank between nj/8 and 7nj/8 in the set of z-coordinates in Xj, where nj = IX,/. 

2. We then apply the in-place bridge-finding procedure (see Lemma 3.6) to find the bridge edge e 
above p. 

3. For each point q in Xj, if q is strictly below e, then we deactivate the processor for q. Otherwise, if 
q has smaller (respectively larger) x-coordinate than p, then we assign q to problem 2j (respectively 
2j + 1). 

4. We then recurse on problems 2j and 2j + 1, evenly dividing between the two of them the work 
space Wj to form work spaces W2j and W~j+r. Of course, if either problem has no remaining 
active points, then we need not recurse on that subproblem. 
We repeat the above steps for i = (3/4) log2 n recursive levels. Note that at this point each subprob- 

lem has a work space of size n/2i = O(n 1/4 . hence, the computation for each subproblem j succeeds ), 
with n-exponential probability. Thus, since there are at most 2 ‘+’ = O(n”i4) subproblems in total, 
this implies that all the Phase 1 computations complete successfully with n-exponential probability. 

We begin Phase 2 by then using a parallel prefix sum computation (e.g., see [21]) to compact 
together all the remaining (active) points. We then apply an optimal (deterministic) parallel method 
of, say Atallah and Goodrich [4], to compute the upper convex hull of the remaining points. By then 
merging this hull with the hull of edges found in Phase 1, we can complete the construction of the 
upper hull in O(logn) time using O(n) work (e.g., see [191). 

Lemma 4.1. The total work required by the above algorithm is O(n log h), with n-exponential prob- 
ability 

Proof. Let W(n, h) denote the work required to find the convex hull of n points. Then, assuming 
every call returns without failing, the work for Phase 1 satisfies the following recurrence relation [22]: 

W(n, h) = cn + W(nt , hl) + W(w, b), 

where c is a constant, hl + h2 = h, and nt + n2 6 n (for we only count active points). The base 
cases occur when h = 2 or n < c (or at the bottom-level when we switch to Phase 2). We claim that 
W(n, h) = O(n log h), which is clearly true for the base cases (we will account for the bottom-level 
work separately). 

For the inductive case, we can bound 

W(n, h) < cn + drill log hl + dnz log h2, 

where d is a constant. Let ni denote all the points in subproblem i, include those no longer active, so 
n=ni +ni. Without loss of generality, we can assume hl < h2; hence, 

W(n, h) < cn + drill log h/2 + dn:! log h < cn + dn{ log h/2 + dni log h. 
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Assuming the approximate median-finding procedure succeeds, we know that n’, 3 n/8. Thus, 

W(n, h) < dn log h + en - (d/8)n. 

By taking d large enough, then, this establishes the claim that w(n, h) is O(n log h) for Phase 1 
(assuming all recursive calls return successfully). 

Let us therefore consider the extra work we perform in Phase 2. Assuming each call to approximate 
median-finding returned correctly, the maximum size of a subproblem is (7/8)in = n1-(3/4)‘os (8/7), 
which is less than ns6. Let us distinguish two possible cases, then, based upon n’, the number of 
elements still active after Phase 1 completes. 
1. n’ 2 n.96. In this case, there must be at least n.’ subproblems. This, in turn, implies that h > n.‘, 

however, for there must be at least one undiscovered hull edge left for each subproblem. Thus, the 
additional work that is performed is O(n log n) = O(n log h). 

2. n’ < n.96. In this case the total additional work performed is clearly O(n + n.96 log n), which is 

O(n). 
Therefore, if all the calls to randomized operations succeed, then the total work is O(n log h). 

The lemma follows, then, as we have already argued that all such calls succeed with n-exponential 
probability. 0 

4. I. Processor allocation 

As described above, our algorithm assumes that there is a virtual processor assigned to each element 
in the input. More importantly, our W = O(n log h) bound on the total work needed to achieve a 
running time of T = O(log n) depends upon the assumption that once a point becomes deactivated its 
processor becomes inactive. Of course, this raises a significant issue regarding processor allocation in 
the PRAM model of computation, where we must simulate the work of these virtual processors using 
some given number, P, of processors. Fortunately, we can apply the following lemma of Matias and 
Vishkin [23] to resolve this issue. 

Lemma 4.2. Given an algorithm with a work bound W, and time bound T, then, assuming that W is 
known, the algorithm can be simulated with P processors in time T’ = O(T -t- W/P + T, log T) with 
work W = O(PT + W + PT, log T), w h ere T, is the time to perform linear approximate compaction 
using P processors. 

There are several methods for performing linear approximate compaction (where the target array is 
proportional to the number of elements being compressed) in O(log* n) time using O(n) processors, 
with n-exponential probability (e.g., see [23]). Of course, to apply the above lemma to our convex hull 
algorithm, we must also know the value of W, which seems to require that we know the value of h. 
We can get around this seeming circular argument, however, by a well-known trick (e.g., see [6]). To 
apply this trick to our method we begin by setting h’ = 2 and we then run our algorithm to construct 
the convex hull in O(log n) time and W = O(n log h’) work, with n-exponential probability, except 
that we stop processing should the method of Lemma 4.2 determine that the total work will exceed 
W work. We then square the value of h’ and try again, using the value of W determined by this new 
value of h’. Should this run of our algorithm also be cut short, then we continue squaring the value 
of h’ and rerunning our algorithm until we complete the process without exceeding the current bound 



234 M.R. Ghouse, M.T. Goodrich / Computational Geometry 7 (1997) 219-235 

on W. Since we square the value of h’ with each iteration, the running time of this process will still 
be O(logn) with n-exponential probability, and the total work needed will be bound by the final run 
of the algorithm, which will be O(n log h’) = O(n log h). Therefore, we have the following theorem. 

Theorem 4.3. Given n points in the plane, one can find their convex hull in O(log n) time using 
O(n log h) work, with n-exponential probability, on a randomized CRCW PRAM, where h is the rota1 
number of vertices in the hull. 
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