I, down to /s, it is a weakly monotone increasing function. But in a monotone function,
a value can only appear once (or in one continuous range). Since the function is divided
into two weakly monotone regions, a fixed value can appear at most twice (or in two
continuous ranges). This suffices to show that there can be at most two intersections
between 7(I,) and O,, one in each weakly monotone region of the distance function. Note
that each intersection can be either a single point or a connected portion of an edge. The
edge intersection possibility follows from the fact that the functions are weakly monotone
rather than strictly monotone.

Next we note that the same holds for I; and O, except that with the left chain of
Ips, the distance function is first weakly monotone increasing, and then weakly monotone
decreasing, as y goes down from ¢; to £;. Thus there are at most two intersections (points
or connected portions of segments) between I, and O,, and at most two intersections
between [; and O,. It remains only to show that if 7(1,.) intersects O, twice, then 7(I;)
does not intersect O, at all, and vice versa. For this we need note only that in order for
7(I;) to intersect O, twice, 7 must be less than the minimum of the distances from b to &'
and from ¢ to ¢/, which are the largest values of the two monotone portions of the width
function. But this condition implies that 7(I;) does not intersect O, at all. Similarly, for
1) to intersect O, twice we need 7 to be greater than the maximum of the distances from
b to b’ and from ¢ to ', which would preclude an intersection between 7(I,) and O,. O

20

Figure 5: Critical chains that might intersect

Appendix: Proof of Theorem 1

Theorem 1 Given a polygon P, a distance J, and a translation 7, the (linearized) offset
polygons 7(Ips) and Ops intersect at most twice, where each intersection may be a point
or (in the degenerate case) a segment.

Proof Assume without loss of generality that 7 is parallel to the positive direction
of the z-axis. Let ¢; and /¢, be the upper and lower parallel supporting-lines of Ipg
in the direction of 7 (see Figure 5(a)). Let ¢t and b be the top and bottom vertices of
Ips, respectively (the points of tangency with ¢; and ¢5). Let ¢’ and &' be the points of
intersection between /; and ¢, and the right side of Ops. Finally, let I; and I, be the left
and right chains of Ips determined by the points b and ¢, and let O, be the right chain
of Op, (connecting ¢’ and ¥').

We observe that the translation of Ips remains in the horizontal slab between ¢; and
f5. Thus the only place where it can intersect Op;s is on O,. We can thus simplify our
diagram to Figure 5(b). We need now only show that 7(I,) can intersect O, at most twice,
and that 7(I;) can intersect O, at most twice, and furthermore that if 7(/,) intersects O,
more than once then 7(I;) does not intersect O, at all and vice versa: if 7(/;) intersects
O, more than once then 7(I,) does not intersect O, at all. We can derive all these claims
from the following observations.

First, consider any intersection point z' between 7(I,) and O,. Since z' is on 7(Z,), it
must be the translation 7(z) of a point z on I,. But 2’ also lies on O,. Thus we conclude
that intersections between 7(I.) and O, occur precisely at points where O, is exactly a
(horizontal) distance of 7 from I,. How many such points are there on 0,7 Consider
the function that, for values of y ranging from ¢; down to /5, gives the distance in the 7
direction from I, to O,. Because these are inner and outer offset polygons of the same
polygon P, this is a weakly monotone decreasing function on y as y decreases from /¢
down to the rightmost point of I,.. Similarly, as y continues from this rightmost point of

19

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

C.A. Duncan, M.T. GoobpricH, AND E.A. Ramos, Efficient approximation and optimization
algorithms for computational metrology, Proc. 8th Ann. ACM-STIAM Symp. on Discrete Algorithms,
New Orleans, LA, 1997, 121-130.

M. DICKERSON AND D. SCHARSTEIN, Optimal placement of convex polygons to maximize point
containment, Proc. 7th Ann. ACM-SIAM Symp. on Discrete Algorithms, Atlanta, GA, 1996, 114—
121.

W.P. DoNG, E. MAINSAH, P.F. SUuLLIVAN, AND K.F. STouUT, Instruments and Measurement
Techniques of 3-Dimensional Surface Topography, Three-Dimensional Surface Topography: Mea-
surement, Interpretation and Applications (K.F. Stout, Ed.), Penton Press, Bristol, PA, 1994.

A. EFrAT, M. SHARIR, AND A. Ziv, Computing the smallest k-enclosing circle and related
problems, Computational Geometry: Theory and Applications, 4 (1994), 119-136.

D. EPPSTEIN AND J. ERICKSON, Iterated nearest neighbors and finding minimal polytopes, Dis-
crete €& Computational Geometry, 11 (1994), 321-350.

L. GuiBas, R. MoTwaANI, AND P. RAGHAVAN, The robot localization problem, in: Algorithmic
Foundations of Robotics, A K Peters, Ltd., 1995, 269-282.

M.E. HOULE AND G.T. ToUSSAINT, Computing the width of a set, Proc. 1st Ann. ACM Symp.
on Computational Geometry, 1985, 1-7.

D.P. HUTTENLOCHER AND S. ULLMAN, Recognizing solid objects by alignment with an image,
Int. J. of Computer Vision, 5 (1990), 195-212.

D. KIRKPATRICK AND J. SNOEYINK, Tentative prune-and-search for computing fixed-points with
applications to geometric computation, Fundamental Informatice, 22 (1995), 353-370.

V.B. LE aND D.T. LEE, Out-of-roundness problem revisited, IEEE Trans. on Pattern Analysis
and Machine Intelligence, 13 (1991), 217-223.

H.P. LENHOF AND M. SMID, Sequential and parallel algorithms for the k closest pairs problem,
Int. J. Computational Geometry and Applications, 5 (1995), 273-288.

A.A.G. REQUICHA, Mathematical meaning and computational representation of tolerance speci-
fications, Proc. Int. Forum on Dimensional Tolerancing and Metrology, 1993, 61-68.

M. SMID AND R. JANARDAN, On the width and roundness of a set of points in the plane, Proc.
7th Canadian Conf. on Computational Geometry, Québec City, Québec, Canada, 1995, 193-198.

V. SRINIVASAN, Role of sweeps in tolerance semantics, Proc. Int. Forum on Dimensional Toler-
ancing and Metrology, 1993, 69-78.

K. Swanson, D.T. LeEg, AND V.L. Wu, An optimal algorithm for roundness determination on
convex polygons, Computational Geometry: Theory and Applications, 5 (1995), 225-235.

C.-K. Yapr, Exact computational geometry and tolerancing metrology, in: Snapshots of Compu-
tational and Discrete Geometry, Vol. 3, Technical Report SOCS-94.50 (D. Avis and P. Bose, eds.),
McGill School of Computer Science, 1995.

18

translation and rotation variant, the static and dynamic modes of input points, and
decision and optimization versions of the problems. There are several possible further
research directions which include the following:

1. Minimizing the value of ¢ such that the placement of the given polygon annulus
contains some given value k£ < n of them (offset-polygon partial containment).

2. Generalizing from a polygon to a collection of polygonal chains. (This variant often
occurs in applications to robot localization.)

3. Generalizing from polygons to smooth shapes.

4. Computing approrimate solutions to all of these problems.

5. Proving lower bounds for the problems.

6. Solving similar problems in higher dimensions.

7. Analizing the expected value of h in the pruning version of the on-line algorithm
(Section 4.3).

References
[1] O. AICHHOLZER, D. ALBERTS, F. AURENHAMMER, AND B. GARTNER, A novel type of skeleton

for polygons, J. of Universal Computer Science (an electronic journal), 1 (1995), 752-761

P.K. AGARWAL AND M. SHARIR, Efficient randomized algorithms for some geometric optimization
problems, Discrete €& Computational Geometry, 16 (1996), 317-337.

P.K. AGARWAL, M. SHARIR, AND S. TOLEDO, Applications of parametric searching in geometric
optimization, J. Algorithms, 17 (1994), 292-318.

G. BAREQUET, M. DICKERSON, AND M.T. GOODRICH, Voronoi diagrams for medial-axis distance
functions, Proc. 5th Workshop on Algorithms and Data Structures, Halifax, Nova Scotia, Canada,
1997, 200-209.

G. BAREQUET, M. DICKERSON, AND P. PAU, Translating a convex polygon to contain a maximum
number of points, Computational Geometry: Theory and Applications, 8 (1997), 167-179.

E.-C. CHANG AND C.-K. YAP, Issues in the Metrology of Geometric Tolerancing, Courant Insti-
tute of Mathematical Sciences, New York University, manuscript.

B. CHAZELLE, The polygon placement problem, Advances in Computing Research: volume 1 (F.
Preparata, ed.), JAT Press, 1983, 1-34.

I1.J. Cox AND J.B. KRUSKAL, Determining the 2- or 3-dimensional similarity transformation

between a point set and a model made of lines and arcs, Proc. 28th Conf. on Decision and Control,
1989, 1167-1172.

17

Definition 3 (-wide Polygons) A §-wide polygon P is a simple polygon with the
property that if p,q € OP with dist(p,q) < 20 then there is a path connecting p and
q along the boundary of P such that every point on the path is at most 26 away from p
or every point s at most 20 away from q.

This restriction is a reasonable one for many of the proposed applications. Remember
that vertices of the input polygon represent features in the model, and the value of §
represents the error tolerance. What we are assuming is that the minimum feature size
is at least double the error tolerance, which is a common limitation of manufacturing
processes.

We can solve simple-polygon variants of the offset-polygon maximum-cover problem
for 0-wide simple polygons with a slightly modified version of the algorithm given in
Figure 3. Let us use Opg to denote the true (nonlinear) outer d-offset of P. Similarly,
we call the inner curve formed by straight segments and circular arcs at distance ¢ the
true inner d-offset of P and denote it by Ip;. Note that Ips; and Ops are each of
complexity O(m) for a §-wide simple polygon P of size m. Instead of having at most two
intersections between 7(Ips) and Ops, we can have ©(m?) pairwise intersections in the
worst case requiring ©(m?) time to compute (even in a brute-force way). Each pair of
points has two offset polygons, each of which has O(m?) intersections with the polygon
being swept. So the size of the queue is O(nm?) and queue operations can be performed
in O(log(nm)) time. The overall complexity of the algorithm becomes O(n?m? log(nm))
time and O(nm?) space.

The above running times also hold for the linearized versions of the offset-polygon
maximum-cover problem if we disallow polygons with narrow features that cause the
outer or inner offset polygon to intersect itself. Note that for a general simple polygon
P, both linearized outer and inner boundaries, Ops and Ips, can contain some points
further than ¢ from OP. As a result, Ip; and Op; can each be of complexity ©(m?)
for a polygon P with m vertices. Figure 4(b) gives an illustration of this. Thus there
can be ©(m?*) intersections between 7(Ips) and Ops. The simple polygons to which our
algorithm applies must therefore be §-wide without narrow spikes.

The on-line algorithm can also be modified for simple polygons. If we make the as-
sumption that the features of the polygon are such that the annulus region has O(m) com-
plexity, then in the worst case the number of intersections between two translated copies
of the annulus is O(m?) and the complexity of the arrangement of containing regions for
a given point is O(nm?). The on-line algorithm therefore requires O(n*m?log(nm)) time
and O(n*m?) space.

6 Conclusion

In this paper we provide efficient algorithms for polygon offset placement problems.
We handle the convex and nonconvex cases, the translation-only variant as well as the

16

(a) Nonsimple inner and outer offsets (b) Intersecting offsets of narrow spikes

Figure 4: Simple polygons with nonsimple offsets

offset polygon are similar but slightly more complex. We conjecture, therefore, that sim-
ilar to known results for convex hulls the expected value for h is O(logn) if the points
are uniformly distributed within the annulus region or have a uniform distance from the
polygon P. If the distance of points from P follows a normal distribution, then the ex-
pected value of h may be even smaller, such as O(loglogn). In the former case the on-line
algorithm would require O(nlognlog(nm) + m) time. The space and time complexities
are improved even further in practice because the region of placements for a given point
is unlikely to have the worst case linear complexity.

The correctness of the algorithm is maintained in this pruning approach. If we halt
and answer ‘No,” then there is some subset of points which cannot be simultaneously all
contained in any optimal placement. If there is no placement containing a subset, then
there is no placement containing the entire set and ‘No’ is the correct answer. Conversely,
the algorithm does not answer ‘Yes’ until it finds a containing placement to which all
points have been added.

5 Simple Polygons

In this section we extend our results to the case of simple polygons.? Figure 4(a) shows
a simple polygon (with solid edges) whose outer offset is perforated: it contains a bound-
ary (dotted densely) and a hole (dotted sparsely). The inner offset of the same polygon
consists of three distinct polygons (with dashed edges). Figure 4(b) shows another sim-
ple polygon whose outer offset is perforated. For algorithm efficiency, we would like to
disallow polygons with narrow corridors in which the inner or outer d-offsets become dis-
connected or non-simply-connected. The following definition formalizes this restriction.

2See [1] for a discussion of the straight skeleton of a simple polygon which is closely related to the
notion of the inner offset polygon. This discussion is not, however, directly related to the problems
discussed in this paper.

15

the placements containing all the points: that is, the intersections of all 7 — 1 intersection
regions. We can discard the data structure of a point ¢; when this intersection region
becomes empty. This happens when there are no longer any placements containing all
other points with ¢; on the boundary.

We define H; = {p;} and H; (for 2 < i < n) to contain all the points z € H;_; U{p;}
such that there exists a placement 7(P) which contains H;_;U{p;} with z on the boundary
of 7(P). Let h; = |H;|. (In case h; = 0 for some 7 the algorithm terminates with a ‘No’
answer.) Also, let h be the maximum value of h; for 1 < i < n. Then the total number
of data structures after the ith step of the algorithm is O(h;) and the total at any time
is O(h). The total time required to update existing data structures for a new point g; is
O(hi—11logn) = O(hlogn).

One might now ask whether we can discard point ¢; altogether. Unfortunately, it is
possible for a point g; which is not on the boundary of any placement containing the first
1 points to be the only point not contained in some later placement. This suggests that
though we can remove the data structure of ¢;, the point g; still needs to be considered for
updating the data structures of later points ¢; (for j > 7). We get around this problem
in the following way. Whenever the data structure for point ¢; is discarded, we also
mark the point ¢; for deletion. We create a queue that keeps discarded points in order
of deletion, and also maintains for each point the step in the algorithm in which it was
marked deleted. The algorithm then continues as before, but for each new point ¢;, we
only update its data structure by those points ¢; (with j < ¢) whose own data structures
are still active (not marked for deletion). Thus point ¢; not only updates only O(h;_;)
data structures, but its data structure is updated by only O(h;_1) points for a total of
O(hlog(nm)) time per new point. With this change the algorithm proceeds in the same
way, processing one point at a time and terminating if there are no possible placements
containing all points. If no placement is possible, the algorithm can correctly terminate
and answer ‘No.” However if all n points are successfully processed, then there may be
more work to do before a ‘Yes’ answer can be returned, because we have not yet fully
considered points marked for deleteion. We return to the queue of points marked for
deletion. Suppose the first point on the queue, ¢, was discarded when point ¢; was
processed. If there exists a data structure for a point ¢; (with j < ¢) then all points
have been added to this data structure; that is, any placement represented by this data
structure contains all points. We can halt and output ‘Yes.” Otherwise, we undelete g
and update all the remaining active data structures. This process is repeated until either
there are no remaining data structures (then we halt and answer ‘No’) or until there is
a data structure to which all points have been added (where we halt and answer ‘Yes’).
In either case, in this final step we add O(n) points from the queue to O(h) remaining
structures in O(nhlog(nm)) time. The total running time for the algorithm is therefore
O(nhlog(nm) 4+ m) time, and the required space is only O(nh + m) in the worst case.

It is interesting to ask what the expected values for h are. Note that a point cannot
be in contact with the outer offset polygon unless it is on the convex hull of the con-
tained points. The conditions for when a point can appear in contact with the inner

14

new data structure of ¢;; and (2) Compute translations that keep the annulus region in
contact with ¢; and contain ¢;, and update the data structure of ¢;. Remember that for
each point ¢; these translations are computed from the intersections of the translated
offset polygons in O(logm) time by Lemma 2. However our use of data structures for the
on-line algorithm differs in two ways from the original algorithm. The first difference is
that (unfortunately) we need to store several data structures simultaneously, rather than
computing the optimal placement for one point and then discarding it. This is because
each data structure is continuously being updated as new points are added. The second
difference is more advantageous: since we are concerned only with the decision problem
of whether there is a placement containing all n points, we need keep track of only those
placements containing all points seen so far. Any placement that does not contain all
points can be discarded. That is, we want the intersections of all the pairwise containing
regions, where each region is given by a pair of segments (possibly empty) on the inner
offset polygon and another pair of segments (also possibly empty) on the outer offset
polygon. If at any point in the algorithm there are no such remaining placements, then
we can halt and output ‘No.’

4.2 Analysis and Details of Data Structure

How do we store the set of placements containing all points? Recall that the region of
placements containing ¢; and with ¢; on the boundary corresponds to a pair of segments
along the inner and outer boundaries of the annulus region. For each point, we store these
placements in two balanced binary-search trees (one for the inner polygon and one for the
outer polygon) ordered clockwise around the boundary of the polygon. Unfortunately, it
is possible to construct a case where the complexity of the set of placements containing
all points is ©(n). (Each new pair of segments increases the complexity of the set by
2.) Thus the space required per point may be as high as ©(n) for a total of ©(n?)
space. The searches, inserts, and deletes can all be performed in O(logn) time. In
particular, for each new point ¢; added to the structure of point g;, there are at most two
segments to be added to both the inner and outer offset polygons. Since we want only
placements containing all points, we store the intersections of these two new segments
with all existing segments. We find the segment endpoints in O(logm) time and delete
all regions not inside the endpoints. Deleting one segment and rebalancing the tree
requires O(logn) time. The total number of insertions and deletions to all trees (per
some point ¢;) is O(n) with a total of O(n?) tree operations. The overall complexity is
thus O(n? log(nm) + m) time and O(n? + m) space in the worst case (when no pruning
is done). The algorithm may terminate early with a ‘No’ answer.

4.3 Improvement by Pruning

Both the space and time complexity of the algorithm can be improved considerably by on-
line pruning. Recall from the previous section that for each point ¢; we need to store only

13

technique, since the simplicity of the pieces of the curves is also maintained: it takes a
constant amount of time to evaluate the intersection of a circular arc with a line segment
or with another circular arc. Therefore we are able to apply the same algorithm (for
the translation-only variant) as in Section 3.2 and obtain the same asymptotic running
time and space. Similar arguments hold for the translation and rotation version of the
problem. Careful analysis reveals that the complexity of the algorithm presented in
Section 3.3 remains asymptotically the same (within a constant factor) for the true ¢-
tolerancing problem.

4 An On-Line Decision of the Containment Problem

In the previous section we provided solutions to several variants of the offset-polygon
maximum-cover and containment problems, under various rigid transformations. In this
section we present an alternate “on-line” approach to offset-polygon containment decision
problem for the translation-only case. As before, we assume convex polygons and deal
with simple polygons in a later section. The idea of this on-line approach is that instead
of being given the entire set S at once, the points are read one at a time, and for each new
point we decide whether there is a placement of the annulus region of P that contains
all the points seen so far. There are several motivations for the on-line approach. One
is that for the decision problem we need not necessarily process the entire point set; if
after a certain number of points there is no longer a placement containing them all then
we can halt immediately and answer ‘No’ (thus offering some savings in running time
over unnecessarily processing all the points). This may be particularly useful for the
tolerancing problem. A second advantage is the ability to process incoming points as
they arrive while simultaneously reading subsequent points (a form of pipelining). This
is an advantage in the cases of the proposed applications where the points are not stored
in a file but are read one-at-a-time by an external device. A third possible advantage is
that as more points are read we can slowly refine the space of possible placements of P.
This can be helpful for both the robot localization and geometric tolerancing problems
where we might direct the input device for further measurements. Finally, the on-line
approach allows for the pruning of the data structures providing a more efficient approach
for most practical applications.

4.1 Basic Algorithm Approach

We begin with the basic ideas of the on-line approach. We want to read input points
one at a time. For each point ¢; we construct and store a data structure (similar to that
of the algorithm in Figure 3) that maintains optimal placements of the annulus region
around P in contact with ¢;. We also update the data structures for the existing points
g; for j < i. That is, for each j < ¢ we: (1) Compute the translations that keep the
annulus region of P in contact with ¢; and contain ¢;, and add this information to the

12

This gives the optimal placement of P that is in contact with g;.

The main difference for the annulus placement problem is that we need two rotation
diagrams for each point g;: one for the inner offset polygon Ips; and one for the outer
offset polygon Ops. Furthermore, each of these two rotation diagrams for ¢; has regions
for each g; # ¢; that represent containment in the annulus region rather than in the
entire polygon. The following lemma states that these modified rotation diagrams have
the same complexities.

Lemma 5 For conver polygons, the polygon annulus containing regions for a given point
is decomposable into O(m?) subregions each of which has constant complexity: vertical
left and right boundaries and a sine curve for the top and bottom boundaries. O

The proofs of [10] suffice to show that the upper and lower boundaries are still sine
curves. The O(m?) is a trivial upper bound on the number of subregions, which is
actually attainable. There is however a constant factor increase in the complexity of the
diagrams. The number of critical angles are doubled because we now count intersections
of both the inner and outer offset polygons placed at point ¢; and either the inner or outer
polygon at ¢; (depending on which rotation diagram we are computing). Therefore, since
the number of subregions can double, the number of intersection points can increase by a
factor of four. To solve the offset-polygon maximum-cover problem we use the same idea
of the rotation diagram and perform plane sweeps of each of the 2n diagrams. Lemma 4
tells us that this suffices because even with a restriction to translation only there is at
least one optimal placement that has a point on an inner or an outer boundary of the
annulus region. The space complexity of the algorithm remains the same as in [10]: the
plane sweep considers at one time only one subregion out of the O(m?) subregions that
correspond to some point g;, while the annulus is in contact with point g;. Thus we can
state the following theorem:

Theorem 6 The conver offset-polygon mazrimum-cover problem can be solved for trans-
lation and rotation in O(n3log(nm) +m) time and O(n + m) space in the worst case.

3.4 True é-Tolerancing

As mentioned earlier, our algorithms assume a linearized outer polygon boundary. For
adapting the linearized versions of the offset-polygon maximum-cover and offset-polygon
containment problems to their (standard) nonlinear forms, we need only show that the
framework for the offset-annulus variant works also for the true d-tolerancing case. The
key to this adaptation lies in the fact that for every convex polygon P, tolerance ¢, and
a translation 7, the number of intersections of 7(Ips) and the true outer boundary Op,
is still at most two. The proof of this claim is almost identical to that of Theorem 1 (see
Section 2). Indeed, the weak monotonicity of the curves is preserved (we do not need
the curves to be piecewise-linear). Furthermore, we can still apply the prune-and-search

11

that we bucket all the points, where the bucket rectangles correspond (in size and orien-
tation) to the smallest rectangle enclosing O. We now introduce a third variable & which
is the maximum number of points that can be contained in a translation of O. Then
the number of points in any bucket is O(k) [5] and the inner loop beginning at Step 5
needs to be iterated only for those points g; in the same bucket as ¢; or in one of the
8 neighboring buckets. We note that with a standard bucketing approach the number
of buckets required is O(As/Ap), where Ag is the area of the entire region bounding
the input point set S, and Ap is the area of the bucket which is proportional to the
area of the polygon P. However the only buckets that need to be explicitly initialized are
those that contain points of S and their immediate neighbors, thus the preprocessing step
for bucketing still requires only O(n) time. The standard bucketing algorithm therefore
requires O(nklog(mk) +m) time and O(As/Ap +n + m) space in the worst case.

In case As/Ap is too large we can use either a degraded grid or a hashing table.
By using the degraded grid approach of Lenhof and Smid [19] the bucketing can require
only O(n) space at the cost of an O(nlogn)-time preprocessing-step for sorting the input
points. Alternatively, the buckets can be stored in a hashing table of size O(n) and be
accessed in expected O(1) time (per operation). Thus by using these approaches we can
solve the problem either in O(nklog(mk)+ m +nlogn) time and O(n + m) space in the
worst case (by a degraded grid) or O(nklog(mk) + m) time and O(n + m) space in the
average case (with a hashing table). (Unfortunately, the value of k& does not necessarily
correspond to the number of points contained in a translation of the d-annulus region of
P, but rather to the possibly larger number of points contained within the entire outer
polygon O.)

3.3 Offset-Polygon Max-Cover under Translation and Rotation

We now describe how the offset-polygon maximum-cover problem can be solved for convex
polygons when we allow for translations and rotations. To solve this problem we extend
the results of Dickerson and Scharstein [10] and make use of their rotation diagram
technique. We refer the reader to [10] for details on this method; here we describe only
the necessary modifications in the approach and in the complexity analysis.

This method creates a rotation diagram R,, for each point ¢;. The diagram R, is a
description of the configuration space of all placements of the polygon P that keep the
boundary of P in contact with ¢;. The horizontal axis of this diagram represents the
angle of rotation (from 0 to 27). The vertical axis represents the arclength along 0P
(from 0 to the circumference of P). For each other point g;, the diagram R,, includes
the region of all such placements that contain ¢;. It is shown in [10] that this containing
region for ¢; is decomposable into O(m?) subregions of constant complexity. The left
and right boundaries of these subregions are certain critical angles of rotation, where
vertices of one polygon pass through edges of another. The upper and lower boundaries
are shown to be sine curves. To solve the optimal placement problem, the algorithm
performs a plane sweep of each rotation diagram R, to find the region of greatest depth.

10

I. Preprocessing:
1. Preprocess offset polygons I = Ips and O = Op; for intersection computation.
2. Initialize a priority queue () which will store points in clockwise order around the

boundaries of the offset polygons I and O.

II. Iteration:

1. Set max := 0. {# of points in optimal placement so far}

2. FOR each point ¢; € S DO BEGIN {Anchored sweep of I and O around g¢;}

3. Let P’ be I. {Start with anchored sweep of I}

4. Set ¢:= 1. {Points contained by current translation}

5. FOR each j #i and ¢; € S DO BEGIN {Examine nearby points for containment}

6. Set X := {z|z € or;(I) N O;(P")} U{z|z € 07:(0) nar;(P')}.

7. FOR all z € X DO

8. Add (z,j) to Q. {Add all intersections to event queue}
END FOR

9. IF g; is contained in the d-annulus of 7;(P) THEN

10. Mark g; “in”; Set ¢ :=c+1; {Mark and count points currently contained}
ELSE

11. Mark g; “not in”.
END IF

END FOR

12. WHILE (@ # (DO BEGIN {Sweep with intersections as events}

13. Delete (z, j) from front of Q. {Update structures and counters}

14. IF g; is “not in” THEN {See comments on (degenerate) intersections}

15. Set ¢ := ¢+ 1; Mark ¢; “in”.
ELSE

16. Set ¢ := ¢ — 1; Mark ¢; “not in”.
END IF

17. IF ¢ > max THEN

18. Set max := ¢; Store translation.
END IF

END WHILE
19. REPEAT steps 4 through 18 with P’ = O. {Now do an anchored sweep of O around g;}

END FOR

Figure 3: Max-cover algorithm under translation for convex polygons

contains S is either a vertex of one of the two diagrams (possibly a vertex at infinity in
the furthest-site diagram) or a point of intersection between the two diagrams. Given a
specific value of d, we place reflected d-annuli centered at all the points of .S and observe
(as in [9]) the overlay for determining whether the intersection of all annuli is nonempty.
(The intersection contains the loci of all feasible placements of the annulus so that it
covers S.) This step takes O(nlogm) time. Finally, a parametric-searching algorithm is
applied for optimizing (minimizing) the value of § for which the intersection of all the
annuli is nonempty. Over all, the whole procedure requires O(n logm log(nm)+m) time.

3.2 Offset-Polygon Max-Cover under Translation

In this section we consider offset-polygon maximum-cover under translation. Our
algorithm extends the techniques of Barequet et al. [5] to allow for containment within
the annulus region rather than containment by the entire polygon. The idea is to do
an anchored sweep of both the inner and outer offset polygons around each point of S.
The critical events of the sweep occur when some point of S either enters or exits the
0-annulus. The full algorithm is given in Figure 3.

The correctness of this algorithm follows from Lemmas 3 and 4. There exists at
least one optimal placement with a point in contact with the annulus boundary, and
this placement will be found by the sweep. The only additional detail deals with the
processing of degenerate intersections, where the intersection between two offset polygons
is a segment (along a connected portion of an edge) rather than a discrete point. In this
case only one of the two endpoints of the segment corresponds to an event. If the point
g; is currently marked “in” then it is at the second endpoint of the intersection segment
where it changes to “not in.” Conversely for points marked “not in,” it is at the first
endpoint of the segment where it changes to “in.” This follows from the fact that the
entire segment corresponds to a translation in which both points ¢; and ¢; are on the
boundary of the translated polygon and so points that are “in” remain so until the end
of the segment, whereas points that are “not in” become “in” at the start of the segment.

We measure the complexity of our maximum-cover algorithm under translation as a
function of two variables: m, the number of vertices of P, and n, the number of points
in the set S. The preprocessing step requires O(m) time and space for computing and
storing the offset polygons I = Ips; and O = Op;. The offset polygons are stored such
that later intersection tests can be performed in O(logm) time and space (see [17] and
Section 2). The steps inside the inner nested loop execute O(n?) times. Since each pair
of points has two offset polygons, each of which has at most two intersections with the
polygon being swept, the total size of the queue is O(n) and queue operations can be
performed in O(logn) time. Polygon intersections in Step 6 can be computed in O(logm)
time (by Lemma 3). The total running time is therefore O(n?log(nm) +m) in the worst
case. The algorithm requires O(n + m) space.

The running time of the algorithm can be improved by the use of bucketing. Suppose

both ¢; and g;. The proof of this lemma is based on simple vector arithmetic (see the
references cited above). The lemma provides a method for finding translations of P that
contain multiple points of §. The containing translations correspond to the intersections
between copies of the annulus regions placed on the contained points. Lemma 2 tells us
that the boundaries of these intersections can be computed quickly.

The following (rather simple) lemma guarantees that we can limit our search for an
optimal placement to translations that have at least one point of S on the boundary
(either inner or outer) of the annulus region.

Lemma 4 Let P be a convex polygon and S be a nonempty set of points contained in
the 6-annulus of P. Then there exists a translation T such that S is contained in the

d-annulus of T(P) and at least one point of S is on the boundary of the annulus region.
O

To prove this lemma, let 7 be any placement containing at least one point. Assuming
that there are no points on the boundary of 7(P), let z € S be the point closest to
the (inner or outer) boundary. Translate 7(p) the minimal distance to put = on the
boundary. This new translation contains all the points contained in 7(P) but with z on
the boundary, satisfying the conditions of the lemma. We follow the terminology of [7]
and denote such a placement 7 as stable (to be used in the algorithm given in the next
section).

3 Algorithms for Convex Polygons

We can now present algorithms for solving offset-polygon placement problems, starting
with what is conceptually the simplest problem for a convex polygon shape.

3.1 Offset-Polygon Containment Optimization under Transla-
tion

We first briefly describe a deterministic O(n log m log(nm)-+m)-time algorithm for solving
the annulus-width optimization problem: Given a set S of n points and a convex polygon
P with m vertices, find the minimum-width annulus of P that covers S. For this purpose
we define the convex polygon-offset distance-function Dp that corresponds to P and
compute the nearest- and furthest-site Voronoi diagrams of S with respect to Dp (see [4]).
This can be performed in O(n(logn +log? m) +m) time.! Next we use the method of [9]
(where the authors minimize the width of a circular annulus) and consider the overlay
of the two diagrams. As is well-known, the center of the minimum-width annulus that

LA bound of O(n(logn +logm) +m) was erroneously claimed in [4]. The corrected analysis is found
in the full version of that paper.

Figure 2: Translation of an offset annulus region containing two points

Proof Given in the appendix. O

The technique used in the proof of Theorem 1 also provides the necessary frame-
work for the proof of Lemma 2. The weak monotonicity of the width function between
chains of the two polygons (in this proof) suffices for using the tentative prune-and-search
technique of Kirkpatrick and Snoeyink [17] to compute the intersection points.

Lemma 2 The intersections between offset polygons 7(Ips) and Opgs can be found in
O(logm) time, where m is the number of vertices of P. O

We compute these intersections because they correspond to placements of the annulus
region such that two (or more) points of S are in contact with the boundary of the annulus
region.

Lemmas 3 and 4 are generalizations of lemmas from [5, 10] that deal with intersections
between two copies of the same polygon.

Lemma 3 Let P be a convex polygon, q1,qs points, and 1, and 1o the translations map-
ping the origin to points q1 and qo, respectively. For any point x, let 7, = qo — x be the
translation that maps x to qo. Then both ¢, and qo are contained in the d-annulus region
of Tx(11(P)) if and only if x is contained in the intersection of the 6-annulus regions of
71(P) and (P). O

Lemma 3 is illustrated in Figure 2. Translated copies of the offset annulus region are
placed on the points ¢; and g, and a point z is shown in the intersection of the two annulus
regions. The translation 7, that maps x to g, also maps 71(P) such that 7, (71 (P)) contains

6

Barequet et al. [5]. In addition, we show how to solve this problem under translation and
rotation by combining this approach with an extension of the rotation-diagram technique
of Dickerson and Scharstein [10]. The resulting time bound in this case is O(n® log(nm)+
m) using O(n +m) space in the worst case. Under some reasonable “fatness” conditions
(which we make precise in Section 5), we show that our techniques can be generalized for
simple polygons under translation to result in an algorithm running in O(n?m? log(nm))
time and O(nm?) space.

In addition to the off-line results discussed above, we also describe a method, based
upon an interesting dynamic data structure, that solves an on-line version of the offset-
polygon containment decision problem under translation. The algorithm reads points
one at a time, halting and answering “no” when a placement containing all points read
so far is no longer possible, or, alternatively, running to completion on n points and
answering “yes.” In the worst case this on-line algorithm runs in O(n?m?log(nm)) time
and O(n?m?) space for simple polygons. For many distributions of points, however, it
performs significantly better. In particular, for convex polygons our on-line algorithm
runs in O(nhlog(nm)+m) time and requires only O(nh+m) space, where h depends on
the distribution (see Section 4.3). (In the worst case h = ©(n), but for many distributions
h is substantially smaller.)

The outline of the paper is as follows. We begin in Section 2 with some important
geometric properties and primitives. In Section 3 we present the algorithms for convex
polygons, and in Section 4 we give our on-line solution to the offset-polygon maximum-
cover problem. In Section 5 we extend our solutions to the offset-polygon maximum-cover
problem to simple polygons. We conclude with Section 6.

2 Key Geometric Properties

An important step of our algorithms is the computation of the intersections between
translated copies of offset polygons. For simplicity of expression, let us assume we are
dealing with linearized offset polygons; we show later how to remove this restriction to
deal with the more-standard definition of §-annulus region with only a constant-factor
increase in the running times of our algorithms. Let us therefore consider an upper bound
on the number of intersections between translated copies of linearized offset polygons, and
a description of how to compute them. It is well-known that two translated homothetic
copies of the same convex polygon can intersect at most twice (where in the degenerate
case an intersection may be a segment rather than a point). The following theorem states
that translations of inner and outer offsets of a convex polygon can also intersect at most
twice.

Theorem 1 Given a polygon P, a distance 6, and a translation 7, the (linearized) offset
polygons T(Ips) and Op,s intersect at most twice, where each intersection may be a point
or (in the degenerate case) a segment.

versions of P (unless P is a regular polygon). The d-annulus region of P is shown shaded
in Figure 1(b). Note that the annulus region is defined to include the boundary edges.
Although these definitions are stated for convex polygons, we show that in many cases
they can easily be extended to simple polygons (see Section 5). In any case, the definition
of §-annulus regions naturally gives rise to the following problems:

o Offset-Polygon Max-Cover: Given a set S of n points in the plane, a convex
polygon P, and a distance 0, find a placement 7 of P that maximizes the number
of points of S contained in the J-annulus region of 7(P). Report the placement 7
and the set of contained points.

e Offset-Polygon Containment (Decision Version): Given a set S of n points
in the plane, a convex polygon P, and a distance §, determine if there exists a
placement 7 of P such that all n points of S are contained in the d-annulus region
of 7(P). Report such a placement 7 if one exists.

e Offset-Polygon Containment (Optimization Version): Given a set S of n
points in the plane, and a convex polygon P, find the smallest value of § > 0 such
that there exists a placement 7 of P with all n points of S being contained in the
d-annulus region of 7(P). Report such a placement 7 if one exists, together with
this optimal value of § > 0.

Note that we can use an algorithm for either the offset-polygon maximum-cover prob-
lem or for the width-optimization problem to solve the offset-polygon containment deci-
sion problem. In particular, the answer for the decision problem is “yes” if and only if
for the former problem the value of k—the maximum number of points contained in the
d-annulus for P—is n, or for the latter problem the value of ¢'—the minimum width of
an annulus that contains all the points—is at most J.

1.4 Outline and Summary of Results

Let n be the number of input points and let m be the number of edges (and vertices) of
the given polygon P. In this paper we give several results for solving the offset-polygon
annulus maximum-cover and containment (decision and optimization) problems. We
show that if we restrict the containment decision problem to convex polygons under
translation only, then we can determine a containing placement of a minimum-width
annulus of P, if one exists, in O(nlogmlog(nm) + m) time. Our method involves a
nontrivial extension of the roundness method of Duncan et al. [9] to offset polygons
by using the polygon-offset nearest-neighbor and furthest-neighbor diagrams [4] and the
simplest (and most practical) version of parametric searching.

We also study the offset-polygon maximum-cover problem for convex polygons under
translation, showing that this more-general problem can be solved in O(n?log(nm) +m)
time and O(n+m) space. Our algorithm is a nontrivial generalization of the technique of

(a) Linearized inner and outer J-offset polygons (b) The d-annulus region.

Figure 1: Offsetting a polygon

1.3 Definitions and Problems

We start with definitions for convex polygons to simplify the presentation. Extensions
to simple polygons are made in Section 5.

Definition 1 (Offset Annulus) The d-annulus of a convex polygon P is the closed
region defined by all points in the plane at distance at most § from the boundary of P.

Definition 2 (Offset Polygons) Given a conver polygon P and a distance § > 0, the
d-offset polygons are defined as follows: The inner d-offset polygon Ips is the boundary
portions of the d-annulus of P that are properly contained by P. Similarly, the outer §-
offset polygon Op s is the boundary portions of the §-annulus of P outside of (i.e., properly
containing) P.

Note that Ips is made up of edges that are parallel to edges of P (although there
may be some edges of P that are not parallel to any in Ips). The offset polygon Op,,
on the other hand, is made up of alternating line segments and circular arcs, and every
edge of P is parallel to some edge of Op;. One can also imagine a fully linearized version
of the outer offset polygon, where one extends each of the linear edges until they meet
the extensions of neighboring linear edges. For simplicity of presentation, we will first
discuss algorithms for solving polygon-annulus problems adopting this linearized view,
and we will then show how to extend these to the more-natural standard notion of a
0-offset without affecting the running times by more than a constant factor.

Figure 1(a) shows a convex polygon P (with solid edges) and its inner and linearized
outer offset polygons Ips and Ops (with dashed and dotted edges, respectively) for some
value of §. Note that for any convex polygon P and for any value of § the outer offset
polygon Op,s always has the same number of edges as P, but the inner offset polygon
Ip; may have fewer edges. In this example the edge e € P does not have a counterpart
in Ips. More specifically, the point A, edge e, and point B, all in P, collapse into a
single point A’ in Ips. Also, the offset polygons Ip; and Op,s are usually not scaled

3

given set of points. This problem is motivated by several applications. For example, in the
robot localization problem (see, e.g., [14]), a robot should determine its current location
in some environment map from a set of points obtained by a distance range sensor. Due
to the inherent errors in range finding (noisy data as well as errors in measurements),
the points usually do not define an exact match. Most points, however, fall within some
distance § > 0 of the environment boundary. Thus the localization problem can be viewed
as finding some optimal placement of the environment model (typically a polygon) with
respect to the set of points and a distance 6 > 0. The goal is to maximize the number
of points corresponding to a corridor or annulus region of § around the walls. This
problem is well-modeled as an instance of the offset-polygon maximum-cover problem,
defined in Section 1.3. Our method is not susceptible to noisy data, whereas other
approaches, such as least squares [8] or minimizing the annulus to contain all points, are
more sensitive to such noise. Moreover, our method generalizes also to rotations of the
annulus. A second application is a pattern matching problem arising in computer vision
(see, e.g., [16]), where the input consists of a set of points taken from some image and a
pattern (polygon) that one would like to locate in this image. A good match can be found
by determining a placement of the polygon that maximizes the number of points within
some distance 0 > 0 of the image points. Yet another application arises in geometric
tolerancing. Chang and Yap [6] describe geometric tolerancing as being concerned with
the specification of geometric shapes for use in manufacturing of mechanical parts, and
they note that, since manufacturing processes are inherently imprecise, it is imperative
that such geometric designs be accompanied by tolerance specifications. An instance of
the tolerancing problem is to take a set of points representing an actual measurement
of a manufactured object (using a coordinate-measuring machine, laser range-finder,
or scanning electron microscope [11]) and determine whether the manufactured object
matches a polygon (the design) within some tolerance 6 > 0. This corresponds, for
example, to the tolerance zone semantics described by Requicha [20], Srinivasan [22],
and Yap [24].

1.2 Previous Related Work

The notion of polygon annulus placement relative to a set of points appears to be new in
the computational-geometry literature. There are nevertheless several related problems
that have been studied before, including variants directed at placing an entire polygon
(not an annulus) to cover a set or subset of points (see, e.g., [5, 10, 12, 13]). These
problems are quite interesting, but they do not model important aspects of optimizing
polygon placement (as mentioned in the applications above). Previous work directed
at annulus problems, on the other hand, have dealt exclusively with circular annuli
(see, e.g. [2, 3, 9, 15, 18, 21, 23]). These characterizations capture well the notion of
“roundness” present in a set of points, but they do not easily extend to polygonal shape
matching.

Offset-Polygon Annulus Placement Problems*

Gill Barequet! Amy J. Briggst Matthew T. Dickerson?
Michael T. Goodrichf

Abstract

An offset-polygon annulus region is defined in terms of a polygon P and a
distance 6 > 0 (offset of P). In this paper we solve several containment problems for
polygon annulus regions with respect to an input point set. Optimization criteria
include both maximizing the number of points contained in a fixed size annulus
and minimizing the size of the annulus needed to contain all points. We address
the following variants of the problem: placement of an annulus of a convex polygon
as well as of a simple polygon; placement by translation only, or by translation
and rotation; off-line and on-line versions of the corresponding decision problems;
and decision as well as optimization versions of the problems. We present efficient
algorithms in each case.

Keywords: optimal polygon placement, tolerancing, robot localization, offset-

ting.

1 Introduction

We begin with intuitive descriptions and motivations for the studied problems and then
give some more formal definitions.

1.1 Background and Applications

In this paper we address several variants of the problem of placing an annulus defined by
offsetting a given polygon such that it covers all (or a maximum number of) points of a

*Work on this paper by the first and the fourth authors has been supported in part by the U.S. Army
Research Office under Grant DAAH04-96-1-0013. Work by the third author has been supported in part
by the National Science Foundation under Grant CCR-93-1714. Work by the fourth author has been
supported also by NSF grant CCR-96-25289. A preliminary version of this paper appeared in WADS
97.

tCenter for Geometric Computing, Department of Computer Science, Johns Hopkins University,
Baltimore, MD 21218. E-mail: [barequet|goodrich]@cs. jhu.edu

tDepartment of Mathematics and Computer Science, Middlebury College, Middlebury, VT 05753.
E-mail: [briggs|dickerso]@middlebury.edu

