
Bounded-Independence Derandomization ofGeometric Partitioning with Applications toParallel Fixed-Dimensional Linear Programming�Michael T. Goodrichy Edgar A. RamoszCenter for Geometric Computing DIMACSJohns Hopkins University Rutgers UniversityBaltimore, MD 21218 Piscataway, NJ 08855-1179goodrich%cs.jhu.edu ramose@dimacs.rutgers.eduAbstractWe give fast and e�cient methods for constructing �-nets and �-approximations for range spaceswith bounded VC-exponent. These combinatorial structures have wide applicability to geometricpartitioning problems, which are often used in divide-and-conquer constructions in computationalgeometry algorithms. In addition, we introduce a new deterministic set approximation for rangespaces with bounded VC-exponent, which we call the �-relative �-approximation, and we show howsuch approximations can be e�ciently constructed in parallel. To demonstrate the utility of theseconstructions we show how they can be used to solve the linear programming problem in IRd de-terministically in O((log logn)d) time using linear work in the PRAM model of computation, forany �xed constant d. Our method is developed for the CRCW variant of the PRAM parallel com-putation model, and can be easily implemented to run in O(logn(log logn)d�1) time using linearwork on an EREW PRAM.1 IntroductionThe study of randomized algorithms and methods for reducing the amount of perfect randomnessneeded for geometric algorithms has proven to be a very rich area of research (e.g., see [1, 2, 4, 5, 14,15, 22, 42, 58, 57]). Indeed, randomized geometric algorithms are typically simpler and more e�cientthan their deterministic counterparts and studying the limitation of the randomness needed by suchalgorithms often yields insights into the speci�c properties of randomization that are needed to achievethis simplicity and e�ciency.Randomized algorithms in computational geometry most often exploit small-sized random samples,and the derandomization of such algorithms is then done by (1) quantifying the combinatorial propertiesneeded by random samples, and (2) showing that sets having these combinatorial properties can beconstructed e�ciently without using randomization. Interestingly, most of the combinatorial propertiesneeded by geometric random samples can be characterized by two notions|the �-approximation [49, 68]�This research was announced in preliminary form in Proc. 9th ACM Symp. on Computational Geometry (SCG), 1993,73{82, and in Proc. 7th ACM-SIAM Symposium on Discrete Algorithms (SODA), 1996, 132{141.yThis research is supported by the National Science Foundation under Grants IRI-9116843, CCR-9300079, and CCR-9625289, and by ARO under Grant DAAH04-96-1-0013.zThis research is supported by a DIMACS Postdoctoral Fellowship. DIMACS is a cooperative project of RutgersUniversity, Princeton University, AT&T Research, Bell Labs and Bellcore. DIMACS is an NSF Science and TechnologyCenter, funded under contract STC-91-19999; and also receives support from the New Jersey Commission on Science andTechnology. Author's current address: Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany.E-mail: ramos@mpi-sb.mpg.de 1



and the �-net [36, 49]. These concepts are de�ned for very general frameworks, where one is given aset system (X;R) consisting of a �nite ground set, X , and a set, R, of subsets of X . The subsets in Rare often referred to as ranges, for R typically is de�ned in terms of some well-structured geometry orcombinatorics. A subset Y is an �-approximation for (X;R) if, for each range R 2 R,���� jY \ RjjY j � jRjjX j���� � �:Relaxing this requirement a bit, Y is said to be an �-net [36, 49] of (X;R) if Y \ R 6= ; for eachR 2 R such that jRj > �jX j. This is clearly a weaker notion than that of an �-approximation, for any�-approximation is automatically an �-net, but the converse need not be true.We generalize the �-approximation de�nition to say that, given non-negative parameters � < 1 and� < 1, a subset Y is a �-relative �-approximation if, for each range R 2 R,���� jY \RjjY j � jRjjX j���� � � jRjjX j + �:This notion is a combined measure of the absolute and relative error between jY \Rj=jY j and jRj=jX j,and it is somewhat similar to a notion Br�onnimann et al. [14] refer to as a \sensitive" �-approximation1.Note that this notion also subsumes that of an �-net, for any �-relative �-approximation is automaticallyan (�=(1� �))-net.Our speci�c interest in this paper is in the design of fast and e�cient deterministic methodsfor constructing small-sized �-relative �-approximations in parallel and applying these methods to�xed-dimensional linear programming. Our methods have other applications as well, including �xed-dimensional convex hull and geometric partition construction [6, 7], but these are beyond the scope ofthis paper.1.1 Previous work on derandomizing geometric algorithmsBefore we describe our results, however, let us review some related previous work. The study of randomsampling in the design of e�cient computational geometry methods really began in earnest with someoutstanding early work of Clarkson [20], Haussler and Welzl [36], and Clarkson and Shor [22]. Onegeneral type of geometric structure that has motivated much of the derandomization research, and onethat motivated the development of the �-approximation and �-net notions for computational geometry,is the geometric partition (e.g., see [2, 49]). In this problem, one is given a collection X of n hyperplanesin IRd, and a parameter r, and one wishes to construct a partition of IRd into O(rd) constant-sized cellsso that each cell intersects as few hyperplanes as possible. One can apply random sampling to constructsuch a partitioning so that each cell intersects at most �n hyperplanes, for � = log r=r [22, 36]. Chazelleand Friedman [15] show that one can in fact construct such a partitioning with � = 1=r deterministicallyin polynomial time, and Berger, Rompel, and Shor [12] and Motwani, Naor, and Naor [56] show thatone can construct similar geometric partitions for � = log r=r in NC. (Recall that NC denotes theclass of problems solvable in polylogarithmic time using a polynomial number of processors [37, 43].)Unfortunately, the running time of Chazelle and Friedman's algorithm is quite high, as are the timeand processor bounds of the implied parallel algorithms (they run in O(log4 n) time using a number ofprocessors proportional to the time bound of Chazelle and Friedman's algorithm).A general framework for geometric partitioning emerges from the framework when a range space(X;R) has constant Vapnik-Chervonenkis [68] (VC)-dimension. LettingRjA denote the set fA\R : R 21Br�onnimann et al. [14] call a subset A � X a sensitive �-approximation if jjA\Rj=jAj�jRj=jXjj � (�=2)(�+pjRj=jXj).2



Rg, the VC-dimension of (X;R) is de�ned as the maximum size of a subset A of X such that RjA = 2A(e.g., see [49]). A related and simpler notion, however, is based upon the shatter function,�R(m) = fjRjAj:A � X; jAj = mg:In particular, we say that (X;R) has VC-exponent [8, 13] bounded by e if �R(m) is O(me). For example,if (X;R) is the hyperplane set system, where X is a set of n hyperplanes in IRd and R is the set of allcombinatorially distinct ways of intersecting hyperplanes with simplices, then (X;R) has VC-exponentbounded by d(d+ 1). Interestingly, the VC-exponent de�nition subsumes that of the VC-dimension,for if (X;R) has VC-dimension e, then it has VC-exponent bounded by e as well [63, 68]. There areseveral recent results that show that one can construct a (1=r)-approximation of size O(r2 log r) forany range space with VC-exponent bounded by e in time O(nrc) for some constant c depending on e(e.g., see [14, 16, 48, 47, 52, 51]). Chazelle and Matou�sek [16] give slower NC algorithms using O(nrc)work2 that construct such sets of size O(r2+�) for any �xed constant � > 0.1.2 Our results on parallel geometric derandomizationWe give fast and e�cient e�cient parallel algorithms for constructing �-nets and �-relative �-approximations. For example, our methods can be implemented in the CRCW PRAM model3 torun in O(log logn) time using O(nrc) work to produce �-relative (1=r)-approximations of size O(r2+�)for any �xed constants � > 0 and � > 0, and some constant c � 1. We also show how to �nd suchapproximations of size O(r2 log r) using more time and work. In addition, our methods can be imple-mented in the EREW PRAM model to run in O(logn) time using O(nrc) work to produce (0-relative)(1=r)-approximations of size O(r2+�) for any �xed constant � > 0. Thus, our methods improve theprevious size bounds from those achieved previously by the author [32] while also improving the timebounds from those achieved previously by Chazelle and Matou�sek [16]. We also derive similar boundsfor constructing (1=r)-nets. To demonstrate the utility of this result, we show how it can be used todesign a new e�cient parallel method for �xed-dimensional linear programming.1.3 Fixed-Dimensional Linear ProgrammingThe linear programming problem is central in the study of discrete algorithms. It has been appliedto a host of combinatorial optimization problems since the �rst e�cient algorithms for solving it weredeveloped in the 1940's (e.g., see [18, 23, 40, 59]). Geometrically, it can be viewed as the problemof locating a point that is maximal in a given ~v direction in the polyhedral region P de�ned bythe intersection of n halfspaces in IRd. Of particular interest is the case when the dimensionality, d(corresponding to the number of variables), is �xed, as occurs, for example, in several applications oflinear programming in geometric computing (e.g., see [16, 21, 29, 54, 55, 60]) and machine learning(e.g., see [10, 11]). Indeed, a major contribution of computational geometry research has been toshow that �xed-dimensional linear programming can be solved in linear time, starting with the seminalwork of Dyer [27] and Megiddo [54, 55], and following with subsequent work in the sequential domainconcentrated primarily on reducing the constant \hiding behind" the big-oh in these results (e.g.,2Recall that the work done by a parallel algorithm is the total number of operations performed by all processors, andit is never more than the product of the running time and the number of processors needed to achieve that running time.3Recall that this is the synchronous shared-memory parallel model where processors are allowed to perform concurrentreads and concurrent writes, with concurrent writes being resolved, say, by requiring all writing processors to be writingthe same common value (this common resolution rule is the one we use in this paper). Alternatively, in the weaker EREWPRAM model processors may not concurrently access the same memory location.3



see [16, 19, 21, 28, 39, 50, 65]) or on building data structures for linear programming queries (e.g.,see [30, 53]).In the parallel domain, Alon and Megiddo [4] give analogous results, showing that through the useof randomization one can solve a �xed-dimensional linear program in O(1) time with very high prob-ability using n processors in a randomized CRCW PRAM model. The existing deterministic parallelalgorithms are not as e�cient, however. Ajtai and Megiddo [3] give a deterministic O((log logn)d)time method, but it has a sub-optimal �(n(log logn)d) work bound and it is de�ned for the verypowerful parallel model that only counts \comparison" steps [67]. The only work-optimal determin-istic PRAM result we are familiar with is a method by Deng [24] for 2-dimensional linear program-ming that runs in O(logn) time using O(n) work on a CRCW PRAM. Recently, Dyer [26] has givenan O(logn(log logn)d�1) time method that uses O(n logn(log logn)d�1) work in the EREW PRAMmodel. In addition, we have recently learned that Sen [66] has independently discovered a CRCWPRAM method that runs in O((log logn)d+1) time using O(n) work.1.4 Our results for parallel linear programmingIn this paper we give a deterministic parallel method for �xed dimensional linear programming thatruns in O((log logn)d) time using O(n) work in the CRCW PRAM model. Thus, our method improvesthe work bound and the computational model of the Ajtai-Megiddo method while matching theirrunning time, which is also an improvement over the time bound of Deng's method for d = 2. (It isalso slightly faster than the recent result by Sen, which uses an approach that is considerably di�erentthan that for our method.) In addition, our method can be implemented in the EREW PRAM modelto run in O(logn(log logn)d�1) time using O(n) work, which improves the work bound of the parallelmethod by Dyer. At a high level our method is actually quite simple: we e�ciently derandomize asimple recursive procedure using our parallel procedure for �-net construction.The remainder of this paper is structured as follows. In the next section we review some of theprobabilistic background we will be using in subsequent sections. Since a work-e�cient parallel al-gorithm immediate implies an e�cient sequential method, we describe all of our procedures as parallelalgorithms. We begin this discussion in Section 3, where we give fast, but work-ine�cient, parallelmethods. In Section 4 we describe how to apply a divide-and-conquer strategy to make these meth-ods work-e�cient. We give applications of these methods to �xed-dimensional linear programming inSection 5, and we conclude in Section 6.2 Probabilistic PreliminariesOur approach to constructing small-sized (1=r)-nets and (1=r)-approximations of range spaces withbounded VC-exponent is to derandomize a straightforward probabilistic algorithm that is based uponthe random sampling technique [20]. We perform this derandomization using the bounded independencederandomization technique [5, 41, 44, 45, 64], which assumes our algorithm uses random variables thatare only k-wise independent. Thus, before we give our methods, let us review these concepts (seealso [5, 57]).2.1 Random samplingSince the probabilistic algorithm we wish to derandomize is based upon random sampling, let us beginby saying a few words about this technique. The generic situation is that one is given a set X of n4



objects and an integer parameter s, and one wishes to construct a random subset Y � X of size s.Sequentially, this is quite easy to do. In this paper we assume such a sample is chosen by de�ning, foreach element xi in X in parallel, a random variable Xi that is 1 with probability s=n; we use the rulethat xi 2 Y if Xi = 1 [12]. Note that one is guaranteed a set of jY j = X1 + X2 + � � �+ Xn uniqueelements, but its size may not be equal to s, although it is easy to see, by the linearity of expectation,that E(jY j) = s.2.2 k-Wise independenceIn order to apply the bounded-independence derandomization technique, we must restrict our set X ofrandom variables to be only k-wise independent, i.e., the variables in any subset Y � X are guaranteedto be mutually independent if jYj � k. Given a set X of n objects and an integer parameter s, wede�ne a k-wise independent expected s-sample of X to be a sample determined by n k-wise independentindicator random variables, X(k)1 ; X(k)2 ; : : : ; X(k)n , where X(k)i = 1 with probability p = s=n. Note thatin this notation X(n) = X ; hence, we may omit the superscript if the underlying random variables aremutually independent.Unfortunately, restricting our attention to k-wise independent indicator random variables preventsus from directly using the well-known and powerful Cherno� bounds [5, 17, 35, 57] for bounding thetail of the distribution of their sum. Nevertheless, as shown by Rompel [62] (see also Schmidt, Siegeland Srinivasan [64]), we may derive something analogous:Lemma 2.1 [62]: Let X(k) be the sum of n k-wise independent random variables taking on values inthe range [0; 1], with � = E(X(k)), where k is a positive even integer. Then there is a �xed constantc > 0 such that Pr(jX(k)� �j � �) � c k� + k2�2 !k=2 ;for any � > 0.2.3 Derandomization via bounded independenceWe are now ready to review the bounded independence technique for derandomizing a probabilisticalgorithm [5, 41, 44, 45]. We use the parallel formulation of Luby [44], which is based upon a combin-atorial construction of Jo�e [38] (see also Karlo� and Mansour [41]). In this formulation, we assumewe have a parallel probabilistic algorithm, Random, which is designed so that all the randomizationis contained in a single choice step. In addition, we assume the following:1. Random succeeds with constant probability even if the underlying random variables are onlyk-wise independent.2. Each random variable Xi takes on values fx1; x2; : : : ; xmg, where m is bounded by a polynomial4in n.3. There is a prime number q bounded by a polynomial in n, and integers ni;1, ni;2; : : :, ni;m, suchthat Xi takes on value xj with probability ni;j=q (with Pmj=1 ni;j = q). Of course, such a primenumber can easily be found in O(1) time in the CRCW PRAM model using a polynomial numberof processors.4In our usage each Xi will take a value from f0; 1g. 5



Luby [44] shows that if Random satis�es all of these conditions, then one may construct a space ofqk points so that each point corresponds to an assignment of values to X1; X2; : : : ; Xn. Moreover, eachXi = xj with probability ni;j=q and the Xi's are k-wise independent5 Since this space is polynomial insize, we may therefore derandomize Random by calling it on each of the qk sample points in parallel.Since Random succeeds with constant probability, at least one of these calls succeeds (in fact, aconstant fraction succeed). The output is given by one of these successful calls (where one breaks tiesarbitrarily). The bene�t of using this approach is that it is very simple, and, although the processorcosts may be high, the speed of the algorithm is the same as that used in Random (plus an additionalterm for performing an \or" on all the results in parallel, which can be done in O(1) time in the CRCWPRAM model and O(logn) time in the EREW PRAM model [37, 43, 61]).Having reviewed the necessary probabilistic preliminaries, let us now turn to the problem of con-structing (1=r)-approximations and (1=r)-nets.3 O((nr)O(1))-Work Approximation FindingBefore we describe our work-e�cient method, however, we �rst describe some algorithms for con-structing (1=r)-nets and (1=r)-approximations that are fast but not work-e�cient. This approachto constructing small-sized approximations and nets of range spaces with bounded VC-exponent isto derandomize a straightforward probabilistic algorithm, Approx, which is based upon the randomsampling technique [20].3.1 Geometric random samplesLet (X;R) be a given range space with VC-exponent bounded by e, for some constant e > 0. Given aparameter 2 � r � jX j, a parameter s that is greater than some �xed constant s0 > 1, and a positiveeven integer k, let Y be a k-wise independent expected s-sample of X . Let us explore the probabilitythat Y is an O(s)-sized (0-relative) (1=r)-approximation or (1=r)-net under various assumptions abouts and k. The �rst lemma establishes the probability that jY j is �(s).Lemma 3.1: Let Y be de�ned as above, with k � 2 even. Then jjY j � sj < maxf�c; 1g(sk+ k2)1=2,with probability at least 1�1=�, for some constant c > 0. In particular, if s � C(�)k, for some constantC(�) > 0, then jjY j � sj = �(k1=2s1=2) and also jjY j � sj � s=2 with probability at least 1� 1=�.Proof: Y is an expected s-sample of X determined by n indicator random variables. Since jY j hasmean �jY j = s, we may apply Lemma 2.1 to bound the probability that Y does not satisfy the abovesize condition as Pr(jjY j � sj � (�c)1=k(sk + k2)1=2) � 1=�;where c is as in the lemma. The bounds claimed follow from this one.Let us therefore bound the probability that Y is a (1=r)-net or a (1=r)-approximation. In particular,let S be a subset of R, and let AY (r;S) denote the number of ranges R 2 S that Y does not (1=r)-approximate (i.e., the number of ranges R 2 S such that jjY \Rj=jY j�jRj=jX jj> 1=r), and let NY (r;S)denote the number of ranges R 2 S such that jRj � jX j=r but Y \ R = ;. Of course, we desire these\error functions" to be as small as possible. The next lemma explores how well a random Y achievesthis goal when Y is de�ned using k-wise independent random variables.5Recently, Dietzfelbinger [25] has given an alternative construction that does make use of the availability of a prime q.6



Lemma 3.2: Let (X;R) be a range space. Given a parameter C � r � jX j, for some C > 0, a positiveeven integer k � n, and a parameter s � rk, let Y be a k-wise independent expected s-sample of X ,and let S be a subset of R. Then the following is true with probability at least 1=2:1. s��(k1=2s1=2) � jY j � s+�(k1=2s1=2) and in particular s=2 � jY j � 3s=2.2. AY (r;S) � c4k(ks + k2)k=2rkjSj=sk,3. NY (r;S) � c(2k)k=2rk=2jSj=sk=2,for some constant c > 0.Proof: Our proof is to show that properties (2) and (3) hold with probability at least 5=6 each,given (1), which also holds with probability at least 5=6. We can choose � = 6 from Lemma 3.1 so thatproperty (1) holds with probability 5=6. So, let us assume that jY j is s� s=2, and let us consider thequantity AY (r;S). We can write AY (r;S) = XR2S YR;where YR is an indicator random variable for \Y does not (1=r)-approximate R". We bound AY (r;S)by considering its expectation, which, by the linearity of expectation, isE(AY (r;S)) = XR2SE(YR) = XR2SPr(YR = 1):Let us therefore derive a bound forPr(YR = 1) = Pr(jjY \ Rj � jY j(jRj=n)j> jY j=r):De�ne random variables U = jY \Rj � jY \Rj(jRj=n) and V = jY \ (XnR)j(jRj=n). ThenPr(YR = 1) = Pr(jU � V j > jY j=r):Let �U = E(U) and �V = E(V ) and note that �U = �V = (sjRj=n)(1� jRj=n). Thus,Pr(YR = 1) = Pr(jU � �U + �V � V j > jY j=r):It is easy to verify that this latter probability is bounded byPr(jU � �U j > jY j=2r) + Pr(jV � �V j > jY j=2r):Note that U = Pi2RXi(1 � jRj=n) and V = Pi 62RXi(jRj=n). Thus, we may apply Lemma 2.1 tobound this probability byc 2k[k(sjRj=n) + k2]k=2rkjY jk ! � c(4k(ks+ k2)k=2rk)=skfor some constant c, since s � kr > 1 and jRj � n. Therefore,E(AY (r;S))� c(4k(ks+ k2)k=2rk)jSj=sk:We may then apply Markov's inequality (which has no independence assumptions) to showPr(AY (r;S)> 6c(4k(ks+ k2)k=2rk)jSj=sk � 1=6:7



The bound for NY (r;S) is proved similarly, but let us give the details here for completeness. Wecan write NY (r;S) = XR2S&jRj>jX j=rZR;where ZR is an indicator random variable for \Y \ R = ; but jRj � jX j=r". By the linearity ofexpectation, E(NY (r;S)) = XR2S&jRj>n=rE(ZR)� XR2S&jRj>n=rPr(jjY \ Rj � (s=n)jRjj � (s=n)jRj);where n = jX j. Note that jY \ Rj =Pi2RXi. Thus, we may apply Lemma 2.1 to derivePr(jjY \Rj � (s=n)jRjj � (s=n)jRj) � c k(s=n)jRj+ k2(s=n)2jRj2 !k=2� c(2k)k=2rk=2=sk=2;for some constant c > 0, since jRj > n=r and s � rk. Therefore,E(NY (r;S))� c(2k)k=2rk=2jSj=sk=2;and we may then apply Markov's inequality to show that NY (r;S)� 6c(2k)k=2rk=2jSj=sk=2 with prob-ability 5=6. This completes the proof.3.2 EREW PRAM algorithmsGiven this lemma, we can apply the bounded-independence derandomization technique to derive de-terministic (1=r)-net and (1=r)-approximation construction methods for range spaces with boundedVC-exponent. We assume RjY is computable in O(1) time using work polynomial in jY j on an CRCWPRAM or in O(logn) time on an EREW PRAM. From the above lemma we can derive the following:Theorem 3.3: Let (X;R) be a range space with VC-exponent bounded by e, for some constant e > 0,and let n = jX j. Also, let 2 � r < n be a given parameter, and let k > 0 be an even integer parameter.Then, in the EREW PRAM model, for some constant c > 0, one can construct the following in thebounds claimed:1. a (1=r)-approx. A of (X;R) of size �(r2kne=k) in O((e+ k) logn) time using O(2kne+k+1) work,2. a (1=r)-net B of (X;R) of size �(rkne=k) in O((e+ k) logn) time using O(2kne+k+1) work.Proof: The methods for constructing these sets are straightforward applications of the bounded-independence derandomization technique using S = R in Lemma 3.2. The main idea is to set the sparameter in Lemma 3.2 so that NY (r; S) < 1 and AY (r; S) < 1 (i.e., since they are integer values,NY (r; S) = 0 and AY (r; S) = 0), while jY j is �(s), with probability 1=2, and then derandomize theimplied construction by the bounded-independence derandomization technique. For example, eachprobability of the form s=n can be approximated by dsq=ne=q, and there is a simple, e�ective methodfor testing if a set satis�es the needed conditions to be a (1=r)-net or (1=r)-approximation in O(logn)8



time using a linear number of processors. Thus, since jRj is O(ne), and the probability space in theproof of Lemma 3.2 has size qk = O((2n)k), then performing the (1=r)-net or (1=r)-approximationtest for the set Y determined by each point in the probability space in parallel requires O(2kne+k+1)processors. A constant fraction of these points are guaranteed to yield satisfactory results, so by takingone such successful test (arbitrarily) we can construct the desired set. Since all the test computationscan be performed in O(logn) time and selecting a single successful outcome can be done in timeO(log(2kne+k+1)) = O((e+ k) logn), the performance bounds of the theorem follow.This, in turn, implies the following:Corollary 3.4: Let (X;R) be a range space with VC-exponent bounded by e, for some constant e > 0,and let n = jX j. Also, let 2 � r < n be a given parameter and let � > 0 be any �xed (small) constant.Then, in the EREW PRAM model, for some constant c > 0, one can construct the following in thebounds claimed:1. a (1=r)-approx. A of (X;R) of size �(r2n�) in O(logn) time using O(nc) work with c = e(1 +1=�) + 1,2. a (1=r)-approx. C of (X;R) of size �(r2 logn) in O(log2 n) time using O(ne(2+logn)+1) work,3. a (1=r)-net B of (X;R) of size �(rn�) in O(logn) time using O(nc) work with c = e(1+1=�)+1,4. a (1=r)-net D of (X;R) of size �(r logn) in O(log2 n) time using O(ne(2+logn)+1) work.Proof: Simply apply Theorem 3.3. For A and B take k = e=�. For C and D take k = e logn.Actually, we can apply a simple \recursive re�nement" technique to improve this to the following:Theorem 3.5: Let (X;R) be a range space with VC-exponent bounded by e, for some constant e > 0,and let n = jX j. Also, let 2 � r < n be a given parameter and let � > 0 be any �xed (small) constant.Then, in the EREW PRAM model, for some constant c > 0, one can construct the following in thebounds claimed:1. a (1=r)-approx. A of (X;R) of size O(r2+�) in O(logn) time using O(nc) work with c = e(1 +(4 + 2maxf2; �g)=�) + 1,2. a (1=r)-approx. C of (X;R) of size O(r2 log r) in O(logn+log2 r) time using O(n9e+1+r9e log(cr))work,3. a (1=r)-net B of (X;R) of size O(r1+�) in O(logn) time using O(nc) work with c = e(1 + (4 +2maxf2; �g)=�) + 1,4. a (1=r)-net D of (X;R) of size O(r log r) in O(logn + log2 r) time using O(n9e+1 + r9e log(cr))work.Proof: The structure of the proof is to apply the previous corollary to recursively re�ne our ap-proximations to be of a size depending only on r, not n. The main idea of this approach is to takeadvantage of an observation of Matou�sek [47] on an additive property of �-appromations, which statesthat an �-approximation of a �-approximation of a set X is itself an (�+ �)-approximation of X . Thus,to construct the set A we proceed as follows: If r � n1=8, then we construct A immediately usingCorollary 3.4(1.) to get a 1=r-approximation of size O(r2n�) where � = 8�. This yields a set of sizeO(r2+�) in time O(logn), which for the sake of an inductive argument we characterize as being at9



most b0 logn� b1 log r, for constants b0 > b1 � 1. Otherwise, if r < n1=8, then we recursively constructa (1=r2)-approximation A0 of (X;R) of size at most c1(r2)2+�, for some constant c1 (to be de�nedbelow). By induction, this recursive call takes time at most b0 logn� b1 log(r2). We then apply Corol-lary 3.4(1.) to construct a [(1=r)� (1=r2)]-approximation A of A0 with size c0[r2=(r� 1)]2c1(r2)(2+�)�,for a constant � = �=(4+2�) < 1=2. By the additive property of �-approximations, the set A will be a(1=r)-approximation of (X;R). Moreover, if we choose c1 � (4c0)1=(1��), then jAj � c1r2+�. This �nalcall to the method of Corollary 3.4 takes time O(log jAj), which is at most b2 log r, for some constantb2 > 0. Thus, the total time required is b0 logn�b1 log(r2)+b2 log r, which is at most b0 logn�b1 log r,if b1 � b2. For the work, note that the computation is a sequence of applications of Corollary 3.4(1.)on sets of size rapidly decreasing. At the bottom of the recursion (when the approximation size islargest), Corollary 3.4(1.) is used with � = 8�, while at the other steps Corollary 3.4(1.) is used with� = �=(4 + 2�). Hence the work is O(nc) with c = e(1 + (4 + 2maxf2; �g)=�) + 1,The set C is constructed similarly, in that we �rst construct the set A as above to be a (1=2r)-approximation, with say � = 1, and we then apply Corollary 3.4(2.) to construct a (1=2r)-approximation of even smaller size (we leave the details to the reader). Likewise, for the sets Band D we �rst construct a (1=2r)-approximation and then �nd a (1=2r)-net of that, taking advantageof the additional properity that an �-net of a �-approximation of a set X is an (� + �)-net of X .Note that our methods for constructing A and B are in the complexity class NC for all values of r,but our methods for constructing C and D are in NC only for constant values of r.3.3 CRCW PRAM algorithmsUnfortunely, we cannot immediately derive Poly(log logn)-time methods for the CRCW PRAM fromthe above analysis, for checking if a given Y satis�es the condition for being a (1=r)-approximationrequires 
(logn= log logn) time using a polynomial number of processor, by a simple reduction from theparity problem [9]. We can avoid this lower bound, however, by checking this condition approximatelyrather than exactly.To do this we use a fast method for �-approximate counting [31, 33], where one wishes to computethe sum of an array of n bits with a relative error of �. That is, if x is the number of 1's in the array,then we desire a value x0 such that x=(1 + �) � x0 � (1 + �)x.Lemma 3.6 [31]: Performing �-approximate counting of an n-element Boolean array, with � =(logN)�b, can be done in O(1) time using O((n + N)f(b)) work on a CRCW PRAM, for any �xedconstant b > 0.We use this lemma to estimate the sizes jY \ Rj, jY j, and jRj, all of which involve computing thesum of O(n) bits. Let us therefore denote each of the estimates we need as jY \ Rj0, jY j0, and jRj0,respectively. (We may assume that jX j is known explicitly.) Say that a set Y is �-estimated to be a�-relative �-approximation if ���� jY \ Rj0jY j0 � jRj0jX j ���� � � jRj0jX j + �:Lemma 3.7: If Y is �-estimated to be a �-relative �-approximation, then Y is a (6� + 3�)-relative2�-approximation, provided � � 1=4.Proof: Suppose Y is �-estimated to be a �-relative �-approximation. Observe that jY \ Rj=jY j �(1 + �)2jY \Rj0=jY j0 and that jRj0=jX j � (1 + �)jRj=jX j. Thus, by the de�nition of Y , we can derivethe following bound on j jY \Rj=jY j � jRj=jX j j: 10



���� jY \ Rj0jY j0 � jRj0jX j ����+ ���� jY \RjjY j � jY \ Rj0jY j0 ����+ ���� jRj0jX j � jRjjX j����� �(1 + �) jRjjX j + ((1 + �)2 � 1) jY \Rj0jY j0 + � jRjjX j + �= (�+ (1 + �)�) jRjjX j + �(2 + �) jY \Rj0jY j0 + �:We also know that jY \Rj0jY j0 � (1 + �) jRj0jX j + �� (1 + �)(1+ �) jRjjX j + �:Thus, we can combine the above bounds to derive the following bound on j jY \Rj=jY j � jRj=jX j j:(�+ (1 + �)�) jRjjX j + �(2 + �)�(1 + �)(1 + �) jRjjX j + ��+ �= (�+ (1 + �)� + �(2 + �)(1 + �)(1+ �)) jRjjX j + (1 + �(2 + �)�)� (6�+ 3�) jRjjX j + 2�;provided � � 1=4.Likewise, we have the following:Lemma 3.8: If Y is an �-approximation, then Y will be �-estimated to be a 4�-relative 2�-approximation, if � � 1=4.Proof: Suppose Y is an �-approximation. Then, observing that jY \Rj0=jY j0 � (1+ �)2jY \Rj=jY j,we can bound j jY \Rj0=jY j0 � jRj0=jX j j by���� jY \RjjY j � jRjjX j����+ ���� jY \Rj0jY j0 � jY \ RjjY j ����+ ���� jRjjX j � jRj0jX j ����� �+ �(2 + �) jY \RjjY j + �jRj0jX j� �+ �(2 + �)� jRjjX j + ��+ �jRj0jX j� �+ �(2 + �)�(1 + �)jRj0jX j + ��+ �jRj0jX j� �(1 + �(2 + �)) + (�(2 + �)(1 + �) + �) jRj0jX j� 2�+ 4� jRj0jX j ; 11



provided � � 1=4.Say that Y is �-estimated to be an �-net if Y \ R 6= ; for each R with jRj0 > �jX j. We will makeuse of the following observation.Lemma 3.9: If Y is �-estimated to be an �-net, then Y is a (1+�)�-net. If Y is an �-net, then Y willbe �-estimated to be a (1 + �)�-net.These lemmas, together with previous results, imply the following:Theorem 3.10: Let (X;R) be a range space with VC-exponent bounded by e, for some constante > 0, and let n = jX j. Also, let 2 � r < n be a given parameter and let � > 0 be any �xed (small)constant. Then, in the CRCW PRAM model, for some constant c > 0, one can construct any of thefollowing in the bounds claimed:1. a (logN)�b-relative (1=r)-approximation A of (X;R) of size �(r2n�) in O(1) time using O(nc �(n+N)f(b)) work with c = e(1 + 1=�),2. a (logN)�b-relative (1=r)-approximation B of (X;R) of size �(r2 logn) in O(1) time usingO(ne(2+logn) � (n+N)f(b)) work,3. a (1=r)-net C of (X;R) of size �(rn�) in O(1) time using O(nc) work with c = e(1+1=�)+f(1),4. a (1=r)-net D of (X;R) of size �(r logn) in O(1) time using O(ne(2+logn)+f(1)) work.Proof: Let us begin with the set A. We can set the parameter s = �(r2n�) in Lemma 3.2 so thatany expected s-sample Y is a (1=4r)-approximation with probability at least 1=2. By Lemma 3.8, thisimplies that in applying the bounded independence derandomization technique there will be some Ythat is �-estimated to be a 4�-relative (1=2r)-approximation. But, by Lemma 3.7, this in turn impliesthat Y is a (18�)-relative (1=r)-approximation. By taking � = (logN)�(b+1), we therefore force such aY to be a (logN)�b-relative (1=r)-approximation (for N larger than some constant). The rest of theconstruction, then, is a straightforward (CRCW PRAM) implementation of the bounded-independencederandomization technique following the argument of the proof of Theorem 3.3. For the set C, usingLemma 3.9, it su�ces to use estimates within a constant factor (so N is a constant). The methods forconstructing the other sets are similar applications of the bounded-independence technique.As in our EREW algorithms, we can apply a composition technique to improve the size boundsin the above constructions. Unlike our EREW methods, however, our CRCW PRAM size-e�cientmethods will not run quite as fast as the size-ine�cient methods of Theorem 3.10. Our methods arebased in part on the following additive property for �-relative �-approximations.Lemma 3.11: If Y is a �1-relative �1-approximation for (X;R) and Z is a �2-relative �2-approximationfor (Y;RjY ), then Z is a (�1 + �2 + �1�2)-relative (�1(1 + �2) + �2)-approximation for (X;R).Proof: Let R be a range in R. We can write���� jZ \ RjjZj � jRjjX j���� � ���� jZ \ RjjZj � jY \RjjY j ����+ ���� jY \ RjjY j � jRjjX j����� �2 jY \RjjY j + �2 + �1 jRjjX j + �112



� �2�(1 + �1) jRjjX j + �1�+ �2 + �1 jRjjX j + �1= (�1 + �2 + �1�2) jRjjX j + �1(1 + �2) + �2;which establishes the lemma.We also use the following observation:Lemma 3.12: If Y is a �-relative �1-approximation for (X;R) and Z is an �2-net (Y;RjY ), then Z isa (�1 + �2)=(1� �)-net for (X;R).Our main CRCW PRAM result, then, is the following:Theorem 3.13: Let (X;R) be a range space with VC-exponent bounded by e, for some constante > 0, and let n = jX j. Also, let 2 � r < n be a given parameter and let � > 0 be any �xed (small)constant. Then, in the CRCW PRAM model, for some constant c > 0, one can construct any of thefollowing in the bounds claimed:1. a (logN)�b-relative (1=r)-approximation A of (X;R) of size O(r2+�) in O(log logn) time usingO(nc � (n+N)f(b)) work with c = e(1 + (4 + 2maxf2; �g)=�),2. a (logN)�b-relative (1=r)-approximation C of (X;R) of size O(r2 log r) in O(log log n) time usingO(nce � (n+N)f(b)+ rc log r � (r+N)f(b)) work,3. a (1=r)-net B of (X;R) of size O(r1+�) in O(log logn) time using O(nce=�) work, or4. a (1=r)-net D of (X;R) of size O(r log r) in O(log logn) time using O(nce + rc logn) work.Proof: Let us address the construction of the set A. We describe it as a recursive procedure.If r � n1=8, then we apply Theorem 3.10 to construct a (2 log logn � log log r)(logN)�(b+1)-relative(1=r)-approximation of size �(r2+�) in O(1) time using O((n+N)f(b)) work. For the purposes of therecursion, we refer to the running time of this method as being b1 log log n� b2 log log r, for constantsb1 > b2 � 1. If r < n1=8, then we recursively construct a (2 log logn� log log(r2))(logN)�(b+1)-relative(1=r2)-approximation A0 of size at most c1(r2)2+�, for some constant c1 � 1 (which we set below). Weinductively assume this takes time at most b1 log log n � b2 log log(r2). We then apply Theorem 3.10to construct a (logN)�(b+2)-relative [(1=r) � (1=r2)(3=2)]-approximation A of A0 in O(1) additionaltime using O((n + N)f(b+2)) work. By Lemma 3.11 A is a (2 log logn � log log r)(logN)�b-relative(1=r)-approximation of (X;R). The size of A is at most c0[r2=(r� 3=2)]2(c1r4+2�)� ], which is at mostc1r2+�, if we choose the constants � � �=(4 + 2�) and c1 � (16c0)1=(1��). Likewise, the total runningtime of constructing A is b1 log logn � b2 log log(r2) + b3, for some constant b3 � 1. This, of course, isb1 log logn � b2 log log r, if b2 � b3.Our method for constructing C is to �rst construct A as a (logN)�(b+1)-relative (1=2r)-approximation and then construct (logN)�(b+1)-relative (1=3r)-approximation of that. The sets Band D are constructed in a similar manner, in that we �rst �nd an (1=5)-relative (2=5r)-approximationand then form an (2=5r)-net of that, which will be a (1=r)-net for (X;R) by Lemma 3.12 (we leave thedetails to the reader). 13



4 O(nrO(1))-Work Approximation FindingAs already mentioned, the methods of the previous section run very fast in parallel. Their workcomplexities are quite high, however. In this section we show how to reduce this signi�cantly.Let (X;R) be a range space with VC-exponent bounded by e. We need another simple lemma,which is an adaptation of an observation made by Matou�sek [47].Lemma 4.1: Suppose Y1; Y2; : : : ; Ym are �-relative �-approximations for disjoint range spaces(X1;RjX1), (X2;RjX2); : : : ; (Xm;RjXm), respectively, where the Xi's have equal cardinality, andX = X1 [X2 [ � � � [Xm. Then Y = Y1 [ Y2 [ � � � [ Ym is a �-relative �-approximation for (X;R).Proof: For any R 2 R, we can write���� jY \RjjY j � jRjjX j���� = 1m ����� mXi=1 jYi \ RjjYij � jR \XijjXij ������ 1m mXi=1 ���� jYi \ RjjYij � jR \XijjXij ���� :Moreover, R \Xi is a range in RjXi . Therefore, for i = 1; 2; : : : ; m,���� jYi \ RjjYij � jR \XijjXij ���� � � jR \XijjXij + �:Thus, ���� jY \RjjY j � jRjjX j���� � 1m mXi=1�� jR \XijjXij + ��= � jRjjX j + �;which establishes the lemma.Given a range space (X;R) with bounded VC-exponent, and a parameter 2 � r � n, we wish todevelop an e�cient divide-and-conquer method for constructing a �0-relative (1=r)-approximation Yof (X;R) of size O(r2+�) using only O(nrO(1)) work, for any small constants �0 > 0 and � > 0, wheren = jX j. We achieve this by designing an algorithm, Approx, which almost achieves this goal, inthat it has a good work bound, but doesn't quite achieve the size bound (the Approx procedure is amodi�cation of earlier simple divide-and-conquer method of Matou�sek [48]). We can then follow thisby a call to Theorem 3.13 to improve the size bound, while keeping the work bound at O(nrO(1)).We de�ne Approx in terms of potential functions, �(n) and �(n), that dictate the relative errorand absolute error of the approximation that we return. Speci�cally, given any �xed constant �0 � 1=4,Approx produces a �(n)-relative �(n)-approximation, Y , of (X;R), where�(n) � �0 � 1� logn (1)and �(n) � � logn� 1logn ��� logn � 1� logn � 1r ; (2)14



where � is a constant strictly less than 1=2f(1), where the function f is as in Lemma 3.6. This is,of course, a slightly stronger approximation than a �0-relative (1=r)-approximation would be, but thisformulation will prove easier to work with in our recursive algorithm.Algorithm Approx(r; (X;R)):1. If n � r2, then return X .2. Otherwise, divide X into m equal-sized subsets X1, X2, : : :, Xm and call Approx(r0; (Xi;RjXi))recursively for each i in parallel, where r0 = r and m = n with 0 <  < 1 being a constant to beset in the analysis. (Note: if � log n1� � 1=�0, then we do not recurse, but simply return X , soas to preserve the invariant of Equation (1).)3. Let Yi be the set returned by recursive call i, and let Y 0 = Y1[Y2[� � �[Ym . Apply Theorem 3.10(not Theorem 3.13) to �nd a �0(n)-relative �0(n)-approximation Y of (Y 0;RjY 0), where�0(n) = 2�(1� ) lognand �0(n) = � 2(1� ) logn� 1r :4. Return Y .Lemma 4.2: Approx produces a �(n)-relative �(n)-approximation Y of X of size O(r3n). The workbound can be made O(nrc), for some constant c � 1, and the running time is O(log logn) in the CRCWPRAM model.Proof: Our proof is an inductive argument based upon Lemmas 4.1 and 3.11. In particular, let usinductively assume, by Lemma 4.1, that Y 0 is a �(n1�)-relative �(n1�)-approximation, where �(n) and�(n) are de�ned as in Equations (1) and (2). Moreover, let us inductively assume jY 0j is O(nr3n(1�)).By Lemma 3.11, Y will then be a (�(n1�)+�0(n)+�(n1�)�0(n))-relative (�(n1�)(1+�(n1�))+�0(n))-approximation. By our de�nition of �0(n) we have�(n1�) + �0(n) + �(n1�)�0(n) � �(n1�) + 2�0(n)� �0 � 1� logn(1�)� + �(1� ) logn= �0 � 1� logn= �(n):In addition, by our de�nition of �0(n), we have that �(n1�)(1 + �(n1�)) + �0(n) is bounded by log n1� � 1logn1� ! � logn1� � 1� logn1� ! 1r �1 + 2(1� )� logn1� �+ � 2(1� ) logn� 1r�  log n1� � 1logn1� ! � logn1� � 1� logn1� + � logn1�! 1r + � 2 logn1� � 1r15



=  log n1� � 1logn1� !�� logn� 1� logn � 1r + � 2 logn1�� 1r�  log n1� � 1logn1� + logn1� !�� logn � 1� logn � 1r= � logn � 1log n ��� logn� 1� logn � 1r= �(n):The running time of this algorithm is characterized by the recurrenceT (n) = T (n1�) + b;for some constant b � 1, which implies that T is O(log log n). To analyze the size bound, let us induct-ively assume that the size of the approximation returned by each recursive call is at most c1r3n(1�) ,for some constant c1 � 1. Thus, by Theorem 3.10, the size of the approximation produced can be madeto be at most c0(r logn)2(c1nr3n(1�))1=4. This is at most c1r3n if c1 � c4=30 . The work complexity,W (r; n), is therefore bounded by the recurrence equationW (r; n) � nW (r; n1�) + O([nr3n(1�) ]c � n�f(1));where c is the constant in the work bound of Theorem 3.10 (note that in this case c depends only one, the bound on the VC-exponent). If we choose  to be a constant strictly smaller than 1=4c, thenW (r; n) will be O(nr3c).This lemma can in turn be used to derive work-e�cient methods for constructing approximatingsubsets, as the following theorem shows:Theorem 4.3: Let (X;R) be a range space with VC-exponent bounded by e, for some constant e > 0.Also, let constants � > 0 and 0 < � � 1=4 be given. Then, for some constant c > 0, one can producethe following sets in the bounds claimed in the CRCW PRAM:1. a �-relative (1=r)-approximation A of (X;R) of size O(r2+�) in O(log logn) time using O(nrc)work,2. a �-relative (1=r)-approximation C of (X;R) of size O(r2 log r) in O(log logn) time usingO(nrc log r) work,3. a (1=r)-net of (X;R) B of size O(r1+�) in O(log logn) time, using O(nrc) work,4. a (1=r)-net of (X;R) D of size O(r log r) in O(log logn) time using O(nrc log r) work.Proof: The result for A follows by using Lemma 4.2 to produce a �=3-relative (1=2r)-approximationof size O(r3n�), where � is the inverse of the constant in Theorem 3.13. We follow this by a call toTheorem 3.13 to �nd a �=3-relative (1=3r)-approximation of that. This set will be a �-relative (1=r)-approximation of (X;R), which is produced in O(log logn) time using O(nrc) work. The sets B, C,and D are constructed similarly, using techniques that are now familiar.For analogous results for the EREW PRAM model, we may use the following theorem:Theorem 4.4: Let (X;R) be a range space with VC-exponent bounded by e, for some constant e > 0.Also, let � be any positive constant. Then, for some constant c > 0, one can produce the followingsets in the bounds claimed in the EREW PRAM:16



1. a (1=r)-approximation A of (X;R) of size O(r2+�) in O(logn) time using O(nrc) work,2. a (1=r)-approximation C of (X;R) of size O(r2 log r) in O(logn + log2 r) time using O(nrc log r)work,3. a (1=r)-net of (X;R) B of size O(r1+�) in O(logn) time, using O(nrc) work,4. a (1=r)-net of (X;R) D of size O(r log r) in O(logn+ log2 r) time using O(nrc log r) work.Proof: The method is similar to that used to derive the CRCW PRAM bounds, expect that in thiscase we use Theorem 3.5 (in Step 3) and de�ne Approx to produce a (0-relative) �(n)-approximationwhere �(n) = � logn � 1logn � 1r ;by de�ning �0(n) = � log n1�� 1r :The time bound for such an EREW PRAM implementation can be characterized by the recurrenceT (r; n) � T (r; n1�) +O(logn); which is O(logn).In the next section we explore applications of these two theorems to �xed-dimensional linear pro-gramming.5 Linear Programming in Fixed DimensionsRecall the geometric view of �xed-dimensional linear programming. For simplicity of expression, letus assume that the optimal point p exists and is de�ned by the intersection of exactly d halfspaceboundaries. Let us also assume that the origin, o, is contained in P , the polytope de�ned by the linearconstraints. These assumptions can be removed with minor modi�cations to our method (similar tothose used, for example, by Seidel [65]). Without loss of generality, we may additionally assume that~v = (0; 0; : : : ; 0;�1), i.e., we are interested in the \lowest" vertex in P . Our method for �nding p isinspired by the methods of Ajtai and Megiddo [3] and Dyer [26], but is nevertheless quite di�erent. We�nd the optimal solution p by calling the following recursive procedure as ParLPd(X; 2n).Procedure ParLPd(X;w):Output: An optimal solution p for X (using work that is O(w)).1. Let n = jX j. If n � n0, �nd the optimal solution by any \brute force" method, where n0 is aconstant set in the analysis, and return. Likewise, if d = 1, then compute the minimum of thenumbers in X and return.2. Compute a (1=r)-net Y for X of size O(r1+�) (in the hyperplane set system), where r = (w=n)1=csuch that c is a constant to be set in the analysis and � is a su�ciently small constant. ByTheorem 4.3, the time needed for this step is O(log logn) in a CRCW PRAM implementation orO(logn) time in an EREW PRAM implementation, by Theorem 4.4; the work needed for thisstep can be made O(w) if c is a constant larger than the constants of Theorems 4.3 and 4.4.3. Compute the intersection of the halfspaces in Y and a canonical triangulation T [15] of thispolyhedral region (with the origin as base apex), using a \brute force" method that uses O(rc)17



work. (In a CRCW implementation this can be done in O(log log r) time; an EREW implement-ation takes O(log r) time. Both implementations are simple applications of parallel minimum-�nding [37, 43, 61] and are left to the reader.)4. Using ParLPd�1 as a subroutine, determine the simplex � in T that contains p. This is imple-mented as follows:(a) For each simplex � in T compute the intersection of the halfspaces in X with each of �'s(d � 1)-dimensional boundary faces. This takes O(1) time with O(nr1+�) work, which isO(w) if c � 1 + �.(b) For each simplex boundary face f we use ParLPd�1 to solve the linear program de�ned byf and the halfspaces that intersect f . Assuming that ParLPd�1 uses linear work, this stepcan be implemented using O((n=r)r(1+�)bd=2c) work, which is O(w) if c � (1 + �)bd=2c � 1.(c) Each point that forms a solution to the linear program for a boundary face f of simplex� belongs to a line Lf that intersects �. The simplex that contains the true optimal pointp can therefore be determined in O(1) time by examining, for each simplex �, how the Lflines for its faces intersect �. Since d is a �xed constant, this step can be implemented usingO(n) work.Thus, if c is a large enough constant (which may depend upon d), then this step can be imple-mented using O(w) work.5. Compress the array of halfspaces whose boundary intersects this simplex � and recursively callParLPd on this set of at most n=r halfspaces. The work bound we pass to this recursive call is w,unless this level in the recursion is equal to ci+1, for some integer i � 1, in which case we pass thework bound w=21=c. (To implement this step in the CRCW PRAM model we use �-approximatecompaction [31, 34, 46], where one is given an array A with m of its locations \occupied" and onewishes to map these m distinguished elements to an array B of size (1 + �)m. The time boundis O(log log n) [31] using linear work. Of course, in the EREW PRAM model this step can easilybe implemented in O(logn) time via a parallel pre�x computation [37, 43, 61].)Since this method always recurses in a region � guaranteed to contain the optimal point and weinclude in the subproblem all halfspaces whose boundary intersects �, we will eventually �nd the optimalpoint p. To analyze the time complexity observe that every 2c levels in the recursion the problem sizewill go from n=r to at most n=r2. Thus, the total depth in the recursion tree is O(log logn). Ford = 2, therefore, the running time in a CRCW PRAM implementation is O((log logn)2); hence, therunning time for d > 2 is O((log log n)d) in this model. An EREW PRAM implementation would takeO(logn log logn) time for d = 2; hence, the running time for d > 2 would be O(logn(log logn)d�1) inthis model. As we have already observed, we can set c so that the work needed in each level of therecursion is O(w). Moreover, since we decrease w by a constant factor every c levels in the recursion,the total work needed is O(n). This gives us the following:Theorem 5.1: Linear programming in IRd can be solved using O(n) work and O((log logn)d) timeon a CRCW PRAM, or, alternatively, using O(n) work and O(logn(log logn)d�1) time on an EREWPRAM, for �xed d. 18
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