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GeomNet’s layered client-

server architecture lets 

users perform distributed

geometric computing over the

Internet without having to

download, install, and

interface with software. 

GEOMNET: 
Geometric
Computing over
the Internet 

Consider two real-life problems. First, suppose you have a collection
of nails hammered into a board. If you were to stretch a rubber band
around the outside of the nails and let it snap, what shape would

the rubber band take? Second, imagine two planes whose trajectories and
flight patterns show that they must, at one instance in time, fly danger-
ously close to one another—will they collide? 

In geometric terminology, the shape sought in the first problem is called
the convex hull of a set of points in the plane (nails on the board). This is
the smallest convex polygon containing all the points. The solution sought
in the second problem is an efficient algorithm for detecting potential col-
lisions between objects.

Geometric computing emerged from algorithms developed to solve
such problems. It has become a central building block in fields like com-
puter graphics, artificial intelligence, CAD, and GIS databases. 

Although many representational formats for geometric data exist, only a
few fully implement the combinatorial connectivity information that makes
geometric data so interesting. Typically, each geometric software package
is designed for a unique, incompatible data format. Designing a standard
language for describing geometric data would necessitate the encoding of
all possible relationships between the numerical and combinatorial com-
ponents of geometric data—a Herculean task that doesn’t seem likely. 

In spite of difficulties, there are a number of robust implementations
of geometric algorithms. Many of these are available on the Internet (see
the sidebar “Geometric Software on the Web”).

Our group at the Center for Geometric Computing developed the
GeomNet system to provide easy Internet access to geometric implemen-
tations via a plug-and-play environment, forming a link between software
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evaluation and production modes. By providing a
progressive migration of software from the host to
the client, GeomNet attempts to simplify interfac-
ing, one of the most significant problems in soft-
ware engineering and in using software developed
elsewhere. Users can invoke online, separately or
in a pipeline, a rich collection of geometric com-
putations for performing one-time or repeated
tasks. The system is suitable for a wide variety of
tasks, such as invoking an algorithm with specific
input data, checking geometric structures or data
for consistency, experimentally studying and/or
comparing algorithms, designing new algorithms
through the integration of existing algorithms, or
demonstrating the course of an algorithm in an
educational setting. 

A COOPERATIVE COMPUTING
ENVIRONMENT
We envisioned GeomNet as a family of geometric
computing servers executing various geometric
algorithms on behalf of remote clients. These clients
can be users interacting through a Web browser
interface, or application programs connecting
directly through sockets. We refer to negotiations
between client and server as cooperative computing.

GeomNet is based on a layered object-oriented
architecture (see Figure 1), with the highest level
responsible for interacting with client processes and
the lowest level responsible for interacting with spe-
cific geometric programs. This structure divides a
GeomNet server’s tasks into separate conceptual
units and hides the details of specific implementa-
tions from components that don’t need that infor-
mation. This makes it easier both to maintain
GeomNet and to incorporate new algorithms into
the system. 

GeomNet supports file formats commonly used
in various communities. Formats for describing
three-dimensional geometries include .OFF (used
by the data visualization and manipulation
Geomview;1 see http://www.geom.umn.edu/software/
download/geomview.html), .WRL (for VRML files),
and .STL (a manufacturing file format). The system
also supports several graph formats. We are contin-
uously incorporating more formats. 

Briefly, users submit data in one of the sup-
ported data formats and request a computation
from a GeomNet server. GeomNet automatically
converts the data to the format assumed by the
requested computation, performs the computa-
tion, and returns the result in one of many popu-
lar formats, including interactive two- and three-

Collections of geometric software can be found on the Internet at
Amenta’s “Directory of Computational Geometry Software” site
(http://www.geom.umn.edu/software/cglist/), and a host of geo-
metric computing applications can be found at Eppstein’s “Geometry
in Action” site (http://www.ics.uci.edu/~eppstein/geom.html). Erick-
son has an even more extensive collection of geometric software at his
“Computational Geometry Software” site (http://www.cs.duke.edu/
~jeffe/compgeom/software.html).

In addition, there is a large collaborative effort underway to devel-
op an extensive Computational Geometry Algorithms Library (http://
www.cs.ruu.nl/CGAL/),1,2 which itself is built upon the successful
Library of Efficient Data Types and Algorithms (http://www.
mpi-sb.mpg.de/LEDA/leda.html).3,4 This effort is directed at building
a large collection of C++ routines for solving computational geometry
problems. This collection should grow significantly in the years ahead. 
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GEOMETRIC SOFTWARE ON THE WEB
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Figure 1. The GeomNet architecture. A client sends a request to
one of the GeomNet servers, where the server manager adds it to
its queue of incoming messages. The action dispatcher extracts
messages from the queue and forwards them to the action manag-
er, which decodes the message and, using the action database,
invokes the wrapper of the application that will handle the request.
After termination, the output is forwarded back through the layers
and returned to the client. 
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dimensional visualization programs already
plugged in to the user’s Web browser or, alterna-
tively, the user’s application. 

Client-Server Dialog Protocol 
The dialog protocol between GeomNet’s servers
and clients was designed and implemented such
that a client can call applications on the server’s
side. Messages exchanged between GeomNet
clients and servers have a keyword-value structure.
That is, every message is composed of a list of pairs
consisting of a keyword, which identifies the name
of a field in the message, and a value, which repre-
sents the contents of that field. This type of syntax
is not only simple to parse and to understand, but
also very powerful and expressive. 

The client’s application (either an interactive
applet embedded in a Web page or a stand-alone
program) sends a message to a GeomNet server,
which expects the user to select a geometric opera-
tion (called an action) from the list of available oper-
ations (algorithms). Implicit in this selection are any
parameters required for the specific action. Some
parameters are mandatory, for example, the action
name and the input filename. Some parameters are
optional. If, say, the input file type is omitted, the
system automatically derives it from the filename
extension. Still other parameters are specific to the
algorithm, for example, a tolerance for an approxi-
mation algorithm. Either the user or the client pro-
gram could select the exact values assigned to these
parameters. In either case, the message sent from the
client encodes the requested action and the accom-
panying parameters in a Web-like syntax: 

GN_action=convex-hull&GN_infile=large-set.off& \
GN_outfile=small-set.wrl&GN_intype=stl&mode= \
2-d&type=upper-hull

The message is further encoded by using the
MIME type 

application/x-www-form-urlencoded 

so that special characters in the keyword and value
strings are replaced by their ASCII hexadecimal values. 

GeomNet keywords begin with the prefix GN_.
Each application may also have its own set of addi-
tional keywords. In the example above, the appli-
cation itself can use the keywords mode and type.
Indeed, the same keyword may be used for differ-
ent actions. Action-specific keywords are not nec-
essarily unique; for example, keywords such as
epsilon, mode, and angle are expected to be shared
by many algorithms. 

Note the similarity between this protocol and
Java’s remote-method-invocation mechanism: A
keyword-value structure is simply a way to invoke a
(remote) procedure by setting actual values to for-
mal parameters. In addition, our protocol allows
GeomNet to have default values, aggregate argu-
ments (encoded appropriately in the message), and
indirect referencing (by specifying a URL as an
argument). In particular, arguments are passed by
name, and their order is insignificant.

Computation Requests at the Server
GeomNet servers are responsible for decoding and
fulfilling client requests for geometric computa-
tions. A GeomNet computation begins with the
server manager, which tracks client requests and
sends responses back to the appropriate clients. The
server manager handles a queue of incoming mes-
sages to maintain the incoming requests. To process
the next awaiting message, the server manager calls
its action dispatcher, which extracts the message
from the queue and forwards it to the action man-
ager on that machine. 

The action manager decodes the message
according to the agreed-upon syntax and looks for
the mandatory field GN_action. The action is then
handled using the action database, where all avail-
able actions are fully specified by their names and
parameters. This database, saved in an ASCII con-
trol file written in Java, identifies the tool that
should handle the action. More specifically, the
action database maintains details concerning the
availability of an action and the name of the Java
wrapper class that should be used for performing
that action. The action database does not contain
information about the interface of the actual tool
(usually a stand-alone program) that performs the
action. It should know only what input and output
formats are needed so that it can, if necessary, also
schedule a format conversion routine. 

WHERE TO ACCESS GEOMNET

A first implementation of GeomNet is available on the Internet through
the support of the Center for Geometric Computing at Johns Hopkins
University (http://www.cs.jhu.edu/labs/cgc/) and at Brown Universi-
ty (http://www.cs.brown.edu/cgc/), with prototype servers available
at the GeomNet sites (http://www.cgc.cs.jhu.edu/geomNet/ and
http://loki.cs.brown.edu:8081/geomNet/) at the respective universi-
ties. New releases are planned throughout 1999 and 2000. 
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The action manager performs file-type conver-
sions, if necessary, before and after calling the wrap-
per level. Then the action manager invokes the
wrapper of the application that should handle the
requested action and passes it the necessary data.
When the wrapper terminates, the action manag-
er returns the action’s output to the action dis-
patcher, which then forwards it to the server man-
ager. This is done by passing back a locator
(filename) for the result or, if it is small enough, by
passing back the actual result encoded in a URL. 

Wrapper-Application Interaction 
The knowledge of what actual code or environ-
ment must be invoked to satisfy an action is at the
bottom layer of the architecture, where we store the
Java wrapper class that interacts directly with the
application. The action manager invokes the serv-
ing application’s wrapper class by name. It obtains
this name at runtime (rather than during compila-
tion) and binds the wrapper by using Java’s runtime
class loader. This allows for the addition of new
algorithms (through new wrappers) without hav-
ing to recompile, or even restart, the server. 

An application’s wrapper is the only system com-
ponent that knows how to invoke the application.
Thus, modifications made in the interface to the
application, or even in the actual code for imple-
menting an application, require only recompilation
of the wrapper. No other GeomNet component is
affected by changes made in the actual implemen-
tation of its geometric components. The wrapper
performs all necessary preparations for properly
invoking the associated application, then invokes
it, receives the application’s output, and returns the
result to the action manager. The wrapper termi-
nates an application running too long by sending
a time-out interrupt.

Adding a new application requires coding a suit-
able wrapper (that agrees with the interface conven-
tions), updating and recompiling the control file,
and restarting the system. Entire system recompila-
tion isn’t needed; thus new applications can be added
to every system installation without the system hav-
ing the application’s source code. The end user, how-
ever, can use only system-embedded applications. 

Typically, geometric applications belong to one
of three types: programming-language functions,
stand-alone computer programs, and embedded
applications. We have implemented wrappers for
all three types. 

A programming-language function expects the
input data in certain data structures to be passed to

it as actual arguments. Optionally, an argument can
contain the name of a data file. This is usually the
case when the function is really a “roof ” over a
stand-alone program. When calling a function, the
wrappers first parse the temporary input file and
prepare the data structures required by the func-
tion. They then call the function according to its
calling sequence. Finally, they scan the data struc-
tures returned by the function and write the con-
tents in a temporary output file with the format
requested by the server. 

A stand-alone computer program expects all the
input in a command line to be extracted by the
famous C argc/argv mechanism, or by Java’s args[].
These arguments include the names of the input
and output files and other arguments to the pro-
gram. The program expects the input file to be in
one of several predefined file formats and usually
writes the output in the same file format. If the pro-
gram does not recognize the syntax of the tempo-
rary input file, the wrapper converts the input file
into a secondary input file with a syntax the pro-
gram recognizes. The wrapper runs the program
(executable or a shell script) according to its calling
sequence. If the syntax of the temporary output file
produced by the program is not the one the server
requires, the wrapper converts the output file into
a secondary output file with the requested format. 

An embedded application operates only in a spe-
cific environment, such as a CAD system or a geo-
metric database. The application expects the data to
be preloaded into the environment that the applica-
tion works in. The environment supplies methods
for accessing and modifying the geometric data, so
that the application usually needn’t be aware of the
nature of the actual data structures that store these
data. The output is the contents of the environment
upon termination of the application. To invoke an
embedded application, the wrappers first set the envi-
ronment. This means they initialize the environment,
parse the temporary input file, and load its contents
into the environment. The wrappers then invoke the
application according to its specifications. To unset
the environment, the wrappers scan the environment

Modifications made in the interface
to the application require only
recompilation of the wrapper.
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and save its contents into a temporary output file with
the syntax requested by the server. Lastly, they prop-
erly close the environment. 

The user specifies an output syntax but not an
output filename. GeomNet returns the output in a
temporary file with the required syntax. The user
may then choose a file to save the data into. Final-
ly, GeomNet removes the temporary output file
automatically. 

INTERFACES AND APPLICATIONS
GeomNet is representative of systems that enable
distributed computing over the Internet in the

sense that the scheme used in GeomNet can be
used to develop similar systems in other disciplines.
In this section, we give several examples of how our
system can be applied in the field of geometry. 

Classic Geometric Algorithms
A prime application for GeomNet is invoking
implementations of fundamental geometric algo-
rithms. Therefore the current GeomNet release
includes implementations of several algorithms,
such as d-dimensional convex hulls (including a
random-box generator for code testing purposes),
Voronoi diagrams, and Delaunay triangulations. 

We developed several interface mechanisms for
invoking these routines. The simplest is the inter-
active applet interface. Figure 2a shows a Java
point-set editor embedded in GeomNet. 

The purpose of the interactive applet interface
is clearly not to perform intricate large-scale com-
putations but rather to interact with the system so
as to gain intuition about geometric algorithms and
to easily test GeomNet servers. The user can then
apply any algorithm for which an appropriate
application is bound to the system. Figures 2b, 2c,
and 2d show the convex hull, the Voronoi diagram,
and the Delaunay triangulation, respectively, of the
point set shown in Figure 2a, as computed by the
appropriate applications and displayed by Geom-
Net’s applet. Some operations don’t require graph-
ical input, only parameter settings. For these oper-
ations GeomNet provides a general form for
obtaining user input. 

For production-level usage we provide a socket
interface that can be invoked directly from inside
an application program running on the client’s site.
This interface lets any program, not just Java appli-
cations, communicate with the server via the

(a) (b) (c) (d)

Figure 2. Applet interface for algorithms in two dimensions: (a) point set, (b) convex hull, (c) Voronoi diagram, (d) Delau-
nay triangulation. 

Figure 3. A three-dimensional display plugged
into GeomNet. 
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GeomNet protocol. We also provide a forms inter-
face for downloading geometric data files. In both
cases the server output can be sent immediately to
an interactive display system running on the client,
or it can be piped into a client application (includ-
ing the calling application). Figure 3 shows such a
response, the result of a client application that first
requested GeomNet to generate a random sample
of points in R 3 and then returned that set of points
for GeomNet to compute its convex hull. 

GeomNet’s response was then sent immediately
to a client invocation of the Geomview system.
Here Geomview was used as a plug-in for the
client’s application. However, it could also have
been used as a Netscape plug-in for someone using
the forms interface or the applet editor. 

Users may choose three-dimensional browsers
to serve as plug-ins to the Web browser (when
opening the GeomNet page) or as plug-ins to the
user’s client (if the socket interface is used). Often
,users can request that a GeomNet application’s
output be specified in a format suitable to the user’s
plug-ins or helper applications.

Drawing Abstract Graphs
Graph drawing is an evolving research area. The
objective is to produce a graphical representation
from a set of objects (nodes) and connections
between them (edges). A graph is an abstract enti-
ty that has many possible drawings—deciding
which drawing is of the highest “quality” is rather
subjective and depends on the type of graph and
the application. Common factors for determining
quality include minimizing the number of edge
intersections or the total area of the picture. 

The Graph Drawing Server, a GeomNet compo-
nent, can be used for drawing graphs from user
applications, studying and comparing graph-draw-
ing algorithms, converting between different formats
for describing graphs and their drawings, creating a
database of graphs occurring in user applications,
and providing educational demonstrations. 

The user must specify the graph style, the input
format, the type of service desired (drawing or for-
mat conversion), the output format, and the draw-
ing algorithm (if the graph is to be drawn). To pro-
vide the input graph in HTML form, the user can

Figure 4. Some graph-drawing examples: 
(a) the flights database, (b) the Bend-Stretch algo-
rithm, (c) the Giotto algorithm, (d) the Sugiyama
algorithm.

(a)

(b)

(c)

(d)
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either give the URL of the file containing the graph
or simply type the graph description in the form
itself. The graph editor applet lets the user interac-
tively draw the input graph on the screen. Geom-
Net currently supports four orthogonal-drawing
algorithms for general graphs, as well as several
algorithms for drawing specialized graphs. A pro-
totype version of the Graph Drawing Server can
forward requests as needed to other servers.

Figure 4 compares the performance of several
graph-drawing algorithms on a diagram taken from
a flights database. 

Figure 5 shows the application of a graph-
drawing algorithm on the hierarchy of GeomNet’s

Web pages. The user specifies the URL of the
hierarchy description in the input form (Figure
5a). Figure 5b shows the textual output of invok-
ing the Sugiyama hierarchical graph-drawing algo-
rithm. The output page provides a thumbnail
image of the drawing (linked to the full-size
image) and some statistics on the output, as well
as convenient links for obtaining the output in a
different format. Figure 5c shows the same input
entered in the graph-editor applet, and Figure 5d
shows the graphical output. The graphical output
is used, for example, to demonstrate how many
links the GeomNet user must follow to find a par-
ticular page. 

Figure 5. GeomNet’s Web page hierarchy: (a) input form, (b) textual output, (c) graphical input, and
(d) graphical output. 

(a) (b)

(c) (d)
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Geometric Algorithm Animation
Animation can be used as a tool to understand an
algorithm’s operation. We are incorporating geo-
metric algorithm animation capabilities into Geom-
Net by extending previous work on the Mocha
model for Web-based algorithm animation.2 In the
Mocha model, algorithm animation consists of two
components: the algorithm server, which executes
the algorithm and produces a sequence of interest-
ing events, called algorithm operations, and the ani-
mation component, which provides the multime-
dia visualization of the algorithm operations. The
animation component can be further divided into
the GUI, which handles the user’s interaction with
the interface and sends changes in the input to the
algorithm server, and the animator, which receives
algorithm operations from the algorithm server and
updates the display accordingly. 

Currently supported are animations of the con-
vex hull, Voronoi diagram, and Delaunay triangu-
lation algorithms provided by the Library of Effi-
cient Data Types and Algorithms (LEDA), and the
computation of a proximity graph of a set of
points. 

Experimental Results 
We ran our geometric algorithms server on a Pen-
tium Pro 200-MHz machine using Linux, and
measured the running time of the algorithms for
two- and three-dimensional Delauney triangula-
tions and three-dimensional convex hulls. For a rea-
sonably sized input (tens of thousands of points)
the system provided the output in less than 30 sec-
onds (plus transportation time, which varied).

We have collected statistics on the performance
of the graph-drawing server, which was run on a
Sun UltraSparc workstation using Solaris 2.5/2.6.
For graphs with up to 100 nodes and 140 edges,
the typical running time of a drawing algorithm
was less than 10 seconds, with less time spent on
input and output format conversions and on other
system overhead. A little more time was needed for
conversion if the output format was graphical (for
example, a GIF or PostScript file).

FUTURE WORK
Future GeomNet development will incorporate
new types of servers, upgrade existing servers to
control more algorithms, and expand the online
help, which is now only partially available. These
enhancements will make GeomNet functionality
richer and appropriate to more research domains.
Its modular structure makes these tasks simple. 

A super-action mechanism, now under devel-
opment, will give the user a scripting language for
conditioning, pipelining, and iterating regular
actions. This feature will enable further automa-
tion of complex sequences of operations performed
on geometric objects. 

We also plan to enhance the system to utilize
distributed computing where appropriate. This
means implementing a cluster of servers that can
assign tasks or subtasks to one another. In a homo-
geneous environment, where most machines run-
ning the servers have the same resources, a task
should be solved in parallel, to the extent that the
underlying problem is parallelizable. Conversely, if
the machines’ computing capabilities differ, then
each server should handle the problems it is best
suited for. 

We also intend to explore the possibility of
downloading and running an application on the
user’s site, thus reducing the load on the server. This
requires the application author’s consent to Inter-
net distribution of the application. Also, the user’s
machine would need the code type and machine
resources to run the application. 

Once the system supports a cluster of servers,
users can add their own applications by starting a
server locally at their site. They can also submit
applications to a server’s owner for inclusion,
although the current server assumes applications
are trusted and protects only against crashes and
infinite loops. Additional security measures are
needed to protect the server from applications that
may cause accidental or malicious damage. 

Finally, we also plan to implement a mecha-
nism (a metalanguage) that will let the user define
the input and output format for the transferred
data. This would remove the limitation that the
user submit data in one of the formats the system
recognizes. ■
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