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Abstract

We give fast and efficient methods for constructing e-nets and e-approximations for range spaces
with bounded VC-exponent. These combinatorial structures have wide applicability to geometric
partitioning problems, which are often used in divide-and-conquer constructions in computational
geometry algorithms. In addition, we introduce a new deterministic set approximation for range
spaces with bounded VC-exponent, which we call the d-relative e-approximation, and we show how
such approximations can be efficiently constructed in parallel. To demonstrate the utility of these
constructions we show how they can be used to solve the linear programming problem in IR? de-
terministically in O((loglogn)?) time using linear work in the PRAM model of computation, for
any fixed constant d. Our method is developed for the CRCW variant of the PRAM parallel com-
putation model, and can be easily implemented to run in O(logn(loglogn)?~!) time using linear

work on an EREW PRAM.

1 Introduction

The study of randomized algorithms and methods for reducing the amount of perfect randomness
needed for geometric algorithms has proven to be a very rich area of research (e.g., see [1, 2, 4, 5, 14,
15, 22, 42, 58, 57]). Indeed, randomized geometric algorithms are typically simpler and more efficient
than their deterministic counterparts and studying the limitation of the randomness needed by such
algorithms often yields insights into the specific properties of randomization that are needed to achieve
this simplicity and efficiency.

Randomized algorithms in computational geometry most often exploit small-sized random samples,
and the derandomization of such algorithms is then done by (1) quantifying the combinatorial properties
needed by random samples, and (2) showing that sets having these combinatorial properties can be
constructed efficiently without using randomization. Interestingly, most of the combinatorial properties
needed by geometric random samples can be characterized by two notions—the e-approzimation [49, 68]
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and the e-net [36, 49]. These concepts are defined for very general frameworks, where one is given a
set system (X, R) consisting of a finite ground set, X, and a set, R, of subsets of X. The subsets in R
are often referred to as ranges, for R typically is defined in terms of some well-structured geometry or
combinatorics. A subset Y is an e-approximation for (X, R) if, for each range R € R,
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Relaxing this requirement a bit, ¥ is said to be an e-net [36, 49] of (X,R) if Y N R # { for each
R € R such that |R| > €| X|. This is clearly a weaker notion than that of an e-approximation, for any
e-approximation is automatically an e-net, but the converse need not be true.

We generalize the e-approximation definition to say that, given non-negative parameters § < 1 and
€ < 1, asubset Y is a d-relative e-approzimation if, for each range R € R,
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This notion is a combined measure of the absolute and relative error between |Y N R|/|Y| and |R|/|X],
and it is somewhat similar to a notion Brénnimann et al. [14] refer to as a “sensitive” e-approximation!.
Note that this notion also subsumes that of an ¢-net, for any é-relative ¢-approximation is automatically
an (¢/(1 — 6))-net.

Our specific interest in this paper is in the design of fast and efficient deterministic methods
for constructing small-sized §-relative e-approximations in parallel and applying these methods to
fixed-dimensional linear programming. Our methods have other applications as well, including fixed-
dimensional convex hull and geometric partition construction [6, 7], but these are beyond the scope of
this paper.

1.1 Previous work on derandomizing geometric algorithms

Before we describe our results, however, let us review some related previous work. The study of random
sampling in the design of efficient computational geometry methods really began in earnest with some
outstanding early work of Clarkson [20], Haussler and Welzl [36], and Clarkson and Shor [22]. One
general type of geometric structure that has motivated much of the derandomization research, and one
that motivated the development of the e-approximation and e-net notions for computational geometry,
is the geometric partition (e.g., see [2, 49]). In this problem, one is given a collection X of n hyperplanes
in IR?, and a parameter r, and one wishes to construct a partition of IR? into O(r?) constant-sized cells
so that each cell intersects as few hyperplanes as possible. One can apply random sampling to construct
such a partitioning so that each cell intersects at most en hyperplanes, for € = log r/r [22, 36]. Chazelle
and Friedman [15] show that one can in fact construct such a partitioning with € = 1/r deterministically
in polynomial time, and Berger, Rompel, and Shor [12] and Motwani, Naor, and Naor [56] show that
one can construct similar geometric partitions for € = logr/r in NC. (Recall that NC denotes the
class of problems solvable in polylogarithmic time using a polynomial number of processors [37, 43].)
Unfortunately, the running time of Chazelle and Friedman’s algorithm is quite high, as are the time
and processor bounds of the implied parallel algorithms (they run in O(log® n) time using a number of
processors proportional to the time bound of Chazelle and Friedman’s algorithm).

A general framework for geometric partitioning emerges from the framework when a range space
(X, R) has constant Vapnik-Chervonenkis [68] (VC)-dimension. Letting R|4 denote the set {ANR: R €

'Bronnimann et al. [14] call a subset A C X a sensitive e-approwzimationif ||ANR|/|A|—|R|/1X|| < (e/2)(e++/|R|/|X]).



R}, the VC-dimension of (X, R) is defined as the maximum size of a subset A of X such that R|4 = 24
(e.g., see [49]). A related and simpler notion, however, is based upon the shatter function,

rr(m) = {|Rlal: A € X,]A| = m).

In particular, we say that (X, R) has VC-exponent [8, 13] bounded by e if 7 (m) is O(m*®). For example,
if (X, R) is the hyperplane set system, where X is a set of n hyperplanes in IR? and R is the set of all
combinatorially distinct ways of intersecting hyperplanes with simplices, then (X, R) has VC-exponent
bounded by d(d + 1). Interestingly, the VC-exponent definition subsumes that of the VC-dimension,
for if (X, R) has VC-dimension e, then it has VC-exponent bounded by e as well [63, 68]. There are
several recent results that show that one can construct a (1/r)-approximation of size O(r?logr) for
any range space with VC-exponent bounded by e in time O(nr¢) for some constant ¢ depending on e
(e.g., see [14, 16, 48, 47, 52, 51]). Chazelle and Matousek [16] give slower NC algorithms using O(nr°)
work? that construct such sets of size O(r**®) for any fixed constant o > 0.

1.2 Our results on parallel geometric derandomization

We give fast and efficient efficient parallel algorithms for constructing e-nets and d-relative e-
approximations. For example, our methods can be implemented in the CRCW PRAM model® to
run in O(loglogn) time using O(nr®) work to produce é-relative (1/r)-approximations of size O (r***)
for any fixed constants § > 0 and « > 0, and some constant ¢ > 1. We also show how to find such
approximations of size O(r?logr) using more time and work. In addition, our methods can be imple-
mented in the EREW PRAM model to run in O(logn) time using O(nr¢) work to produce (0-relative)
(1/r)-approximations of size O(r*T®) for any fixed constant o > 0. Thus, our methods improve the
previous size bounds from those achieved previously by the author [32] while also improving the time
bounds from those achieved previously by Chazelle and Matousek [16]. We also derive similar bounds
for constructing (1/r)-nets. To demonstrate the utility of this result, we show how it can be used to
design a new efficient parallel method for fixed-dimensional linear programming.

1.3 Fixed-Dimensional Linear Programming

The linear programming problem is central in the study of discrete algorithms. It has been applied
to a host of combinatorial optimization problems since the first efficient algorithms for solving it were
developed in the 1940’s (e.g., see [18, 23, 40, 59]). Geometrically, it can be viewed as the problem
of locating a point that is maximal in a given ¥ direction in the polyhedral region P defined by
the intersection of n halfspaces in IR?. Of particular interest is the case when the dimensionality, d
(corresponding to the number of variables), is fixed, as occurs, for example, in several applications of
linear programming in geometric computing (e.g., see [16, 21, 29, 54, 55, 60]) and machine learning
(e.g., see [10, 11]). Indeed, a major contribution of computational geometry research has been to
show that fixed-dimensional linear programming can be solved in linear time, starting with the seminal
work of Dyer [27] and Megiddo [54, 55], and following with subsequent work in the sequential domain
concentrated primarily on reducing the constant “hiding behind” the big-oh in these results (e.g.,

?Recall that the work done by a parallel algorithm is the total number of operations performed by all processors, and
it is never more than the product of the running time and the number of processors needed to achieve that running time.

®Recall that this is the synchronous shared-memory parallel model where processors are allowed to perform concurrent
reads and concurrent writes, with concurrent writes being resolved, say, by requiring all writing processors to be writing
the same common value (this common resolution rule is the one we use in this paper). Alternatively, in the weaker EREW
PRAM model processors may not concurrently access the same memory location.



see [16, 19, 21, 28, 39, 50, 65]) or on building data structures for linear programming queries (e.g.,
see [30, 53]).

In the parallel domain, Alon and Megiddo [4] give analogous results, showing that through the use
of randomization one can solve a fixed-dimensional linear program in O(1) time with very high prob-
ability using n processors in a randomized CRCW PRAM model. The existing deterministic parallel
algorithms are not as efficient, however. Ajtai and Megiddo [3] give a deterministic O((loglogn)?)
time method, but it has a sub-optimal ©(n(loglogn)?) work bound and it is defined for the very
powerful parallel model that only counts “comparison” steps [67]. The only work-optimal determin-
istic PRAM result we are familiar with is a method by Deng [24] for 2-dimensional linear program-
ming that runs in O(logn) time using O(n) work on a CRCW PRAM. Recently, Dyer [26] has given
an O(log n(loglogn)?~!) time method that uses O(nlogn(loglogn)?~!) work in the EREW PRAM
model. In addition, we have recently learned that Sen [66] has independently discovered a CRCW
PRAM method that runs in O((loglogn)?*!) time using O(n) work.

1.4 Our results for parallel linear programming

In this paper we give a deterministic parallel method for fixed dimensional linear programming that
runs in O((loglogn)?) time using O(n) work in the CRCW PRAM model. Thus, our method improves
the work bound and the computational model of the Ajtai-Megiddo method while matching their
running time, which is also an improvement over the time bound of Deng’s method for d = 2. (It is
also slightly faster than the recent result by Sen, which uses an approach that is considerably different
than that for our method.) In addition, our method can be implemented in the EREW PRAM model
to run in O(logn(loglogn)?~!) time using O(n) work, which improves the work bound of the parallel
method by Dyer. At a high level our method is actually quite simple: we efficiently derandomize a
simple recursive procedure using our parallel procedure for e-net construction.

The remainder of this paper is structured as follows. In the next section we review some of the
probabilistic background we will be using in subsequent sections. Since a work-efficient parallel al-
gorithm immediate implies an efficient sequential method, we describe all of our procedures as parallel
algorithms. We begin this discussion in Section 3, where we give fast, but work-inefficient, parallel
methods. In Section 4 we describe how to apply a divide-and-conquer strategy to make these meth-
ods work-efficient. We give applications of these methods to fixed-dimensional linear programming in
Section 5, and we conclude in Section 6.

2 Probabilistic Preliminaries

Our approach to constructing small-sized (1/r)-nets and (1/r)-approximations of range spaces with
bounded VC-exponent is to derandomize a straightforward probabilistic algorithm that is based upon
the random sampling technique [20]. We perform this derandomization using the bounded independence
derandomization technique [5, 41, 44, 45, 64], which assumes our algorithm uses random variables that
are only k-wise independent. Thus, before we give our methods, let us review these concepts (see

also [5, 57]).
2.1 Random sampling

Since the probabilistic algorithm we wish to derandomize is based upon random sampling, let us begin
by saying a few words about this technique. The generic situation is that one is given a set X of n



objects and an integer parameter s, and one wishes to construct a random subset ¥ C X of size s.
Sequentially, this is quite easy to do. In this paper we assume such a sample is chosen by defining, for
each element z; in X in parallel, a random variable X; that is 1 with probability s/n; we use the rule
that z; € YV if X; = 1 [12]. Note that one is guaranteed a set of |Y| = X; + Xy + ---+ X, unique
elements, but its size may not be equal to s, although it is easy to see, by the linearity of expectation,

that F(|Y]) = s.

2.2 k-Wise independence

In order to apply the bounded-independence derandomization technique, we must restrict our set X" of
random variables to be only k-wise independent, i.e., the variables in any subset J C A" are guaranteed
to be mutually independent if |Y| < k. Given a set X of n objects and an integer parameter s, we
define a k-wise independent expected s-sample of X to be a sample determined by n k-wise independent
indicator random variables, Xl(k)7 XQ(k)7 .. .,Xflk), where XZ»(k) = 1 with probability p = s/n. Note that
in this notation X (™ = X hence, we may omit the superscript if the underlying random variables are
mutually independent.

Unfortunately, restricting our attention to k-wise independent indicator random variables prevents
us from directly using the well-known and powerful Chernoff bounds [5, 17, 35, 57] for bounding the
tail of the distribution of their sum. Nevertheless, as shown by Rompel [62] (see also Schmidt, Siegel
and Srinivasan [64]), we may derive something analogous:

Lemma 2.1 [62]: Let X(*) be the sum of n k-wise independent random variables taking on values in
the range [0, 1], with p = E(X(k)), where k is a positive even integer. Then there is a fixed constant

¢ > 0 such that i

Pr(x® — ] > 3) < e (T

for any A > 0.

2.3 Derandomization via bounded independence

We are now ready to review the bounded independence technique for derandomizing a probabilistic
algorithm [5, 41, 44, 45]. We use the parallel formulation of Luby [44], which is based upon a combin-
atorial construction of Joffe [38] (see also Karloff and Mansour [41]). In this formulation, we assume
we have a parallel probabilistic algorithm, Random, which is designed so that all the randomization
is contained in a single choice step. In addition, we assume the following:

1. Random succeeds with constant probability even if the underlying random variables are only
k-wise independent.

2. Bach random variable X; takes on values {zy,%s,..., %}, where m is bounded by a polynomial®
in n.
3. There is a prime number ¢ bounded by a polynomial in n, and integers n; 1, 79, ..., 7, such

that X; takes on value x; with probability n; ;/q (with 3°7., n; ; = ¢). Of course, such a prime
number can easily be found in O(1) time in the CRCW PRAM model using a polynomial number
of processors.

*In our usage each X; will take a value from {0, 1}.



Luby [44] shows that if Random satisfies all of these conditions, then one may construct a space of
¢" points so that each point corresponds to an assignment of values to Xy, Xy, ..., X,,. Moreover, each
X; = x; with probability n; j/q and the X;’s are k-wise independent® Since this space is polynomial in
size, we may therefore derandomize Random by calling it on each of the ¢* sample points in parallel.
Since Random succeeds with constant probability, at least one of these calls succeeds (in fact, a
constant fraction succeed). The output is given by one of these successful calls (where one breaks ties
arbitrarily). The benefit of using this approach is that it is very simple, and, although the processor
costs may be high, the speed of the algorithm is the same as that used in Random (plus an additional
term for performing an “or” on all the results in parallel, which can be done in O(1) time in the CRCW
PRAM model and O(logn) time in the EREW PRAM model [37, 43, 61]).

Having reviewed the necessary probabilistic preliminaries, let us now turn to the problem of con-
structing (1/r)-approximations and (1/r)-nets.

3 O((nr)°")-Work Approximation Finding

Before we describe our work-efficient method, however, we first describe some algorithms for con-
structing (1/r)-nets and (1/r)-approximations that are fast but not work-efficient. This approach
to constructing small-sized approximations and nets of range spaces with bounded VC-exponent is
to derandomize a straightforward probabilistic algorithm, Approx, which is based upon the random
sampling technique [20].

3.1 Geometric random samples

Let (X,R) be a given range space with VC-exponent bounded by e, for some constant e > 0. Given a
parameter 2 < r < | X|, a parameter s that is greater than some fixed constant sy > 1, and a positive
even integer k, let Y be a k-wise independent expected s-sample of X. Let us explore the probability
that Y is an O(s)-sized (0-relative) (1/r)-approximation or (1/r)-net under various assumptions about
s and k. The first lemma establishes the probability that |Y] is ©(s).

Lemma 3.1: Let Y be defined as above, with k > 2 even. Then ||Y| — s| < max{fe, 1}(sk + k?)'/?,
with probability at least 1—1/3, for some constant ¢ > 0. In particular, if s > C'(3)k, for some constant
C(B) > 0, then ||Y] — s| = ©(kY/2s'/2) and also ||Y| — s| < s/2 with probability at least 1 — 1/4.

Proof: Y is an expected s-sample of X determined by n indicator random variables. Since |Y| has
mean fy| = s, we may apply Lemma 2.1 to bound the probability that ¥ does not satisfy the above
size condition as

Pr([Y] = s| > (8e)'/*(sk + £*)'/?) < 1/8,

where ¢ is as in the lemma. The bounds claimed follow from this one. B

Let us therefore bound the probability that Y is a (1/r)-net or a (1/r)-approximation. In particular,
let S be a subset of R, and let Ay (r,S) denote the number of ranges R € S that Y does not (1/r)-
approzimate (i.e., the number of ranges R € S such that ||[YNR|/|Y|—|R|/|X|| > 1/r), and let Ny (r,S)
denote the number of ranges R € S such that |R| > | X|/r but Y N R = @. Of course, we desire these
“error functions” to be as small as possible. The next lemma explores how well a random Y achieves
this goal when Y is defined using k-wise independent random variables.

“Recently, Dietzfelbinger [25] has given an alternative construction that does make use of the availability of a prime gq.



Lemma 3.2: Let (X,R) be a range space. Given a parameter C' < r < |X|, for some C' > 0, a positive
even integer k < n, and a parameter s > rk, let Y be a k-wise independent expected s-sample of X,
and let S be a subset of R. Then the following is true with probability at least 1/2:

1. s — O(kY2sY2) < |V| < s+ O(k'/?5'/2) and in particular s/2 < |Y| < 3s/2.
2. Ay (r,8) < c4¥(ks + E2)k/2k| S| /55,
3. Ny (r,S) < c(2k)5/2r52|8| /5512,

for some constant ¢ > 0.

Proof:  Our proof is to show that properties (2) and (3) hold with probability at least 5/6 each,
given (1), which also holds with probability at least 5/6. We can choose § = 6 from Lemma 3.1 so that
property (1) holds with probability 5/6. So, let us assume that |Y|is s+ s/2, and let us consider the
quantity Ay (r,S). We can write

Ay(f‘, S) = Z YR,

Res

where Yg is an indicator random variable for “Y" does not (1/r)-approximate R”. We bound Ay (r,S)
by considering its expectation, which, by the linearity of expectation, is

E(Ay(r,8)) = > E(Yr) =) Pr(Yg=1).

ResS Res

Let us therefore derive a bound for
Pr(Yp=1) = Pr(llY 0 Rl = [VI(1RI/m)] > [V]/r).
Define random variables U = |Y N R| — |Y N R|(|R|/n) and V = |Y N (X\R)|(|R|/n). Then
Pr(Yr=1) = Pr(JU-V|> [Y]|/r).
Let pyr = E(U) and py = E(V) and note that pp = pyv = (s|R|/n)(1 — |R|/n). Thus,
Pr(Yp = 1) = Pr(ll — jus + v — V| > [V|/r).
It is easy to verify that this latter probability is bounded by
Pr(lU = il > [V]/2r) + Pr(V = | > [V ]/2r).

Note that U = 37;cp Xi(1 = [R|/n) and V' = 37,55 Xi(|R[/n). Thus, we may apply Lemma 2.1 to
bound this probability by

2K[k(s| R|/n) + k2] 2k
‘ V"

) < (4 (ks 4+ E2)* 2pky /s

for some constant ¢, since s > kr > 1 and |R| < n. Therefore,
E(Ay (r,8)) < c(4¥ (ks + k%) /2%)|S|/s*
We may then apply Markov’s inequality (which has no independence assumptions) to show

Pr(Ay (r,S) > 6¢(4" (ks + E2)/?r%)|S| /5" < 1/6.



The bound for Ny (r,S) is proved similarly, but let us give the details here for completeness. We
can write
Ny (r,8) = > ZR,
RES&|R[>|X|/r
where Zp is an indicator random variable for “Y' N R = @ but |R| > |X|/r”. By the linearity of
expectation,

ENy(r,S)) = > E(ZR)
ReS&|R|>n/r

Y. PV N R = (s/n)|R]| > (s/n)|R]),

ReS&|R|>n/r

IN

where n = | X|. Note that |Y' N R| = >";cp X;. Thus, we may apply Lemma 2.1 to derive

NEODI LA
(s/n)?| R?

C(Qk)k/Zrk/Z/Sk/Z7

Pr([lY 0 B[ = (s/n)|R|| > (s/n)|R])

IN

IN

for some constant ¢ > 0, since |R| > n/r and s > rk. Therefore,
EWNy (r,S)) < c(2k)*+2(8| /552

and we may then apply Markov’s inequality to show that Ay (1, S) < 6¢(2k)*/2rk/2|S|/s*/? with prob-
ability 5/6. This completes the proof. m

3.2 EREW PRAM algorithms

Given this lemma, we can apply the bounded-independence derandomization technique to derive de-
terministic (1/r)-net and (1/r)-approximation construction methods for range spaces with bounded
VC-exponent. We assume Ry is computable in O(1) time using work polynomial in |Y'| on an CRCW
PRAM or in O(logn) time on an EREW PRAM. From the above lemma we can derive the following:

Theorem 3.3: Let (X, R) be a range space with VC-exponent bounded by e, for some constant e > 0,
and let n = | X|. Also, let 2 < r < n be a given parameter, and let k > 0 be an even integer parameter.
Then, in the EREW PRAM model, for some constant ¢ > 0, one can construct the following in the
bounds claimed:

1. a (1/r)-approx. A of (X, R) of size ©(r?kn/*) in O((e+ k)logn) time using O(25n“t++1) work,
2. a (1/r)-net B of (X, R) of size ©(rkn®/*) in O((e + k) logn) time using O(2%n“+*+1) work.

Proof: The methods for constructing these sets are straightforward applications of the bounded-
independence derandomization technique using & = R in Lemma 3.2. The main idea is to set the s
parameter in Lemma 3.2 so that Ny (r,5) < 1 and Ay (r,S) < 1 (i.e., since they are integer values,
Ny (r,S) = 0 and Ay (r,5) = 0), while [Y] is O(s), with probability 1/2, and then derandomize the
implied construction by the bounded-independence derandomization technique. For example, each
probability of the form s/n can be approximated by [sq/n]/q, and there is a simple, effective method
for testing if a set satisfies the needed conditions to be a (1/r)-net or (1/r)-approximation in O(logn)



time using a linear number of processors. Thus, since |R| is O(n®), and the probability space in the
proof of Lemma 3.2 has size ¢* = O((2n)*), then performing the (1/r)-net or (1/r)-approximation
test for the set Y determined by each point in the probability space in parallel requires O(2*FpetF+1)
processors. A constant fraction of these points are guaranteed to yield satisfactory results, so by taking
one such successful test (arbitrarily) we can construct the desired set. Since all the test computations
can be performed in O(logn) time and selecting a single successful outcome can be done in time
O(log(2knt*+1)) = O((e + k) logn), the performance bounds of the theorem follow. m
This, in turn, implies the following:

Corollary 3.4: Let (X,R) be a range space with VC-exponent bounded by e, for some constant e > 0,
and let n = | X|. Also, let 2 < r < n be a given parameter and let & > 0 be any fixed (small) constant.
Then, in the EREW PRAM model, for some constant ¢ > 0, one can construct the following in the
bounds claimed:

1. a (1/r)-approx. A of (X,R) of size ©(r?n®) in O(logn) time using O(n¢) work with ¢ = e(1 +
1/a)+1,

2. a (1/r)-approx. C' of (X, R) of size ©(r*logn) in O(log?n) time using O(n*Z+1oe™+1y work,
3. a(1/r)-net B of (X, R) of size ©(rn®) in O(logn) time using O(n®) work with ¢ = e(14+1/a)+1,
4. a (1/r)-net D of (X, R) of size ©(rlogn) in O(log? n) time using O(n°?Ho8™)+1) work.

Proof: Simply apply Theorem 3.3. For A and B take k = ¢/a. For C' and D take k = elogn. m
Actually, we can apply a simple “recursive refinement” technique to improve this to the following:

Theorem 3.5: Let (X, R) be a range space with VC-exponent bounded by e, for some constant e > 0,
and let n = | X|. Also, let 2 < r < n be a given parameter and let & > 0 be any fixed (small) constant.
Then, in the EREW PRAM model, for some constant ¢ > 0, one can construct the following in the
bounds claimed:

1. a (1/r)-approx. A of (X, R) of size O(r***) in O(logn) time using O(n°) work with ¢ = e(1 +
(44 2max{2,a})/a)+ 1,

2. a (1/r)-approx. C of (X, R) of size O(r*log r) in O(logn+log? r) time using O(n®*+t! 4 p9¢los(er)
work,

3. a (1/r)-net B of (X, R) of size O(r'*®) in O(logn) time using O(n°) work with ¢ = e(1 + (4 +
2max{2, a})/a) + 1,

4. a (1/r)-net D of (X,R) of size O(rlogr) in O(logn + log?r) time using O(n%+! 4 poclos(er))
work.

Proof: The structure of the proof is to apply the previous corollary to recursively refine our ap-
proximations to be of a size depending only on r, not n. The main idea of this approach is to take
advantage of an observation of Matougek [47] on an additive property of e-appromations, which states
that an e-approximation of a d-approximation of a set X is itself an (e+ d)-approximation of X. Thus,
to construct the set A we proceed as follows: If r > n!/3, then we construct A immediately using
Corollary 3.4(1.) to get a 1/r-approximation of size O(r?n”) where 3 = 8a. This yields a set of size
O(r**®) in time O(logn), which for the sake of an inductive argument we characterize as being at



most by logn — by logr, for constants bg > by > 1. Otherwise, if r < nl/g, then we recursively construct
a (1/r*)-approximation A’ of (X, R) of size at most c;(r?)>T®, for some constant ¢; (to be defined
below). By induction, this recursive call takes time at most bglog n — by log(r?). We then apply Corol-
lary 3.4(1.) to construct a [(1/r) — (1/r%)]-approximation A of A’ with size co[r2/(r — 1)]%¢; (r2)2+)8,
for a constant § = a/(4+2a) < 1/2. By the additive property of e-approximations, the set A will be a
(1/r)-approximation of (X, R). Moreover, if we choose ¢; > (4¢o)"/(1=9) then |A| < ¢;r2+2. This final
call to the method of Corollary 3.4 takes time O(log|A|), which is at most by logr, for some constant
by > 0. Thus, the total time required is bglogn — by log(rz) + by log r, which is at most bglogn — by log r,
if by > by. For the work, note that the computation is a sequence of applications of Corollary 3.4(1.)
on sets of size rapidly decreasing. At the bottom of the recursion (when the approximation size is
largest), Corollary 3.4(1.) is used with # = 8«, while at the other steps Corollary 3.4(1.) is used with
B = /(44 2a). Hence the work is O(n°) with ¢ = e(1 + (4 + 2max{2, a})/a) + 1,

The set C' is constructed similarly, in that we first construct the set A as above to be a (1/2r)-
approximation, with say a = 1, and we then apply Corollary 3.4(2.) to construct a (1/2r)-
approximation of even smaller size (we leave the details to the reader). Likewise, for the sets B
and D we first construct a (1/2r)-approximation and then find a (1/2r)-net of that, taking advantage
of the additional properity that an e-net of a é-approximation of a set X is an (e + J)-net of X. m

Note that our methods for constructing A and B are in the complexity class NC for all values of r,
but our methods for constructing C' and D are in NC only for constant values of r.

3.3 CRCW PRAM algorithms

Unfortunely, we cannot immediately derive Poly(loglogn)-time methods for the CRCW PRAM from
the above analysis, for checking if a given Y satisfies the condition for being a (1/r)-approximation
requires Q(log n/ loglog n) time using a polynomial number of processor, by a simple reduction from the
parity problem [9]. We can avoid this lower bound, however, by checking this condition approximately
rather than exactly.

To do this we use a fast method for A-approzimate counting [31, 33], where one wishes to compute
the sum of an array of n bits with a relative error of A\. That is, if x is the number of 1’s in the array,
then we desire a value 2’ such that /(1 4+ X) <2’ < (1+ Na.

Lemma 3.6 [31]: Performing A-approximate counting of an n-element Boolean array, with A =
(log N)=°, can be done in O(1) time using O((n + N)®)) work on a CRCW PRAM, for any fixed
constant b > 0.

We use this lemma to estimate the sizes |Y N R|, |Y|, and |R|, all of which involve computing the
sum of O(n) bits. Let us therefore denote each of the estimates we need as |Y N R/, |Y/|, and |R|,
respectively. (We may assume that | X| is known explicitly.) Say that a set Y is A-estimated to be a
d-relative ¢-approximation if

YR JRK G IRE
Y| X=X

Lemma 3.7: If Y is A-estimated to be a §-relative e-approximation, then Y is a (6 4 30)-relative
2e-approximation, provided X < 1/4.

Proof: Suppose Y is A-estimated to be a d-relative e-approximation. Observe that |[Y N R|/|Y]| <
(1+N4Y NnR|'/|Y| and that |R|'/|X| < (1+ A)|R|/|X]|. Thus, by the definition of Y, we can derive
the following bound on ||Y N R|/|Y|— |R|/|X]|:

10



|YOR|’_|R|’+‘IYﬁR|_|YﬁR|' Bl Bl
TP R v I O B [P R
7 . ORI R
S+ N+ ((1+ 1) -1 A
|R)| Y N R/
= A+1+NN)—+ X2+ .
We also know that
Y N R | &'
146
v S TRt
|R|
< (I+ANA+0) 7 +e
(L 2)(14+8) 5

Thus, we can combine the above bounds to derive the following bound on | |Y N R|/|Y]| — |R|/|X]|:

|R| |R|
(A (L4 2)8) I+ AR+ ((1—|—/\)(1—|—5)m—|—e) be
= (A+ (1+/\)5+/\(2+/\)(1+/\)(1+5))%+ (I14+ A (24 N)e)
|R|

< (6A+ 35)m + 2¢,

provided A < 1/4. m
Likewise, we have the following;:

Lemma 3.8: If Y is an c-approximation, then Y will be M-estimated to be a 4A-relative 2¢-
approximation, if A < 1/4.

Proof: Suppose Y is an e-approximation. Then, observing that |Y N R|"/[Y] < (1+ A)?|Y N R|/|Y],
we can bound | |Y N R|'/|Y| —|R|'/|X]|]| by

Y NR| |R] Y NR| |YNR| |R| |R|
TIX B

Y] RY Y| X[
Y NRl AR/
< e+ A2+ A
CHYT R
|R| AR
< e—l—/\(2—|—/\)<——|—e)—|——
RY RY
(1+N)]R/’ ) MR
< e+ A2+ <7+e +
YTy X]
R/
< e(l—l—/\(2—|—/\))—|—(/\(Q—I—/\)(l—l—/\)—l—/\)|X|
R/
< 2e+4A ,
RY
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provided A < 1/4. m
Say that Y is A-estimated to be an e-net if Y N R # () for each R with |R|" > €/ X|. We will make
use of the following observation.

Lemma 3.9: If'Y is A-estimated to be an e-net, then Y is a (1+ A)e-net. If Y is an e-net, then Y will
be A-estimated to be a (1 + A)e-net.

These lemmas, together with previous results, imply the following:

Theorem 3.10: Let (X,R) be a range space with VC-exponent bounded by e, for some constant
e > 0, and let n = | X|. Also, let 2 < r < n be a given parameter and let « > 0 be any fixed (small)
constant. Then, in the CRCW PRAM model, for some constant ¢ > 0, one can construct any of the
following in the bounds claimed:

1. a (log N)*-relative (1/r)-approximation A of (X, R) of size ©(r*n®) in O(1) time using O(n° -
(n 4+ N)®)) work with ¢ = e(14 1/a),

2. a (log N)~*-relative (1/r)-approximation B of (X,R) of size ©(r?logn) in O(1) time using
O (neGtlogn) . (5 + N)F () work,

3. a(1/r)-net C of (X, R) of size ©(rn®) in O(1) time using O(n°) work with ¢ = e(1+1/a)+ f(1),
4. a (1/r)-net D of (X, R) of size ©(rlogn) in O(1) time using O (e +/ () work,

Proof: Let us begin with the set A. We can set the parameter s = ©(r?n®) in Lemma 3.2 so that
any expected s-sample Y is a (1/4r)-approximation with probability at least 1/2. By Lemma 3.8, this
implies that in applying the bounded independence derandomization technique there will be some Y
that is A-estimated to be a 4A-relative (1/2r)-approximation. But, by Lemma 3.7, this in turn implies
that Y is a (18\)-relative (1/r)-approximation. By taking A = (log N)~(*+1) we therefore force such a
Y to be a (log N)~-relative (1/r)-approximation (for N larger than some constant). The rest of the
construction, then, is a straightforward (CRCW PRAM) implementation of the bounded-independence
derandomization technique following the argument of the proof of Theorem 3.3. For the set ', using
Lemma 3.9, it suffices to use estimates within a constant factor (so N is a constant). The methods for
constructing the other sets are similar applications of the bounded-independence technique. ®

As in our EREW algorithms, we can apply a composition technique to improve the size bounds
in the above constructions. Unlike our EREW methods, however, our CRCW PRAM size-efficient
methods will not run quite as fast as the size-inefficient methods of Theorem 3.10. Our methods are
based in part on the following additive property for §-relative e-approximations.

Lemma 3.11: IfY is a 01-relative ¢;-approximation for (X, R) and 7 is a dz-relative ez-approximation

for (Y, Rly), then Z is a (61 + 82 + 8109)-relative (¢4 (1 + 82) + €2)-approximation for (X, R).

Proof: Let R be a range in R. We can write

Z0 R IRl |ZﬁR|_|YﬂR|+‘|YOR|_@
1Z| X[~ 1Z| Y| Y] | X|
Y N R|
Y]

+ e +51@+61
| X]

02
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R R
&3 ((1+51)%+61) + e + 51%—%61

IN

R
= (01 +6+ 5152)% + e (1+ d2) + €2,
which establishes the lemma. B
We also use the following observation:

Lemma 3.12: If'Y is a 0-relative e;-approximation for (X, R) and Z is an ez-net (Y, R|y), then 7 is
a (€1 +€2)/(1 — 6)-net for (X, R).

Our main CRCW PRAM result, then, is the following:

Theorem 3.13: Let (X,R) be a range space with VC-exponent bounded by e, for some constant
e > 0, and let n = | X|. Also, let 2 < r < n be a given parameter and let « > 0 be any fixed (small)
constant. Then, in the CRCW PRAM model, for some constant ¢ > 0, one can construct any of the
following in the bounds claimed:

1. a (log N)~*-relative (1/r)-approximation A of (X, R) of size O(r**<) in O(loglogn) time using
n¢ - (n+ N work with ¢ = e(1+ (4 4+ 2max{2, a})/a),

Of
2. a (log N)~"-relative (1/r)-approximation C of (X, R) of size O(r?logr) in O(loglog n) time using
O(n® - (n+ N)/®) 4 pelogr . (r 4 N)/()) work,

Lo

. a (1/r)-net B of (X, R) of size O(r'+2) in O(loglogn) time using O(n°/*) work, or

4. a (1/r)-net D of (X, R) of size O(rlogr) in O(loglogn) time using O(n°® + r¢l°8") work.
Proof: Let us address the construction of the set A. We describe it as a recursive procedure.
If » > n'/% then we apply Theorem 3.10 to construct a (2loglogn — loglogr)(log N)~(+Y_relative
(1/r)-approximation of size ©(r2T) in O(1) time using O((n + N)/®)) work. For the purposes of the
recursion, we refer to the running time of this method as being by loglog n — by loglog r, for constants
by > by > 1. If r < n'/%, then we recursively construct a (2loglogn — loglog(r?)) (log N) =+ relative
(1/r%)-approximation A’ of size at most ¢;(r?)**2, for some constant ¢; > 1 (which we set below). We
inductively assume this takes time at most by loglogn — byloglog(r?). We then apply Theorem 3.10
to construct a (log N)~(+2)-relative [(1/r) — (1/r%)(3/2)]-approximation A of A’ in O(1) additional
time using O((n + N)/**+?)) work. By Lemma 3.11 A is a (2loglogn — loglogr)(log N)*-relative
(1/r)-approximation of (X, R). The size of A is at most co[r?/(r — 3/2)]2(c1r*+2%)7], which is at most
c1r?T if we choose the constants 8 < a/(4 + 2a) and ¢; > (1600)1/(1_5). Likewise, the total running
time of constructing A is by loglogn — by loglog(r?) + bs, for some constant b3 > 1. This, of course, is
b1 loglogn — by loglog r, if by > bs.

Our method for constructing C' is to first construct A as a (log N)~(+D_relative (1/2r)-
approximation and then construct (log N)~(+1)-relative (1/3r)-approximation of that. The sets B
and D are constructed in a similar manner, in that we first find an (1/5)-relative (2/5r)-approximation
and then form an (2/5r)-net of that, which will be a (1/r)-net for (X, R) by Lemma 3.12 (we leave the
details to the reader). m
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4  O(nr°")-Work Approximation Finding

As already mentioned, the methods of the previous section run very fast in parallel. Their work
complexities are quite high, however. In this section we show how to reduce this significantly.

Let (X,R) be a range space with VC-exponent bounded by e. We need another simple lemma,
which is an adaptation of an observation made by Matousek [47].

Lemma 4.1: Suppose Yi,Ys,...,Y,, are d-relative e-approximations for disjoint range spaces
(X1,R|x,), (X2, Rl|x,), -+, (X, R|x,,), respectively, where the X;’s have equal cardinality, and
X=XjUXoU---UX,,. Then Y =Y, UY,U---UY,, is a d-relative e-approximation for (X, R).

Proof: For any R € R, we can write

Yor R RS0 A
| X m = |Yi| | X
Z Yin R i
= 1Y | X
Moreover, RN X; is a range in R|x,. Therefore, for i = 1,2,...,m,
YiN R RN X,
_ < gl
Y] | Xl | X
Thus,
Y NR| |R| ( |RﬁX| )
| X =\ X
_ |R| .
IXI

which establishes the lemma. B

Given a range space (X, R) with bounded VC-exponent, and a parameter 2 < r < n, we wish to
develop an efficient divide-and-conquer method for constructing a dq-relative (1/r)-approximation Y
of (X, R) of size O(r?*%) using only O(nr®™M)) work, for any small constants § > 0 and a > 0, where
n = |X|. We achieve this by designing an algorithm, Approx, which almost achieves this goal, in
that it has a good work bound, but doesn’t quite achieve the size bound (the Approx procedure is a
modification of earlier simple divide-and-conquer method of Matougek [48]). We can then follow this
by a call to Theorem 3.13 to improve the size bound, while keeping the work bound at O(nro(l)).

We define Approx in terms of potential functions, §(n) and €(n), that dictate the relative error
and absolute error of the approximation that we return. Specifically, given any fixed constant §y < 1/4,
Approx produces a d(n)-relative e(n)-approximation, Y, of (X, R), where

1
) < 8y — 1
(n) < do Togn (1)
and 1 1N/l N1
ogn — wlogn —
< - 2
€(n) < ( log n ) ( wlogn ) r’ (2)
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where p is a constant strictly less than 1/2f(1), where the function f is as in Lemma 3.6. This is,
of course, a slightly stronger approximation than a dg-relative (1/r)-approximation would be, but this
formulation will prove easier to work with in our recursive algorithm.

Algorithm Approx(r, (X,R)):
1. If n < 72, then return X.

2. Otherwise, divide X into m equal-sized subsets X1, Xg, ..., X, and call Approx(r’, (X;, R|x,))
recursively for each ¢ in parallel, where v = r and m = n” with 0 < v < 1 being a constant to be
set in the analysis. (Note: if plogn'=" < 1/8, then we do not recurse, but simply return X, so
as to preserve the invariant of Equation (1).)

3. Let Y; be the set returned by recursive call i, and let Y/ = YUY U---UY,,. Apply Theorem 3.10
(not Theorem 3.13) to find a ¢'(n)-relative ¢ (n)-approximation Y of (Y, R|y/), where

§'(n) = v
(n) 2p(1 — ) logn

0= (=) -

and

4. Return Y.

Lemma 4.2: Approx produces a §(n)-relative ¢(n)-approximation Y of X of size O(r®n?). The work
bound can be made O(nr®), for some constant ¢ > 1, and the running time is O(loglogn) in the CRCW
PRAM model.

Proof: Our proof is an inductive argument based upon Lemmas 4.1 and 3.11. In particular, let us
inductively assume, by Lemma 4.1, that Y/ is a §(n!™7)-relative ¢(n'~7)-approximation, where §(n) and
¢(n) are defined as in Equations (1) and (2). Moreover, let us inductively assume |Y'] is O (n7r3n1=7)7).
By Lemma 3.11, Y will then be a (§(n'~7)+4&(n)+8(n'=7)& (n))-relative (e(n' =) (1448(n' 7)) +¢€ (n))-

approximation. By our definition of §'(n) we have

SN 48 (n) +8(n ) (n) < S(n'TT) + 28" (n)
1 g
< b —
T e e T R
— gy 1
wlogn
= §(n).

In addition, by our definition of € (n), we have that e(n'=7)(1 + §(n'=7)) + €'(n) is bounded by
logn!=" — 1 plogn!=" — 1\ 1 ~y ~y 1

- - -1+ — |t s =

log n1=7 plog nt= r 2(1 — y)plognl— 2(1 —~)logn/ r

logn!=" — 1 ,ulognl_w—l_l_ ~y 1+< ~y )1
log n1— plog nt= wlognt= | r 2lognt=7 ) r
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logn!=" — 1 (ulogn—l)l_l_( ~y )1
log n1— wlogn r 2lognt= /) r
log n'~ W—l ~y )

log n1=7 log nl=7
<logn - 1) (,ulogn - 1) 1
log n wlogn r

The running time of this algorithm is characterized by the recurrence

T(n) = T(n'™7) +0,

IN

P

for some constant b > 1, which implies that 7 is O(loglog n). To analyze the size bound, let us induct-
ively assume that the size of the approximation returned by each recursive call is at most ¢;r3n(1=7)7,
for some constant ¢; > 1. Thus, by Theorem 3.10, the size of the approximation produced can be made
to be at most ¢o(rlog n)2(01n7r3n(1_7)7)1/4. This is at most ¢qr3nY if ¢4 > 03/3. The work complexity,
W (r,n), is therefore bounded by the recurrence equation

W (r,n) < W (r,n' ™) 4+ O([n7r¥n =07 . pf ()

where ¢ is the constant in the work bound of Theorem 3.10 (note that in this case ¢ depends only on
e, the bound on the VC-exponent). If we choose v to be a constant strictly smaller than 1/4¢, then
W (r,n) will be O(nr®). m

This lemma can in turn be used to derive work-efficient methods for constructing approximating
subsets, as the following theorem shows:

Theorem 4.3: Let (X, R) be a range space with VC-exponent bounded by e, for some constant e > 0.
Also, let constants o > 0 and 0 < § < 1/4 be given. Then, for some constant ¢ > 0, one can produce

the following sets in the bounds claimed in the CRCW PRAM:

1. a d-relative (1/r)-approximation A of (X, R) of size O(r?**®) in O(loglogn) time using O(nr¢)
work,

2. a b-relative (1/r)-approximation C' of (X, R) of size O(r?logr) in O(loglogn) time using
O(nrele"y work,

a (1/r)-net of (X, R) B of size O(r'**) in O(loglogn) time, using O(nr°) work,
a (1/r)-net of (X, R) D of size O(rlogr) in O(loglogn) time using O (nrc'°8") work.

Proof: The result for A follows by using Lemma 4.2 to produce a §/3-relative (1/2r)-approximation
of size O(r?’nﬁ)7 where (3 is the inverse of the constant in Theorem 3.13. We follow this by a call to
Theorem 3.13 to find a 6/3-relative (1/3r)-approximation of that. This set will be a dé-relative (1/r)-
approximation of (X,R), which is produced in O(loglogn) time using O(nr°) work. The sets B, C,
and D are constructed similarly, using techniques that are now familiar. ®

For analogous results for the EREW PRAM model, we may use the following theorem:

Theorem 4.4: Let (X,R) be a range space with VC-exponent bounded by e, for some constant e > 0.
Also, let o be any positive constant. Then, for some constant ¢ > 0, one can produce the following
sets in the bounds claimed in the EREW PRAM:
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1. a (1/r)-approximation A of (X, R) of size O(r***) in O(logn) time using O(nr¢) work,

2. a (1/r)-approximation C' of (X, R) of size O(r*logr) in O(logn + log? r) time using O(nr¢lo8")
work,

3. a (1/r)-net of (X,R) B of size O(r'T®) in O(logn) time, using O(nr<) work,
4. a (1/r)-net of (X,R) D of size O(rlogr) in O(logn + log? r) time using O(nr¢'°8") work.

Proof: The method is similar to that used to derive the CRCW PRAM bounds, expect that in this
case we use Theorem 3.5 (in Step 3) and define Approx to produce a (0-relative) ¢(n)-approximation

h
where ()_(108;”_1)1
Q= logn ) r’
by defining
7y 1
‘0= (o) v

The time bound for such an EREW PRAM implementation can be characterized by the recurrence
T(r,n) <T(r,n'=) + O(logn), which is O(logn). m

In the next section we explore applications of these two theorems to fixed-dimensional linear pro-
gramming.

5 Linear Programming in Fixed Dimensions

Recall the geometric view of fixed-dimensional linear programming. For simplicity of expression, let
us assume that the optimal point p exists and is defined by the intersection of exactly d halfspace
boundaries. Let us also assume that the origin, o, is contained in P, the polytope defined by the linear
constraints. These assumptions can be removed with minor modifications to our method (similar to
those used, for example, by Seidel [65]). Without loss of generality, we may additionally assume that
7= (0,0,...,0,—1), i.e., we are interested in the “lowest” vertex in P. Our method for finding p is
inspired by the methods of Ajtai and Megiddo [3] and Dyer [26], but is nevertheless quite different. We
find the optimal solution p by calling the following recursive procedure as ParLP4(X, 2n).

Procedure ParLP (X, w):
Output: An optimal solution p for X (using work that is O(w)).

1. Let n = | X|. If n < ng, find the optimal solution by any “brute force” method, where ng is a
constant set in the analysis, and return. Likewise, if d = 1, then compute the minimum of the
numbers in X and return.

2. Compute a (1/r)-net Y for X of size O(r'*) (in the hyperplane set system), where r = (w/n)'/°
such that ¢ is a constant to be set in the analysis and « is a sufficiently small constant. By
Theorem 4.3, the time needed for this step is O(loglogn) in a CRCW PRAM implementation or
O(logn) time in an EREW PRAM implementation, by Theorem 4.4; the work needed for this
step can be made O(w) if ¢ is a constant larger than the constants of Theorems 4.3 and 4.4.

3. Compute the intersection of the halfspaces in Y and a canonical triangulation 7 [15] of this
polyhedral region (with the origin as base apex), using a “brute force” method that uses O(r¢)
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work. (In a CRCW implementation this can be done in O(loglogr) time; an EREW implement-
ation takes O(logr) time. Both implementations are simple applications of parallel minimum-
finding [37, 43, 61] and are left to the reader.)

4. Using ParLP;_; as a subroutine, determine the simplex ¢ in 7 that contains p. This is imple-
mented as follows:

(a) For each simplex ¢ in 7 compute the intersection of the halfspaces in X with each of o’s
(d — 1)-dimensional boundary faces. This takes O(1) time with O(nr'™®) work, which is
Ow)if e>1+a.

(b) For each simplex boundary face f we use ParLP,_; to solve the linear program defined by
f and the halfspaces that intersect f. Assuming that ParLP;_; uses linear work, this step
can be implemented using O((n/r)r(+®)L4/2]) work, which is O(w) if ¢ > (1 + ) |d/2] — 1.

(c) Each point that forms a solution to the linear program for a boundary face f of simplex
o belongs to a line Ly that intersects 0. The simplex that contains the true optimal point
p can therefore be determined in O(1) time by examining, for each simplex o, how the L
lines for its faces intersect o. Since d is a fixed constant, this step can be implemented using

O(n) work.

Thus, if ¢ is a large enough constant (which may depend upon d), then this step can be imple-
mented using O(w) work.

5. Compress the array of halfspaces whose boundary intersects this simplex ¢ and recursively call
ParLP, on this set of at most n/r halfspaces. The work bound we pass to this recursive call is w,
unless this level in the recursion is equal to cz+ 1, for some integer ¢ > 1, in which case we pass the
work bound w/21/c. (To implement this step in the CRCW PRAM model we use X-approzimate
compaction [31, 34, 46], where one is given an array A with m of its locations “occupied” and one
wishes to map these m distinguished elements to an array B of size (1 + A)m. The time bound
is O(loglog n) [31] using linear work. Of course, in the EREW PRAM model this step can easily
be implemented in O(logn) time via a parallel prefix computation [37, 43, 61].)

Since this method always recurses in a region ¢ guaranteed to contain the optimal point and we
include in the subproblem all halfspaces whose boundary intersects o, we will eventually find the optimal
point p. To analyze the time complexity observe that every 2c¢ levels in the recursion the problem size
will go from n/r to at most n/r?. Thus, the total depth in the recursion tree is O(loglogn). For
d = 2, therefore, the running time in a CRCW PRAM implementation is O((loglogn)?); hence, the
running time for d > 2 is O((loglog n)?) in this model. An EREW PRAM implementation would take
O(log nloglogn) time for d = 2; hence, the running time for d > 2 would be O(logn(loglogn)?~') in
this model. As we have already observed, we can set ¢ so that the work needed in each level of the
recursion is O(w). Moreover, since we decrease w by a constant factor every ¢ levels in the recursion,
the total work needed is O(n). This gives us the following:

Theorem 5.1: Linear programming in IR? can be solved using O(n) work and O((loglogn)?) time

on a CRCW PRAM, or, alternatively, using O(n) work and O(log n(loglogn)?~!) time on an EREW
PRAM, for fixed d.
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6 Conclusion

We have given a general scheme for derandomizing random sampling efficiently in parallel, and have
shown how it can be used to solve the fixed-dimensional linear programming problem efficiently in
parallel. Interestingly, Amato, Goodrich, and Ramos [6, 7] have shown how to use such methods to
derive efficient parallel algorithms for d-dimensional convex hull construction, planar segment intersec-
tion computation, (1/r)-cutting construction, and d-dimensional point location. We suspect that there
may be other applications, as well.
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