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Abstract—We present techniques for matching point-sets in two and
three dimensions under rigid-body transformations. We prove bounds
on the worst-case performance of these algorithms to be within a small
constant factor of optimal and conduct experiments to show that the
average performance of these matching algorithms is often better than
that predicted by the worst-case bounds.
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1 INTRODUCTION

SUPPOSE we are given a set B of n points in Rd, which we shall call
the background, and a set P of m points in Rd, which we shall call
the pattern. The geometric pattern matching problem is to determine
a rigid motion, taken from some class of motions, such that each
point in P is moved to a point in B.

It is easy to solve this problem if we insist on exactly matching
points in P to points in B: Store B in a dictionary, designate one
point of P as a “reference point,” and consider the n placements of
P corresponding to the reference point coinciding with each point
of B; for each placement, do m - 1 queries into the dictionary to
determine if all m points of P are matched. Unfortunately, this ap-
proach is very sensitive to noise. Thus, it is more natural to pose
the approximate geometric pattern matching problem: Find a rigid
motion of P such that each point of P is moved near to a point in B.
Formally, we desire a rigid motion T, taken from some class of
motions &, such that the directed Hausdorff distance from T(P) to
B is minimized. Recall that the directed Hausdorff distance,1 h(C, D),
from a point set C to another point set D is defined as h(C, D) =
maxc³Cmind³Dr(c, d), where r is the usual Euclidean distance be-
tween c and d. Thus, h(C, D) is the smallest amount by which we
need to “grow” the points of D in order that all of C is covered by
the grown set. Using the directed Hausdorff distance as the
matching criterion thus allows us to find the pattern in the back-
ground. (In contrast, a least squares fit would not produce this
type of match since all background points, including those that do
not correspond to any of the pattern points, would influence what
is considered to be the optimal placement of the pattern.)

1.1 Previous Work
Point set pattern matching has been an important problem in ma-
chine vision for some time. A number of different general strategies

have been used to approach the problem. Four such strategies, along
with their advantages and disadvantages, are outlined below.

The Cluster Approach. The clustering approach ([28], [29], [31],
[34], [36], [38]) involves associating confidence values with loca-
tions in a discretized configuration space of possible orienta-
tions of the pattern with respect to the background and then
choosing the match that is associated with the largest cluster or
peak in the confidence values in the configuration space. These
strategies are particularly effective at matching patterns that are
partially occluded, or have points missing for other reasons,
and patterns in which some points are severely corrupted, as
demonstrated by the experimental work of the authors. The
methods, however, require that the tolerance t be prespecified,
and sometimes “tweaked,” and produce matches in which
those points that do not fall within t of an associated point are
neglected in terms of the degree to which they actually deviate
from the nearest matching point.

The Absolute Orientation Approach. The absolute orientation
approach ([7], [20], [23], [24], [37]) is concerned with determin-
ing the pose (see, e.g., [16], [20]) of the pattern with respect to
the background that minimizes the least squares error. These
results assume that the size of the pattern set and the size of the
background set are the same, and even more limiting, that a
correspondence between the points in the pattern and the
points in the background has already been established.

The Extracted Information Approach. Another general strategy,
which we call the extracted information approach, attempts to
match the pattern to the background based on information ex-
tracted from the sets of points. See, e.g., [2], [4], [17], [19], [32].
As shown by the authors, these methods work very well, theo-
retically and experimentally, for patterns and backgrounds that
are related to each other by certain, sometimes strict, criteria.
These methods do not, in general, work very well for the cases
of missing points and, in some cases, the extracted information
will change severely and abruptly with infinitesimal changes in
a single pattern point.

The Computational Geometry Approach. Using computational
geometry techniques, Alt et al. [5] give methods for finding
congruences between two sets of points A and B under rigid
motions. In addition to exact methods, they introduce an ap-
proximate version of the problem, for a given tolerance e > 0,
and ask to find a motion T, if it exists, that allows a matching
between each point in T(A) and a point in B at distance � e.
They also consider the optimization version, to compute the
smallest e admitting such a motion; unfortunately, their run-
ning times for this version are quite high. This version of the
problem is very close to the problem we address in this paper.

Imai et al. [27] show that these bounds can be reduced some-
what if an assignment of points in A to points in B is given. Simi-
larly, Arkin et al. [6] show that one can improve the running times
in the approximate case if the “noise regions” are disjoint. Even so,
the methods in these papers are relatively sophisticated, with
rather high running times for all but the most simple motions.

In work more directly related to this paper, several researchers
[9], [10], [25], [26] have studied methods for finding rigid motions
that minimize either the directed or undirected Hausdorff distance
between the two point sets. All of these methods are based on in-
tersecting higher-degree curves and/or surfaces, which are then
searched (sometimes parametrically [1], [11], [12], [13], [30]) to find
a global minimum. This reliance upon intersection computations
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1. The undirected Hausdorff distance is defined as H(C, D) = max{h(C, D),
h(D, C)}.
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leads to algorithms that are potentially numerically unstable, are
conceptually complex, and have running times that are high for all
but the most trivial motions. Indeed, Rucklidge [35] gives evidence
that such methods must have high running times.

The high running times of these methods motivated Heffernan
[21] and Heffernan and Schirra [22] to consider an approximate
decision problem for approximate point set congruence (they did
not study point set pattern matching). Their general framework,
for a given parameter e > 0, is to solve the approximate set congru-
ence problem [5], except that one is allowed to “give up” if one
discovers that e is “too close” to the optimal value e* (i.e., the
Hausdorff distance between T(A) and B). By allowing algorithms to
be “lazy” in this way, they show that the running times can be sig-
nificantly improved. Unfortunately, this approach can result in a
large computing time that yields no approximation, with the time
increasing substantially if one tries to get a yes-or-no answer for an e
close to e*. Thus, it is difficult to use their methods to approximate e*.

1.2 Our Results
In this paper, we present a very simple approach for approximate
point set pattern matching under rigid motions, where one is given
a pattern set P of m points in Rd and a background B of n points in Rd

and asked to find a rigid motion T that minimizes h(T(P), B). Our
methods are based on a simple “pinning” strategy. They are fast,
easy to implement, and numerically stable. Moreover, since they are
defined for the (more general) directed Hausdorff measure, they
are tolerant of noise in the background.

Our methods are not exact, however. Instead, in the spirit of
approximation methods for other hard optimization problems
(e.g., NP-hard problems [14]), we derive algorithms that are guar-
anteed to come close to the optimal value, e*. In particular, each of
our methods gives a rigid motion T such that h(T(P), B) � ae*, for
some small constant a > 1. (We note that a similar use of approxi-
mation algorithms is taken by Alt et al. [3] for the problem of
polygon matching.) Our results are summarized in Table 1.

We justify the implementability of our methods through an
empirical study of the running time and the quality of the match of
our methods when run on various input instances. We compare
the performance with that of a more conventional procedure based
on a branch-and-bound search of a discretized configuration
space. Our results show that, in practice, our methods are fast and
produce rigid motions with good matches. We also give some heu-
ristics that speed up the running time in practice, while not im-
proving the worst-case running time.

2 OUR ALGORITHMS

The input to our algorithms is a set B of n points in Rd and a set P
of m points in Rd, where dimension d is considered constant.

2.1 Pure Translation in Rd

In this subsection, we give an efficient method for finding a trans-

lation T� such that h(T�(P), B) is at most 2h(Topt(P), B), where Topt is
an optimal translation, i.e., one that minimizes h(T(P), B), taken
over all translations T.

Pick some point p ³ P as a “representative” for P. For each b ³ B,
define Tb to be the translation that takes p to b. Our method, then,
is to find minb³B{h(Tb(P), B)} as our best approximate match, and
let T� be the translation Tb that achieves this bound. This can
clearly be done in O(nm ¼ Nearestd(n)), where Nearestd(n) is the time
needed to perform a nearest-neighbor query in an n-point set (in
this case B) in Rd.

Of course, if d = 2, then we can achieve Nearest2(n) = O(log n) by
answering nearest-neighbor queries using point location in a Vo-
ronoi diagram for B (e.g., [15], [33]), which requires O(n log n) pre-
processing. For higher dimensions, this approach is not as efficient,
however. So, our method for implementing nearest neighbors will
instead be based on the (practical) method of Arya et al. [8], which
finds approximate nearest neighbors in O(log n) time in Rd, for any
constant dimension d � 2, after O(n log n) preprocessing. Their
method can be tuned to return a point whose distance is at most a
(1 + e)-factor larger than the nearest-neighbor distance, for any
constant 0 < e < 1.

LEMMA 2.1. h(T�(P), B) � 2h(Topt(P), B) in R2 and h(T�(P), B) � (2 + e)
h(Topt(P), B) in Rd, for d � 3 and for any constant e ³ (0, 1).

PROOF. (For R2) For simplicity of expression, define hopt = h(Topt(P), B).
Observe that, for each p ³ Topt(P), there exists an associated
b ³ B that is within a distance hopt of p. Consider the process
of translating the entire pattern Topt(P) so that a particular
point p now coincides with its associated background point
b. This translation will cover a distance of at most hopt and
will therefore increase the distance from any other point in
the pattern to its associated background point by at most
hopt. Therefore, it will have a directed Hausdorff distance of
at most twice that of Topt(P). This translation will be one of
those generated and checked by our algorithm. Thus, our
algorithm will produce a translation that results in a di-
rected Hausdorff distance that is at most a factor of two
times the minimal.

(For Rd) For the case of Rd, with d � 3, an identical argu-
ment would apply if we were to use an exact nearest-
neighbor algorithm to compute the quality of the various
translations considered. However, we are using the approxi-
mate nearest-neighbor algorithm of Arya et al. [8], so the ob-
served directed Hausdorff distance of any translation T(P)
may appear to be greater (worse) than its actual value by a
factor of up to 1 + e�, where e� is a parameter of the approxi-
mate nearest neighbor algorithm. Since one of the candidate
translations will have a directed Hausdorff distance within a
factor of 2 of the absolute optimal (by the argument above),
our algorithm will select as the best translation one that has a
directed Hausdorff distance no greater than 2(1 + e�)hopt. Se-
lecting e� = e/2 then gives the desired result. o

2.2 Translation and Rotation in R2

For points in the plane, we give an efficient method for finding a
Euclidean motion (translation and rotation) E� such that h(E�(P), B)
is at most 4h(Eopt(P), B), where Eopt is an optimal Euclidean motion,
i.e., one that minimizes h(E(P), B), taken over all valid motions E.

Select from the pattern diametrically opposing points and call

them r and k; this can be done trivially in time O(m2), but O(m log m)
suffices [33]. Point r is treated as both the distinct representative of
the pattern for the translation part of the transformation and it is
treated as the center of rotation for the rotation part of the trans-

TABLE 1
THE ASYMPTOTIC RUNNING TIMES FOR AN OPTIMAL MATCH

AND FOR OUR APPROXIMATELY OPTIMAL MATCH,
HAVING A WORST-CASE APPROXIMATION FACTOR GUARANTEE

Motion Optimal Match Our Method Factor

7 in R
2

nm
2
log n [25] nm log n 2

7�R in R
2

n
2
m

3
log n [9] n

2
m log n 4

7 in R
3

n
3
m

2
log

2
 n [25] n ml og n 2 + e

7 in R
d

– n m log n 2 + e

5 in R
3

– n
2
 m log n 4 + e

7 R in R
3

– n
3
 m log n 8 + e

Transformations considered are 7�= translation and 5�= rotation, and their
combination. Here, 0 < e < 1 is a fixed constant. (The optimal match method
for translation in R

3
 is for the undirected Hausdorff distance.)
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formation. Specifically, for each b ³ B, define Tb to be the transla-
tion that takes r to b. Also, for a b� ³ B, b� � b , define Rb�  to be the
rotation about r that makes r, b�, and k collinear. Let Eb b, �  be the

Euclidean motion that is the combination of Tb and Rb� . Our
method is to find min { ( ( ), )}, ,b b B b bh E P B�³ �  as our best approximate

match, and let E� be the Euclidean motion Eb b, �  that achieves this

bound. This can be done in O(n2m ¼ Nearest3(n)) time, which is

O(n2m log2 n) if one uses the best current point location method for
a three-dimensional convex subdivision [18] to query nearest
neighbors in a three-dimensional Voronoi diagram (e.g., see [15],
[33]). Our preference, however, is to achieve a faster (and more

practical) O(n2m log n) time bound using the approximate nearest
neighbors method of Arya et al. [8], at a slight cost in the approxi-
mation factor.

LEMMA 2.2. h(E�(P), B) � (4 + e)h(Eopt(P), B), for any constant 0 < e < 1.

PROOF. Since the e term is a direct consequence of our using ap-
proximate nearest neighbor searching to achieve Nearest3(n)
= O(log n), it is sufficient to show that actual nearest neigh-
bors would give an approximation factor of 4. For simplicity
of expression, define hopt = h(Eopt(P), B). Observe that, for
each p ³ Eopt(P), there exists an associated b ³ B that is
within a distance hopt of p. Consider the process of translat-
ing the entire pattern Eopt(P) so that the particular point r
now coincides with its associated background point b. This
translation will cover a distance of at most hopt and will
therefore increase the distance from any other point in the
pattern to its associated background point by at most hopt.
Now, consider the process of rotating the entire pattern
about point r so that the line containing r and k now passes
through the background point associated with k in Eopt(P).
This rotation will have the effect of moving point k by at
most 2hopt. Since k is the furthest point in the pattern from
the center of rotation, all other pattern points will be moved
by a distance of at most 2hopt. Thus, any given point in the
pattern can be moved by at most hopt during the translation
and at most 2hopt during the rotation, and could have been
initially at most hopt away from its associated background
point. Therefore, each point in the pattern will be at most a
distance of 4hopt from a background point. The pattern in its
current position coincides with one of the Euclidean trans-
formations generated and checked by our algorithm. o

2.3 Pure Rotation in R3

For points in R3, we give an efficient method for finding a (pure)
rotation R�, about the origin, such that h(R�(P), B) is at most
4h(Ropt(P), B), where Ropt(P) is an optimal rotation, i.e., one that
minimizes h(R(P), B), taken over all rotations R.

Find a point p1 ³ P that is furthest from the origin. Find a point

p2 ³ P that has the maximum perpendicular distance to the line

defined by the origin and point p1. (It takes O(m) time to find p1

and p2.) For each b� ³ B, define R b1 �  to be the rotation that makes

the origin, p1, and b� collinear. For each b�� ³ B, b�� � b�, define R b2 ��

to be the rotation about the origin-p1 axis that makes the origin, p1,

p2, and b�� coplanar. Our method, then, is to find

min ,
,� ��³ �� �b b B b bh R R P B2 1 1 62 74 9J L

as our best approximate match, and let R� be the resultant rotation
R R Pb b2 1�� �( ( ))  that achieves this bound. This requires

O(n2m ¼ Nearest3(n))

time. As above, we achieve Nearest3(n) = O(log n) using approxi-
mate nearest-neighbor searching [8], and end up with the follow-
ing result:

LEMMA 2.3. h(R�(P), B) � (4 + e)h(Ropt(P), B), for any constant 0 < e < 1.

PROOF. For simplicity of expression, define hopt = h(Ropt(P), B).
Observe that, for each p ³ Ropt(P), there exists an associated
b ³ B that is within a distance hopt of p. Consider the process
of rotating the entire pattern Ropt(P) so that p1, the furthest
pattern point from the origin, now becomes collinear with
its associated background point b and the origin. This proc-
ess can move any point in the pattern by at most hopt. Now,
consider the second rotation (about the line through the ori-
gin and p1) that brings p2 coplanar with its matching back-
ground point. This rotation may move p2 a distance of at
most 2hopt and, therefore, it may move any point in the pat-
tern by at most 2hopt. These combined rotations move any
pattern point at most a distance of 3hopt from its original po-
sition, which is known to be within a distance of hopt of a
background point. Therefore, each point in the pattern will
be a distance of at most 4hopt away from a background point.
This rotation will be one of those generated and checked by
our algorithm. o

2.4 Translation and Rotation in R3

For points in R3, we give an efficient method for finding a Euclidean
transformation E� such that h(E�(P), B) is at most (8 + e)h(Eopt(P), B),
where Eopt is an optimal Euclidean transformation, i.e., one that
minimizes h(E(P), B), taken over all such transformations E.

Select from the pattern diametrically opposing points2 and call
them r and k. Choose a point l ³ P such that the perpendicular

distance from l to the line rk is maximum. For each b ³ B, define Tb

to be the translation that takes pattern point r to b. For each b� ³ B,
b� � b, define R b1 �  to be the rotation that causes r, k, and b� to be-
come collinear. For each b�� ³ B, b�� � b�, b�� � b, define R b2 ��  to be the
rotation about the rk axis that brings b�� into the (r, k, l)-plane.

Our method, then, is to compute the value of

min ,
, ,b b b B b b bh R R T P B

� ��³ �� �2 1 1 62 74 94 9J L
as our best approximate match, and let E� be the Euclidean trans-
formation R R T Pb b b2 1�� �( ( ( ))  that achieves this bound. This can be

done in O(n3m ¼ Nearest3(n)) time. As above, we achieve Nearest3(n)
= O(log n) using approximate nearest-neighbor searching [8], and
end up with the following result:

LEMMA 2.4. h(E�(P), B) � (8 + e)h(Eopt(P), B), for any constant 0 < e < 1.

PROOF. For simplicity of expression, define hopt = h(Eopt(P), B). In
addition, as in previous proofs, we show that the expansion
factor is 8 if one were to use actual nearest neighbors instead
of approximate nearest neighbors. Observe that for each p ³
Eopt(P), there exists an associated b ³ B that is within a dis-
tance hopt of p. Consider the process of translating the entire
pattern Eopt(P) so that r becomes coincident with its associ-
ated background point. This process can move any point in
the pattern by a distance of at most hopt. Now, consider the
process of rotating the entire pattern so that line rk passes
through the background point that is associated with k. This
rotation can move any point in the pattern by at most 2hopt.
Now, consider a second rotation that brings the background
point associated with l into the (r, l, k)-plane. This rotation

2. While subquadratic algorithms exist for computing the diameter, we
found it reasonable to use a simple O(m2) algorithm as a preprocessing step
since we only need to perform this calculation once for the entire algorithm.
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may move pattern point p2 a distance of at most 4hopt and,
therefore, it may move any point in the pattern by at most
4hopt. This rotation will be one of those generated and
checked by our algorithm. The translation may have moved
any point a distance of at most hopt, the first rotation may
have moved any point a distance of at most 2hopt farther,
and the second rotation may have moved any point a dis-
tance of at most 4hopt still farther. Considering that any
given pattern point may have been a distance of hopt away
from its associated background point to start with, no pat-
tern point can be farther than 8hopt from its associated back-
ground point. o

3 EXPERIMENTAL RESULTS

We have implemented our methods and conducted experiments
comparing them with a method that produces best matches to an
arbitrary precision using a conventional branch-and-bound search
of a discretized configuration space. This conventional method
seems to be the most practical previous best match procedure (we
did not feel it was practically feasible to implement the previous
intersection-based methods). As we show through our experi-
mental results, however, this conventional method is still quite
slow compared to our method, and the matches it finds are not
that much better than the ones that our method finds.

Example Generation. The background points B are generated uni-
formly at random in the unit d-cube. We then randomly select
m points from B to be an unperturbed pattern. We obtain a per-
turbed pattern, P, by perturbing each pattern point by a small
amount (uniformly, in a ball of radius d) so that the pattern no
longer identically resembles a subset of the background points.

3.1 Implementation of the Approximate Match Algorithms
Pure Translation in Rd. As described in Section 2.1, our approxi-

mate pattern matching algorithm translates the pattern so that
the distinct representative of the pattern coincides with each of
the n background points in succession. For each such transla-
tion, the directed Hausdorff distance is calculated and com-
pared with the best found so far. If the new directed Hausdorff
distance is smaller than the best found so far, the position of the
pattern (i.e., the position of the distinct representative) and this
new best distance replace those recorded so far. After the pat-
tern has been translated to each of the background points, we
output the best translation found (which is guaranteed to be
within factor two of optimal).

There are various possible heuristics one can apply which do
not improve the worst-case running time, but which do improve
the running time in practice. We use a condition that terminates
the while-loop early once it is known that a particular placement
need not be further considered. Observe that in the calculation of
the directed Hausdorff distance, we are finding the maximum
amount by which a pattern point deviates from its nearest back-
ground point. As we determine this quantity for each of the pat-
tern points we have a current maximum at any given point in the
loop. If this current maximum ever exceeds the best directed
Hausdorff distance found so far, the placement that we are check-
ing is known to be suboptimal and does not warrant further con-
sideration. We therefore terminate the while loop as soon the par-
tial computation of the directed Hausdorff distance exceeds the
global best found so far.

Translation and Rotation in R
2. Diametrically opposing pattern

points are chosen from the convex hull (in O(m2) time, as a pre-
processing step), one of which will serve both as the distinct
representative of the pattern and as the center of rotation. The
algorithm then translates the pattern so that the distinct repre-

sentative coincides with each of the n background points in
succession. After each translation, the pattern is rotated about
the current position of the distinct representative a total of n - 1
times so that, after each rotation, the other antipodal point is
aligned with another one of the background points. We now
have the pattern in one of the n(n - 1) positions at which we
check the directed Hausdorff distance. As with the translation-
only case, we maintain the best directed Hausdorff distance
found so far and the position of the pattern that produced it. If
at any time one of the n(n - 1) placements has a directed Haus-
dorff distance that is better than the best found so far, our rec-
ords are updated to reflect this new best position and directed
Hausdorff distance. Again, we use an early loop-termination
heuristic for speed.

Translation and Rotation in R3. We select the distinct representa-
tive and the antipode of the pattern, as we have done in R

2

above. In this case, we also select a third pattern point, called
the radial point, which has the property that it is the greatest
distance away from the line passing through the distinct repre-
sentative and the antipode. Our approximate match algorithm
is comprised of three nested for-loops. The outer-most loop
translates the pattern such that the distinct representative of the
pattern coincides with each of the n background points in suc-
cession. The next loop chooses one of the remaining n - 1 back-
ground points and rotates the pattern about the current posi-
tion of the distinct representative so that the antipode becomes
aligned with this selected background point. The inner-most
for-loop selects a third background point from the remaining
n - 2 and performs a second rotation of the pattern, this time
about the line passing through the current position of the dis-
tinct representative and the current position of the antipode, to
bring the plane defined by the distinct representative, the an-
tipode, and the radial point into a position that includes the
background point chosen by this third for-loop. For each of the
n(n - 1)(n - 2) placements produced by the above described for-
loops, the directed Hausdorff distance of the placement is gen-
erated and the current best is kept. At the termination of our
algorithm, we output the best placement found.

3.2 Implementation of the Branch and Bound Algorithms
Pure Translation in R

2. The conventional method against which
we compared our method is a recursive algorithm. It receives a
square defined by a center point and a side length. It then
“probes” the center of the square by translating the pattern so
that the distinct representative of the pattern is in the center of
the square. For the pattern in this position, the directed Haus-
dorff distance is calculated. If this distance is the best found so
far, it is recorded along with the probe point (center of square).
The algorithm then recurses on each of the four quadrants. The
recursion is terminated when it reaches a predefined maximum
depth or if it is certain that placement of the distinct represen-
tative at any point in the square will not produce a directed
Hausdorff distance that is better than the best found so far. One
observation that we can use to terminate a branch of recursion
early is that the directed Hausdorff distance can be decreased
by an amount of at most x when the pattern is translated by a
distance of x. If the value of the directed Hausdorff distance
produced by probing the center of the square is so great relative
to the best found so far that placing the distinct representative
at any point in the square is known to produce a directed
Hausdorff distance that does not beat the best found so far, we
no longer need to search recursively this square and we can
terminate this branch of the recursion.

Translation and Rotation in R
2. The conventional method for

translation and rotation in R
2 involves searching the three-
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dimensional configuration space in which the x and y positions
of the distinct representative of the pattern comprise two of the
dimensions, and the angular position, q, of the pattern about
the distinct representative comprises the third.

Translation and Rotation in R
3. The conventional method for

Translation and Rotation in R3 is again the search of a configu-
ration space, which is now six-dimensional: three degrees of
freedom (x, y, and z) in placing the distinct representative of the
pattern and three rotational degrees of freedom (two in locating
the antipode and one in orienting the pattern about the axis line
through the antipode).

3.3 Experiment 1: Comparison of Match Qualities
While we have proven upper bounds on the worst-case behavior
of our approximation algorithms, the goal of our first experiment
is to see how close to optimal Hausdorff distance our method
comes, in practice.

Pure Translation in R2. We have proven an upper bound of 2 on
the ratio of the directed Hausdorff distance of our approxima-
tion to the directed Hausdorff distance of the optimal match un-

der translation. It is our conjecture that, for large sparse Bs and
large sparse Ps, the approximate match algorithms will produce
matches that are (1 + l)hopt, where l is the ratio of the expected
distance by which a point will be perturbed divided by the
maximum distance by which a point will be perturbed; for our
perturbation strategy in R2, this ratio will be

l
p

p
= =r

dr2

1
2 320

1
.

Our reasoning is as follows: If the pattern is large, it is likely
that the absolute optimal placement of the pattern with respect
to the background will be such that quite a few pattern points

will be hopt away from the nearest background point. The ap-
proximate-match algorithm produces, with high probability
(especially, given the pattern-generation method used in these
experiments), the match that is identical to this optimal match,
differing only in that it is translated such that the distinct repre-
sentative of the pattern is made to coincide with its associated
background point. This translation will be in a direction that
moves one or more of the poorly matching pattern points al-
most directly away from the associated background points.

Fig. 1. Ratio of the Hausdorff distances: Pure translation in R
2
.

Fig. 2. Ratio of the Hausdorff distances: Translation and rotation in R
2
.
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Thus, since l = 2
3 , the expected Hausdorff distance for our al-

gorithm will be 5
3 ¼ hopt .

We conducted an experiment to test this hypothesis. One
hundred sets of background points were generated, each having
between 50 and 500 points. From each background, a pattern of
size 10 was selected and perturbed. The pattern was then
matched to its associated background using both the approxi-
mate match algorithm and a conventional match algorithm. The
ratio of the directed Hausdorff distance of the match produced
by the approximate match algorithm to the directed Hausdorff
distance of the match produced by the conventional match algo-
rithm is plotted in Fig. 1. The average of the ratios plotted is 1.44,
which is close to the predicted value of 1.66. Note that the pre-
dicted value of this ratio assumes an infinitely large pattern and
an unlimited depth of recursion in the conventional method.
Decreasing either the pattern size or the depth of recursion
would decrease the predicted value of the ratio and this too is
reflected in this experiment. For this experiment, the conven-
tional match algorithm was run to a depth of 11.

Translation and Rotation in R2. In Section 2.2, we have proven an
upper bound of 4 on the approximation factor for our method.
In order to determine the approximation factor observed in
practice, 110 background point sets were generated, each hav-
ing between 10 and 30 points. From each of these backgrounds,
a 10 point pattern was selected and perturbed. The results of
comparing the quality of the approximate match algorithm to
the conventional branch-and-bound algorithm is plotted in

Fig. 2. The average ratio of the trials in this experiment is 1.60,
which is substantially better than the worst-case ratio of 4.

Pure Translation in R3. For approximate matching under transla-
tion-only in R3, we can again expect match qualities that are in
general better than the worst case bound. In a manner similar
to that outlined for R

2, the expected Hausdorff distance pro-
duced by the approximate match algorithm for matching under
pure translation in R3 can be calculated: the expected Hausdorff
distance for matches produced is (1 + l)hopt, where again l is
the expected distance by which a point is perturbed. For our
perturbation strategy in R3,

l
p

p
= =r

r dr4

4 3 1
3 4

2

30

1

2 7 .

Our experiment used 45 sets of background points, each having
between 5 and 100 points. From each background, a pattern of size 5
was selected and perturbed. The pattern was then matched to its
associated background using both the approximate match algo-
rithm and a conventional match algorithm. The ratio of the di-
rected Hausdorff distance of the approximate match algorithm to
the directed Hausdorff distance of the conventional match algo-
rithm is plotted in Fig. 3. The average of the ratios plotted is
1.679, which is close to the predicted value of 1.75. The fact that
the experimental average is less than the predicted value can be
attributed to the relatively small pattern size of five points, which
decreases the probability that one of the pattern points will be
translated by a nearly maximal amount when the distinct represen-
tative of the pattern is translated to its associated background point.

Fig. 3. Ratio of the Hausdorff distances: Pure translation in R
3
.

Fig. 4. Running times of the four methods (in Mega-FLOPs).
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3.4 Experiment 2: Running Times
The approximate match algorithms have worst-case time com-
plexities that are much lower than those of the branch-and-bound
match algorithms. We conjectured that the approximate match algo-
rithms should also run faster in practice. Experiment 2 examines the
extent to which they do, comparing them to what should be a
good practical algorithm—branch-and-bound. To eliminate any
system effects on the running time data, we keep a counter of
floating point operations used by each algorithm.

Pure Translation in R2. In this case, 30 sets of background points
were generated, each having between 50 and 500 points. From
each background, a pattern of size 10 was selected and per-
turbed. The pattern was then matched to its associated back-
ground using both the approximate match algorithm and a
conventional match algorithm, both with and without heuristic
speedups. The results of this experiment are shown in Fig. 4. In
every case, the approximate match algorithm, even without the
heuristic speedup, had a smaller running time than the con-
ventional algorithms.

Translation and Rotation in R
2. In this case, 110 sets of back-

ground points were generated, each having between 10 and 30
points. From each background, a pattern of size 10 was selected
and perturbed. The pattern was then matched to its associated
background using both the approximate match algorithm and a
conventional match algorithm (with heuristic speedups). The
results of this experiment are shown in Fig. 5. In all 110 trials,
the conventional match algorithm was slower than the ap-
proximate match algorithm by at least a factor of 442, the aver-
age slowdown being a factor of 1,199.

Translation and Rotation in R3. In this case, 24 sets of background
points were generated, each having between 5 and 25 points.
From each background, a pattern of size 5 was selected and
perturbed. The pattern was then matched to its associated
background using the approximate match algorithm with heu-
ristic speedups, a depth-first branch-and-bound algorithm, and
a breadth-first branch-and-bound algorithm. The running times
of the depth-first and breadth-first branch-and-bound algo-
rithms were, in all instances within a factor of 0.01 of each other
and are, therefore, plotted as a single line in Fig. 6, which de-
picts the results of this experiment.

The branch-and-bound algorithms search a six-dimensional
space comprised of three degrees of freedom in the translation of
the pattern and three degrees of freedom in the rotation of the
pattern. This produces a rather large branching factor of 26 = 64 in
the recursive algorithms and necessitated the depth of these algo-
rithms to be limited to 3. With this (necessary) depth limitation, the
approximate-match algorithm actually found better matches than
the branch-and-bound algorithm did in all of the 24 cases, in spite
of the fact that the branch-and-bound algorithms required on av-
erage 4,479 times as many floating-point operations. The ratio of
the directed Hausdorff distance of the match produced by the
depth-limited search to the directed Hausdorff distance of the
match produced by the approximate match algorithm is plotted in
Fig. 7. It should be noted that the largest of the breadth-first
searches in this experiment consumed between one and two hours
of real time on an otherwise unloaded Sun Sparc Station ELC run-
ning Sun OS 4.1.1.

Fig. 5. Running times for matching under translation and rotation in the plane: Conventional method (Line 1) versus our approximate method (Line 2).

Fig. 6. Running times for matching under translation and rotation in R
3
: Conventional method (Line 1) versus our approximate method (Line 2).
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3.5 Experiment 3: Running Time versus Depth of Recursion
The depth of search of the conventional match algorithms that we
have implemented must be limited. This experiment depicts the
extent to which the running time of the algorithm increases as the
depth of recursion is increased. Further, it shows the substantial
speedup obtained by pruning the search. The results of this ex-
periment are depicted in Fig. 8.

Four backgrounds were generated, each having 50 points.
From each background, a pattern of size 10 was selected and
perturbed. The conventional method with and without pruning
was run ten times on each of the four data sets with the depth of
recursion being varied from 1 to 10. An average of the running
times of each of the four cases was taken and the results were
plotted in Fig. 8.

4 DISCUSSION AND CONCLUSION

We have given approximate pattern matching algorithms for
translation, rotation, and Euclidean transformations for point
sets in two or more dimensions. Our algorithms are guaranteed
to give a match with a directed Hausdorff distance that is no
greater than a small constant times the best achievable directed
Hausdorff distance. In addition, they have a time complexity
that is substantially smaller than those of existing pattern

matching algorithms, they are easy to implement, and they run
fast in practice.

Improving the Approximation Factors. We can extend our meth-
ods so that the match produced by the algorithm is arbitrarily
close to optimal (within factor (1 + e)), while increasing the
running time of the algorithm by only a constant factor (de-
pendent on e). We sketch the idea briefly for the case of match-
ing under translation only in Rd. When we pin the distinct rep-
resentative of the pattern at a background point, we construct a
d-dimensional uniform grid of points around that background
point and pin the distinct representative at each of these grid
points in succession. (The grid can be generated within a box
whose size is given by the approximate Hausdorff distance
computed using our unmodified approximation algorithm; the
number of grid points depends on e.) At each of these place-
ments, we compute the Hausdorff distance and compare it
against the best found so far. For cases such as Translation and
Rotation in which placements are generated based on two or
more background points (for example, a translation to place the
distinct representative at one background point and then a ro-
tation to align the antipode of the pattern with another back-
ground point, etc.), we can extend this idea using multiple
grids in the obvious way.

Fig. 7. The ratio of the directed Hausdorff distance of the match produced by the depth-limited search to the directed Hausdorff distance of the
match produced by the approximate match algorithm for the case of translation and rotation in R

3
.

Fig. 8. Running times with and without pruning.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  21,  NO.  4,  APRIL  1999 379

ACKNOWLEDGMENTS

We thank E. Arkin, S. Fekete, and D. Mount for useful discussions
on this research. Michael T. Goodrich’s research was partially sup-
ported by the U.S. Army Research Office under Grant DAAH04-
96-1-0013 and by the U.S. National Science Foundation under
Grants CCR-9625289 and CCR-9732300. Joseph S.B. Mitchell’s re-
search was partially supported by U.S. National Science Founda-
tion Grants CCR-9504192 and CCR-9732220. Mark W. Orletsky’s
research was partially supported by U.S. National Science Foun-
dation Grant IRI-9116843. This work was announced in prelimi-
nary form in the Proceedings of the 10th Annual ACM Symposium on
Computational Geometry, pp. 103-112, 1994.

REFERENCES
[1]� P.K. Agarwal, B. Aronov, M. Sharir, and S. Suri, “Selecting Dis-

tances in the Plane,” Algorithmica, vol. 9, pp. 495-514, 1993.
[2]� N. Ahuja, “Dot Pattern Processing Using Voronoi Neighbor-

hoods,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 4,
no. 3, pp. 336-343, May 1982.

[3]� H. Alt, B. Behrends, and J. Blömer, “Approximate Matching of Po-
lygonal Shapes,” Annals of Math. and Artificial Intelligence, vol. 13,
pp. 251-266, 1995.

[4]� H. Alt, L. Knipping, and G. Weber, “An Application of Point Pat-
tern Matching in Astronautics,” Technical Report B-93-16, Institut
für Informatik, Fachbereich Mathematik und Informatic, Freie
Universität Berlin, 1993.

[5]� H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl, “Congruence,
Similarity and Symmetries of Geometric Objects,” Discrete Com-
puting in Geometry, vol. 3, pp. 237-256, 1988.

[6]� E. M. Arkin, K. Kedem, J.S.B. Mitchell, J. Sprinzak, and M. Wer-
man, “Matching Points into Pairwise-Disjoint Noise Regions:
Combinatorial Bounds and Algorithms,” ORSA J. Computing, vol. 4,
no. 4, pp. 375-386, 1992.

[7]� K.S. Arun, T.S. Huang, and S.D. Blostein, “Least Squares Fitting of
Two 3-(D) Point Sets,” IEEE Trans. Pattern Analysis and Machine In-
telligence, vol. 9, pp. 698-700, 1987.

[8]� S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A. Wu,
“An Optimal Algorithm for Approximate Nearest Neighbor
Searching,” Proc. Fifth ACM-SIAM Symp. Discrete Algorithms, 1994.

[9]� L.P. Chew, M.T. Goodrich, D.P. Huttenlocher, K. Kedem, J.M.
Kleinberg, and D. Kravets, “Geometric Pattern Matching Under
Euclidean Motion,” Computing Geometric Theory Applications, vol. 7,
pp. 113-124, 1997.

[10]� L.P. Chew and K. Kedem, “Improvements on Geometric Pattern
Matching Problems,” Proc. Third Scandinavian Workshop Algorithm
Theory, pp. 318-325. Springer-Verlag, 1992.

[11]� R. Cole, “Slowing Down Sorting Networks to Obtain Faster Sort-
ing Algorithms,” J. ACM, vol. 34, pp. 200-208, 1987.

[12]� R. Cole, “Parallel Merge Sort,” SIAM J. Computing, vol. 17, no. 4,
pp. 770-785, 1988.

[13]� R. Cole, J. Salowe, W. Steiger, and E. Szemerédi, “An Optimal-
Time Algorithm for Slope Selection,” SIAM J. Computing, vol. 18,
pp. 792-810, 1989.

[14]� T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo-
rithms. Cambridge, Mass.: MIT Press, 1990.

[15]� H. Edelsbrunner. Algorithms in Combinatorial Geometry. Heidel-
berg, West Germany: Springer-Verlag, 1987.

[16]� D. Forsyth, J.L. Mundy, A. Zisserman, C. Coelho, A. Heller, and C.
Rothwell, “Invariant Descriptors for 3-D Object Recognition and
Pose,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13,
no. 10, pp. 971-991, Oct. 1991.

[17]� J.W. Foster, G.K. Bennett, and P.M. Griffin, “Automated Visual
Inspection: Quality Control Techniques for the Modern Manu-
facturing Environment,” Proc. 1987 IIE Integrated Systems Conf.,
pp. 135-140, Dec. 1987.

[18]� M.T. Goodrich and R. Tamassia, “Dynamic Trees and Dynamic
Point Location,” SIAM J. Computing, vol. 28, no. 2, pp. 612-636,
1999.

[19]� P.M. Griffin, J.W. Foster, and M.H. Han, “Automated Dimension
Verification by Point Pattern Matching,” Proc. 1988 Int’l Industrial
Eng. Conf., pp. 451-455, 1988.

[20]� R.M. Haralick, C.N. Lee, X. Zhuang, V.G. Vaidya, and M.B. Kim,
“Pose Estimation From Corresponding Point Data,” IEEE Trans.

Systems, Man, and Cybernetics, vol. 19, no. 6, pp. 1,426-1,446, Nov.-
Dec. 1989.

[21]� P.J. Heffernan, “Generalized Approximate Algorithms for Point
Set Congruence,” Proc. Third Workshop Algorithms Data Structure,
pp. 373-384, 1993.

[22]� P.J. Heffernan and S. Schirra, “Approximate Decision Algorithms
for Point Set Congruence,” Computing Geometric Theory Applica-
tions, vol. 4, pp. 137-156, 1994.

[23]� B.K.P. Horn, “Closed-Form Solution of Absolute Orientation Using
Unit Quaternions,” J. Optical Soc. of Am. A, vol. 4, no. 4, pp. 629-642,
Apr. 1987.

[24]� B.K.P. Horn, H.M. Hilden, and S. Negahdaripour,” Closed-Form
Solution of Absolute Orientation Using Orthonormal Matrices,” J.
Optical Soc. of Am. A, vol. 5, no. 7, pp. 1,127-1,135, July 1988.

[25]� D.P. Huttenlocher, K. Kedem, and J.M. Kleinberg., “On Dynamic
Voronoi Diagrams and the Minimum Hausdorff Distance for
Point Sets Under Euclidean Motion in the Plane,” Proc. Eighth
Ann. ACM Symp. Computer Geometry, pp. 110-120, 1992.

[26]� D.P. Huttenlocher, K. Kedem, and M. Sharir, “The Upper Enve-
lope of Voronoi Surfaces and Its Applications,” Discrete Computing
Geometry, vol. 9, pp. 267-291, 1993.

[27]� K. Imai, S. Sumino, and H. Imai, “Minimax Geometric Fitting of
Two Corresponding Sets of Points,” Proc. Fifth Ann. ACM Symp.
Computing Geometry, pp. 266-275, 1989.

[28]� D.J. Kahl, A. Rosenfeld, and A. Danker, “Some Experiments in
Point Pattern Matching,” IEEE Trans. Systems, Man, and Cybernet-
ics, vol. 10, no. 2, pp. 105-116, 1980.

[29]� L.J. Kitchen, “Relaxation for Point-Pattern Matching: What It
Really Computes,” Proc. IEEE Conf. Visualization and Pattern Rec-
ognition, pp. 405-407, 1985.

[30]� N. Megiddo, “Applying Parallel Computation Algorithms in the
Design of Serial Algorithms,” J. ACM, vol. 30, pp. 852-865, 1983.

[31]� H. Ogawa, “Labeled Point Pattern Matching by Fuzzy Relaxa-
tion,” Pattern Recognition, vol. 17, no. 5, pp. 569-573, 1984.

[32]� H. Ogawa, ”Labeled Point Pattern Matching by Delaunay Trian-
gulation and Maximal Cliques,” Pattern Recognition, vol. 19, no. 1,
pp. 35-40, 1986.

[33]� F.P. Preparata and M.I. Shamos, Computational Geometry: An Intro-
duction. New York: Springer-Verlag, 1985.

[34]� S. Ranade and A. Rosenfeld, “Point Pattern Matching by Relaxa-
tion,” Pattern Recognition, vol. 12, pp. 269-275, 1980.

[35]� W. Rucklidge, “Lower Bounds for the Complexity of the Hausdorff
Distance,” Proc. Fifth Canadian Conf. Computer Geometry, pp. 145-150,
1993.

[36]� G. Stockman, S. Kopstein, and S. Benett, “Matching Images to
Models for Registration and Object Detection via Clustering,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 4, no. 3,
pp. 229-241, May 1982.

[37]� S. Umeyama, “Least-Squares Estimation of Transformation Pa-
rameters Between Two Point Patterns,” IEEE Trans. Pattern Analy-
sis and Machine Intelligence, vol. 13, no. 4, pp. 376-380, Apr. 1991.

[38]� C. Wang, H. Sun, S. Yada, and A. Rosenfeld, “Some Experiments
in Relaxation Image Matching Using Corner Features,” Pattern
Recognition, vol. 16, no. 2, pp. 167-182, 1983.


