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Abstract. In this paper we address the problem of drawing planar graphs with circular
arcs while maintaining good angular resolution and small drawing area. We present a lower
bound on the area of drawings in which edges are drawn using exactly one circular arc. We
also give an algorithm for drawingvertex planar graphs such that the edges are sequences
of two continuous circular arcs. The algorithm runsQOxin) time and embeds the graph

on theO(n) x O(n) grid, while maintaining®(1/d(v)) angular resolution, whem(v) is

the degree of vertex. Since in this case we use circular arcs of infinite radius, this is also
the first algorithm that simultaneously achieves good angular resolution, small area, and
at most one bend per edge using straight-line segments. Finally, we show how to create
drawings in which edges are smod@i-continuous curves, represented by a sequence of
at most three circular arcs.

1. Introduction

The study of methods for rendering planar graphs is central in the graph drawing liter-
ature. In planar graph drawings, vertices are represented by distinct points in the plane
and edges are drawn as continuous curves that do not cross one another [1]. An important
characteristic of a graph drawing is its readability, and some of the essential qualities

* A preliminary version of this paper appeared in Breceedings of théth Annual Symposium on Graph
Drawing, 1999. The first author was partially supported by ONR Grant N00014-96-1-0829, the other three
authors were partially supported by NSF Grant CCR-9732300 and ARO Grant DAAH04-96-1-0013.
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that determine readability include the following:

1. Edge smoothnessdges should be drawn with “smooth” curves. Ideally, we prefer
straight-line segments. If some other considerations prevent the use of straight
lines, then edges should be drawn as simple smooth low-degree curves or polylines
with few bends.

2. Area vertices and bend points should be placed at integer grid points in as small a
box as possible. Ideally, vertices and bend points should be placed@marx
O(n) grid, wheren is the number of vertices in the graph.

3. Angular resolutionfor each pairs andt of curves representing two consecutive
edges incident on a vertexthe angle between the tangensaitv and the tangent
of t atv should be large. Ideally, we would like the measure of each such angle to
be®(1/d(v)), whered(v) denotes the degree of

Thus, we are interested in a study of methods for drawing planar graphs with smooth
edges, small area, and ideal angular resolution. The particular emphasis in this paperis to
consider methods for drawing edges with polylines such that each piece of the polyline
is drawn with a circular arc. This is a strict generalization of the usual piecewise-linear
polylines [8], [11], since a straight-line segment can be viewed as an arc of a circle of
infinite radius. In this paper we address the following questions: What area is achievable
for drawings with good angular resolution that use single circle arcs for edges? What
area is achievable for drawings that use at most two circular arcs per edge and have
good angular resolution? What is the fewest number of circular arcs needed to achieve
O(n) x O(n) area, good angular resolution, a@d-continuity for edges?

1.1. Prior Related Work

There is a rich body of knowledge that has been developed for drawing planar graphs.
Early work by Wagner [15], &fy [4], and Tutte [14] focused on drawings of planar graphs
using straight-line edges, without much attention paid to other aesthetic or complexity
issues. Indeed, the drawings produced using these early techniques can in many cases
require exponential area. Later de Fraysseix et al. [3] and then Schnyder [13] showed that
one can draw a planar graph with straight-line edges and vertices placed at grid points
in an O(n) x O(n) integer grid. Still, the drawings produced from these algorithms
have a weakness, which is not as prevalent in the algorithms based on Tutte’s approach:
namely, the area-efficient straight-line drawings can produce very small angles between
consecutive edges incident upon the same vertex (poor angular resolution). In fact, it has
been proven by Malitz and Papakostas [12] that there exist graphs that always require
exponential area for straight-line embeddings maintaining good angular resolution.

The problem of drawing planar graphs with good angular resolution was addressed
by Formann et al. [5], Garg and Tamassia [6], and Kant [9]-[11], who showed that one
could in fact simultaneously achiev@(n) x O(n) area and an angular resolution of
®(1/d(v)) for each vertex, by drawing a planar graph using piecewise-linear poly-
lines with at most three bends each. Gutwenger and Mutzel [8] improved the constant
factors for such drawings, establishing that one could dram~egrtex planar graphin a
(2n — 5) x (3n/2 — 7/2) grid with at least 2dmax @ngular resolution using piecewise-
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linear polylines with at most three bends each, wlikgg is the maximum degree of the
graph. Goodrich and Wagner [7] showed that one could in fact aclégne x O(n)

area with an angular resolution @f(1/d(v)) for each vertex, using piecewise-linear
polylines with only two bends each. They also showed that one could achieve the same
area and angular resolution bounds using smooth degreeZffpcurves.

1.2. Our Results

In this paper we provide answers to the questions posed above. Specifically, we show
the following:

e There exists an-vertex planar grapls that requires area exponentialkirior any
drawing ofG that uses single circle arcs for edges and has good angular resolution.

e We can draw am-vertex planar grapi® in an O(n) x O(n) grid with angular
resolution®(1/d(v)) for each vertex in G using at most two circular arcs per
edge. In fact, in this case we use circular arcs of infinite radius so that the polylines
are piecewise linear with at most one bend each, while still maintaining good
angular resolution an®(n) x O(n) area.

o We can draw am-vertex planar grapi®é in an O(n) x O(n) grid with angular
resolution®(1/d(v)) for each vertexv in G using C!-continuous curves that
consist of at most three circular arcs.

Our lower-bound proof is based on a nontrivial analysis of a circular-arc drawing of the
well-known nested-triangles graph. Our algorithm is based on a careful modification of
the incremental approach to planar graph drawing utilized by de Fraysseix et al. [3] similar
to the approach used by Goodrich and Wagner [7]. We describe the main ideas behind
these results in the sections that follow, beginning our discussion with the algorithm.

2. Algorithm

We now describe an efficient algorith@neBend, to embed any planar graph on an
O(n) x O(n) grid while maintaining good angular resoluti@n1/d(v)), for each vertex
v, and using at most one bend per edge. Following the methods of de Fraysseix et al. [3]
and Kant [11], we insert vertices sequentially by their canonical ordering, generating
subgraph$s,, G, ..., G, in the process. Recall that in the canonical order, vertices are
labeledvs, vy, ..., vy, and graphG; is defined to be the subgraph induced on the vertices
v1, U2, ..., vji. GraphG; is 2-connected and its external face is a cy&leFurthermore,
in graphG; 1, the new vertexy; .1 has all of its neighbors on the external faceCpf

In the manner of Goodrich and Wagner [7], we use a box around each vertex of size
proportional to its degree but guarantee that each edge drawn contains at most one bend
rather than the previous best known method using two. To generate a sulddraph
from Gi by inserting a vertexy; and its associated box, we need to perform a few
operations and maintain a few sets. ugt= v1, wo, ..., wn = vz be the vertices of the
exterior faceCy of G in order. For a particular subgra@y and vertexvy, 1, we refer
to w; andw;, as the leftmost and rightmost neighborspf; on Cy; see Fig. 1.
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Fig. 1. GraphGy. afterinsertingy1. The shaded part S and all unfilled vertices are part of the shifting
setMyq1(vkt1)-

2.1. Vertex Joint Box

We associate with every vertexe V ajoint box centered around, rotated 45, and
having width and heightd(v) + 4 units, see Fig. 2. For notational convenience, i
clear from the context, then we ud¢o denote the degree(v), of v. Thus, ifv is located
at position(i, j), the four corners of the box ate+2d +2,i) and(, j +2d + 2). We
break the box into two types of alternating regidnse regionsandport regions For each

d M 441
180

Fig. 2. The joint box for a vertexy, in the drawing. Notice the shaded regions highlighting the three free
regions and the presence and location of ports inside the port regions.



Drawing Planar Graphs with Circular Arcs 409

Fig. 3. The edge fronu to v has two edge segments. The free edge segment conrtedt; . The port edge
segment connecisto M.

free region there is at most one edge passing throughvitEach port region consists of
a collection ofd ports and every edge inside the port region passes through a unique port.
We define and name the free regions using angular coordinates clockwise around

e Free regionM lies between-45° and 45.
e Free regiorR lies between 90and 135.
o FreeregiorL lies between-135 and—90°.

In between each of these regions are the port regions. For reference, we label the ports
betweenL and M upward asLi, ..., Lg and similarly betweerR and M. The ports
betweenL andR are labeledVi1, M, ..., My in counterclockwise order.

The algorithm draws each edgeknby “routing” it through a port in the joint box of
one of the two endpoints. Each edge consists of two connected edge segments. The first
edge segment, thport edge segmentonnects a vertex with one of the ports of its joint
box. The second edge segment, tlee edge segmentonnects a vertex to one of its
neighbor’s ports. For example, for an edge: (u, v), if we routee through portM; in
v’s joint box, we would draw two line segments, see Fig. 3. ffee edge segmentould
pass frormu to M; and theport edge segmentould pass from to M. This method of
construction enables us to guarantee that there is at most one bend per edge and that the
free edge segments always pass through free regions.

2.2. The Invariants

In order to construct our embedding incrementally, we maintain invariants similar to
those of de Fraysseix et al. [3] and Goodrich and Wagner [7] with two differences, a
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slight change in invariant three and a new invariant four:

1. The vertices and the ports of the joint boxes have integer coordinates.

2. Letwy = vy, wy, ..., wyn = v be the vertices of the exterior fa€ of Gy in
order and lex(wj) be thex-coordinate of vertexw;. Thenx(w1) < X(wz) <
s < X(wm).

3. For0< i < mthe free edge segment of the edgg, wi1) has slopet1.
4. For every vertex there is at most one (free) edge segment crossing each of its
free regions, see Fig. 2. All other edge segments are port edge segments.

Notice that if invariant four holds for the embeddi@g, by the definition of the joint
box and location of the port regiornsy has angular resolution no worse thail,/d(v)),
for each vertex.

2.3. The Shifting Set

During each insertion, we must create space for the vertex joint box to “see” its leftmost
and rightmost neighbors without the box touching any of the neighbors along the face
in between. To do this, we need to shift the vertices along the external face by a certain
amount. However, in order for the invariants and planarity to be guaranteed other vertices
must also be shifted at the same time. As in de Fraysseix et al. [3] and Goodrich and
Wagner [7], we define the shifting set for a vertex on the external face dby as

Mk (wi). For any graphGg, we defineMy(wi) € V such that the following conditions
hold:

1. wj € Mg(wy) ifand only if j > i.

2. M(w1) D Mk(w2) D -+ D My(wm).

3. For any nonnegative numhb®yr, 8o, . . ., 8y, if we sequentially translate all vertices
in My (wj) with distances; to the right(i = 1, 2, ..., m), then the embedding of
G remains planat.

Recall thatforavertex = vy, 1, wy andw, are the leftmostand rightmost neighbors of
v onCy. Starting with the initial shifting set & = 3, we construcMy_ 1 (wj) recursively
as follows:

o Miyi(wi) = My(wi) U vy, fori <1.
o Mi1(vkr1) = My(wiy1) U Uk+1-
° Mk+1(u)j) = Mk(wj), for ] =r.

This construction allows us to guarantee that the above three conditions of the shifting
sets are maintained. Intuitively, after a veriexis removed from the external face by
another vertexy 1, it always shifts exactly withy_ ;. During any shift, vertices can only
get farther apart in the-direction. Note that in our algorithm, when a vertex is shifted,
its joint box is also shifted, that is, the ports move as well.

1 Note that many vertices will move several times; e.qg. all poinidlifiw; )\ Mk (wj 1) will be translated
byéi 482+ +4i.
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2.4. The Construction

We first show how algorithnOneBend iteratively constructs the sequence of graphs
Gi, Gy, ..., Gp. Itistrivial to construct the initial cases &f;, G,, andGg, i.e., inserting
the first three vertices. Suppose we have embe@jedith exterior faceCy. Let Cy =

(v1 = wq, wy, ..., wy = v2) be the exterior face dby. To construcGy, 1, letv = vk

be the next vertex in the canonical ordering and recall ithatndw, are, respectively,
the leftmost and rightmost neighborswbn the faceCy. Letd, d,, d; be the respective
degrees ob, w;, andw,. Let p, be the first unuse® port inw;’s joint box. Similarly,

let pr be the first unused; port in w;’s joint box. Recall since each port region has at
leastd ports available there is always an unused port.

We insertv by shifting all vertices in the shifting sély (w;11) by 2d + 2 positions to
the right. Additionally we shift all vertices iM(w, ) by an additional @ + 2 positions
to the right. This implies all vertices iy (w, ) actually move 4 + 4 positions. Finally,
we placev at the intersection of lindsandr wherel (respectively) is the line through
p (respectivelyp;) with slope+1 (respectively-1). We route the edges betweeand
w, throughp, and do the same fap,. To maintain invariants one and three, notice that
if the intersection point has integer coordinates these two invariants hold. Otherwise, by
shifting My (w, ) one additional unit, we guarantee that the intersection point has integer
coordinates.

To complete the insertion and the algorithm, we need to draw the edges betamen
wi, wherd < i <r.Letw; be the rightmost vertex with accoordinate less than We
route the edges from to verticesw;, wherel < i < j through consecutive increasing
ports fromM3 in v’s joint box. Similarly, we route the edges framto verticesw;, where
r > i > j through consecutive decreasing ports frivtyy in v’'s joint box.

Lemma 1. After shifting any free edge segment in the free region remains in the free
region

Proof. We firstlook at free edge segments in Meegions. Notice that these segments
are created by a vertaxdominating another vertex. In this casew joins v’s shifting
set and is only shifted wheneveiis shifted. Therefore, the slope remains constant and
the free edge segment remains witiMn

All other free edge segments lie insidendR free regions. Without loss of generality,
we examine the case when a free edge segment lies Inridgion. This implies that the
slope of the line segment is between 0 afid Since shifting only moves vertices farther
apart in thex-direction, the slope can get closer to 0 but it will always remain positive.
Thus the free edge segment will always remain inlthigee region. The argument is
similar for free edge segments in tRefree regions. O

Lemma 2. Afterinsertionevery free edge segment passes through a free region which
contains no other segment

Proof.  After inserting a vertexy. 1, there are two types of edges added, the edges
betweenvy,, and the outside neighbors; andw,, and betweeny ;1 andw; where
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| < i < r.In both cases, each edge is routed through a port creating one free edge
segment and one port edge segment. By construction, a free edge segment of the first
type by construction has slope eithet or—1 and so it lies insidey1's joint box free
regionL or R. Sincevy, is a new vertex, there are no other segments inside these two
free regions.

A free edge segment of the second type intersectdvitregion of w;’s joint box.
Since this can happen at most once, as the vertex is now no longer on an external face,
there can be no other free edge segment inside this free region. To see that the segment
actually intersects th&l free region, notice thab; is bound betweem, andw, and
is also added into a port on the proper sideyafy, i.e., the left or right side. Also, by
constructionw; is below the lowest port of,1’s joint box. This implies that the slope
is bound either above-1 or below—1 and, therefore, the free edge segment lies inside
thew;’s M region. O

Lemma 3. If invariants 1-4 hold for G, then they also hold for (G ;.

Proof. By the nature of the shifting set, invariants one and two hold (see [7]). Note
that because shifting a vertex involves shifting the entire joint box simultaneously, after
every shift operation all port edge segments have unchanged slope. Also, after the two
shifting operations, all free edge segments on the exterior face have unchanged, albeit
+1, slope, except possibly the free edge segm@ntsw, 1) and(w,_1, w, ). However,
after insertion, these free edge segments are no longer on the exterior face and are
instead replaced by two free edge segments betéweem) and(v, wy) with slope+1.
Therefore, invariant three holds.

By Lemmas 1 and 2 and the fact that port edge segments never change slope, we see
that invariant four also holds since all edges routed in algoriim@Bend created a port
segment and a free edge segment. O

Theorem 1. Given a planar graph Galgorithm OneBend produces in @n) time a
planar embedding on th&0n x 15n grid with angular resolutior® (1/d(v)) and using
any of the following types of edggmlylines with one benar two circular arcs with
CP-continuity and one kngbr three circular arcs with G-continuity

Proof. The original algorithm as stated produces polylines with one bend per edge.
This by definition can also be represented by two circular arcs, straight lines, which have
a discontinuity at the bend, or knot. Since the points are embedded on the grid, the bends
may also be replaced by circular arcs of a relatively small size to e@ucentinuity
as well.
It has been shown by Chrobak and Payne [2] how to implement the algorithm of de
Fraysseix et al. [3]in linear time. Their approach can be easily extended to our algorithm.
It remains to show that the drawings produced by algoritbneBend fit on the
30n x 15n grid. Every time we insert a vertex, we increase the grid size bydy) +5
units. Summing over all the degrees of the vertices wedgdet,, 4d(v) + 5 = 4(6n —
12) + 5n < 30n. The final drawing fits inside an isosceles triangle with sides of slope
0, +1, —1. The width of the base is BGand so the height is less thannl5 O
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3. Drawing with Circular Arcs

Malitz and Papakostas [12] showed that some planar graphs, drawn with straight lines
in the O(n) x O(n) grid, must have small angles. More specifically, they found a class
of planar graphsk, whose straight-line planar drawings require exponential area if the
angular resolution is good. Suppose we relax the condition that each edge in a graph be
drawn with a straight-line segment so that each edge is drawn with a circular arc (where
a straight-line segment is considered an arc from a circle of radius infinity). Can we draw
the graphs iri{ with angular resolutioa > 0inanO(n) x O(n) grid? Surprisingly, as
long asx is a constant, the answer is no.

Let H = {H,,n > 1} and H; be a cycle on three verticd®;, Q1, and R;. For
n > 2, the graphH, is constructed fromH,_; by adding a cycle on three new vertices
Pn, Qn, Ra, and edgesP,, Py_1), (Qn, Qn-1), (R, Ra—1) and(Py, Qn-1), (Qn, Ra-1),
(Rn, Pn_1), as shown in Fig. 4. It is easy to check that the graph is planar, triconnected,
and, thus, has a unique embedding. We show that for any planar, circular-arc drawing of
H, with angular resolutiox > 0, there exists a constagt > 1 such that the area of
the drawing is2 (c)).

Let 'y, be a planar circular-arc drawing éf, with angular resolution & o < /3.
If (u, v) is an edge irH,,, then we refer to the arc that represeqtsv) in I'y astiv, and
the line segment that connectaindv astuv. (Sometimes or v may not be a vertex of
H, but a point on some arc df,. In this casefiv refers to the portion of the arc that
starts atu and ends at.) If S is a set of arcs i, that bounds a region, then we let
Area(S) be its area.

We next define regionS;, S,, andSs as follows:

S1 = {Pr1Qn_1, Qn_1Pn, PaPy 1},
82 = {Qrﬁ—lv R@nv QI”I/QTfl}s

S3 = {Ry_1Pr_1, Pn_1Ry, RyRy_1}.

We show in the next two lemmas that the region enclosed by the three & csamnot

Py

Fig. 4. The graphH, is constructed fronH,_; by adding vertice®,, Qn, and R, along with the edges
shown above. The figure on the right shog drawn with circular arcs.
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Pn»l

Q n-1

Pu-1 Hupa 0 nﬂr

Fig. 5. Arcsﬁandﬁgss\througlﬁn_/l,é._l, andQp_1, Zn—1, respectively. Theirtangen/tsﬂrm an angle
with the tangents oP,_1Zn_1 arEQ\n,lzn,l. The shape of the region boundedﬁ\)ynd Pn—1Zn_1 depends
on the concavityconvexity of P,_1 Qn—1 anda.

be arbitrarily small. If all the arcs i, are straight lines, this fact is easy to prove.
However, for circular-arc drawings, we need to take into account that the arcs can have
different curvatures. The requirement that the tangents of two incident arcs must form at
least an angle > 0 will allow us to show thaf\rea(S;) is proportional tdP,_1 Qn_1/%.
Similarly, the areas of the regions enclosed by the arés andS; cannot be arbitrarily
small. .

Let Z,_; be the midpoint ofP,_1Qn_1. Consider the two circular arcs that pass

throughP,_1 andZ,,_; such that the tangents of the arcs form an angléth Po10n_1.
Leta be the arc that lies on the outside facef ;. Letb be the corresponding arc that
passes throug®,_; andZ,_;, see Fig. 5.

Lemma4. AreaS;) > Area(3, Pn_/lz\n_l}).

Proof. Letl be the perpendicular bisector &_1Qn_1. Without loss of generality,
assume thaP, lies onl or on the same side dfas Q,_;. Notice that if P, # Z,_1,

Pn/_l\Pn is always abova@ except at its endpoing,_;. Otherwise, the angular resolution
of I'y, is violated orP, lies belowa and hence on the wrong side lofFurthermore,

Q/n_?f’n cannot intersecdl, except possibly aZ,_;. If it does, it crosse$ and has to
intersectP,_; P, as well, contradicting the assumption tiatis a planar drawing. Thus,

both Pf_ﬁn and Qn/_l\Pn do not cross; @ must lie iﬂ the region enclosed 8. By
symmetry, ifP, lies on the same side basP,_;, thenb must lie in the region enclosed
by S;. Our result follows. O

Lemma5. There exist positive constantg &nd K, such that

() Area(d, Po1Zn 1)) = ku[Pr-1Qu 12 and
(i) Area({@, Py_1Zn-1}) > k), Area({Py-1Qn-1, Pn—1Qn-1}).

Proof. Without loss of generality, we assume tiRat 5 is on the origin and,_; is on
the positivex-axis. The area enclosed Byand Pn_/1Z_1 depends on the convexity or
concavity oan_/la_l.when Pn_/la_l is convex and Wheﬁn:@_l is concave.

We assumé,_; Qn_1 is convex. Lety < be the angle formed betwedh_1Q,_1
and the tangents dPn:(I_l at P,_; and Q,_;. Wheny < 2«, @ is concave. Let
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f(0) = (@ —sinfd)/(1 — cosY). It is easy to verify that

L4 Afea({ﬁ, Pnflznfl})/:\|Pnflzn—1|2 f(2a —y)/4,
o Area({ Pn—lé_—\l, P-1Zn-1)) = |F)n—1zn—1|2 f(y)/4, o
o Area({@, Ph_1Zn-1}) = Area({a, Py_1Zn_1}) + Area{Pn_1Zn_1, Pn_1Zn-1}).

Thus,

fQa—y)+ f(y)

Area((@, Py_1Zn 1)) = [Pr1Zn1l? ;
- f(a)
PO 12
= | n 1Qn 1| 16C0§(y/2)
- f
> [Pn_1Qn_1/? 1((;), (1)

where (1) follows from the fact thaf (9) is monotonically increasing when &
6 < mand 0< y < 2«. Furthermore, sincg < 2«, the largest possible value of

Area{Py_1Qn 1, P 1Qn-1}) is [Pr_1Qn_1I2 (47/3)/4. Hence,
f ()
4f4n/3)°
If y > 2a, thena is convex. Again, it is easy to verify that
o Areal{d, Po1Zo 1) = [PoaZoa P T (y — 20)/4
o Area({a, Ph_1Zn 1}) = Area{Py_1Zn_1, Ph-1Zn-1}) — Are&({&, Ph_1Zn_1}).
Thus,

Area((@, Py_1Zn_1}) > Area({P,_1Qn_1)) )

Area{a, Pn_j_zn_l}) = |Pn—1Zn_1|2 (y) ()/ Cl)

4

s 20f/(&) B

= |Ph—1Qn-1] m y—20<t<y) (3
— ,uaf’(0

> |Pn—1Qn—1|2a 8( ) (4)

= |Pnlenfl|2%~ (5)

The equality in (3) follows from the Mean Value Theorem, which states thig) —
f(y —20) = f/(§) 2a wherey — 20 < & < y. Sincef’(0) is monotonically increasing
when0< 6 < 7,and 2x < y < m, (4) follows as well.

It is easy to verify that

Area((Py 10n 1, o 1Qn ) = [Py 100 12 4”
and f (2y) cog(y/2) < (27 4+ 1)/8sirf« when 2r < y < 7. From (3) we have
Area({d, Ph_1Zp1}) = Afed{Pn—lQn—l})ZCog(y/z) @)
8a sirf ()

Area({P,_1Qn_1})

v

627 +1)° ©
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When Pn:@_l is concaved must be concave. Using a similar argument as above,
we can show that there exist constantsandr/ such thatArea({a, P,_1Z,-1}) >
r«|Pn-1Qn_1/? and thatrea({a, P,_1Z,-1}) >r/, Area{P,_1Qn_1}). From (1) and (5)
and (2) and (6), then we have

[ f@) «
kot_mln{ 16 sﬂ?ra}v
K = min f(a) ’ 8a sif « ol
4 f4n/3) 6(27 +1)

Sincea > 0, f(«) > 0and sife > 0. Thusk, andk/, are positive numbers. O

We emphasize that the constakfsandk/, are not dependent op and hence the

result can be extended to the other a@s, 1 Ry_1 andRy_1 Pr_1. We are now ready for
the main result of this section.

Theorem 2. Any planar circular-arc drawing of H, that has constant angular reso-
lution @ > 0 has area2(c])) where ¢ > 1.

Proof. LetI'} be a planar, circular-arc drawing bif, with minimum areaA,,. Let B,_1
denote the area occupied bl_; in T'%. Clearly,B,_1 > A,_1. Then

An > Bn_1+ Area(Sy) + Area(S?) + Area(S3)
> Bno1+ 3[Ke [Pr1Qn1l? + K, Area({Pr_1Qn-1, P-1Qn_1))
+ Ky [Qn_1Rn11? + K, Area({Qn_1Ry_1. Qn_1Ry_ 1))
+ Ky [Ro_1P1/? + K, Area({Ry_1Py_1, Ry_1Pn_1))] (7)
e
> Boi+ %n Pr 10n 1P + [On 1R 12 + [RosPril?
+ Area({Py_1Qn_1, Pn_1Qn 1))
+ Area({Qn_1Rn_1. Qn_1Rn_1})
+ Area({Ry_1Py_1. Ri_1Pr_1))]
kK
> Bho1+ %[Ared{Pnlenfl, Qn-1Rn-1, Rn-1Paz1))
+ Area({Py_1Qn_1, Pn_1Qn 1))
+ Area{Qn_1Ry 1, Qn 1Ry 1))
+ Area({Ry_1Py_1. Ro_1Pr_1))] (8)
> Bno1+ M Bn1
(1 T )

Here (7) follows from Lemmas 4 and 5, while (8) follows from the fact that
Bn-1 > Area({Ph-1Qn-1, Qn-1Rn-1, Ri-1Pn-1}) + Area({Py-1Qn-1, Ph-1Qn-1}) +
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Area({Qn-1Rn-1, Qn-1Rh-1}) + Area{Ry_1Ph-1, Ri-1Pha}). Let ¢ = 1 +
min(ky, k7,).
SinceA, is at least some constaat > 0, by induction,A, > cgflal. O

4. Conclusion and Open Problems

In this paper we prove that drawing a planar graph with good angular resolution using
one circular arc per edge requires exponential area. We then show how to draw planar
graphs with good angular resolution using polylines with at most one bend per edge on
a grid of size 3@ x 15n. Reducing the constants seems possible but this problem has
not been explored yet.

The algorithm for drawing with one bend per edge immediately implies that we can
draw planar graphs using two circular arcs w@th-continuity, or using three circular
arcs withC*-continuity. However, it still remains to show whether we can draw using
two circular arcs, or possibly two other degree-2 curves, ®ftrcontinuity.

Acknowledgments

We thank Anhua Lin for helpful discussions and suggestions.

References

1. G. Di Battista, P. Eades, R. Tamassia, and |. TdBiaph Drawing Algorithms for the Visualization of
Graphs Prentice-Hall, Englewood Cliffs, NJ, 1999.

2. M. Chrobak and T. Payne. A linear-time algorithm for drawing planar grdpfamation Processing
Letters 54:241-246, 1995.

3. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on@gmdinatorica10(1):41—

51, 1990.

4. |. Fary. On straight lines representation of planar graplta Scientiarum Mathematicaryril:229-233,
1948.

5. M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Simvonis, E. Welzl, and
G. Woeginger. Drawing graphs in the plane with high resolut&AM Journal of Computing22:1035—
1052, 1993.

6. A. Garg and R. Tamassia. Planar drawings and angular resolution: algorithms and boBrotseénlings
of the2nd Annual European Symposium on Algorithpeges 12—23, 1994.

7. M. T. Goodrich and C. G. Wagner. A framework for drawing planar graphs with curves and polylines. In
Proceedings of théth Annual Symposium on Graph Drawingpges 153-166, 1998.

8. C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular resolutiBmdeedings of
the6th Annual Symposium on Graph Drawinmpges 167-182, 1998.

9. G. Kant. Drawing planar graphs using thee-ordering. InProceedings of th83rd Annual IEEE Sympo-
sium on Foundations of Computer Sciengages 101-110, 1992.

10. G. Kant. Algorithms for Drawing Planar Graphs. Ph.D. thesis, Department of Computer Science, Univer-
sity of Utrecht, Utrecht, 1993.

11. G. Kant. Drawing planar graphs using the canonical ordefilggrithmicg 16:4—32, 1996 (special issue
on Graph Drawing, edited by G. Di Battista and R. Tamassia).

12. S. Malitz and A. Papakostas. On the angular resolution of planar graphisl Journal of Discrete
Mathematics7:172-183, 1994.



418 C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G. Kobourov

13. W. Schnyder. Embedding planar graphs on the griBraceedings of thést ACM-SIAM Symposium on
Discrete Algorithm¢SODA, pages 138-148, 1990.

14. W. T. Tutte. How to draw a grapPRroceedings of the London Mathematical Sogid%(52):743-768,
1963.

15. K. Wagner. Bemerkungen zum vierfarbenprobldahresbericht der Deutschen Mathematiker-Vereini-
gung 46:26-32, 1936.

Received Septemb&®, 1999,and in revised form MarcR7, 2000 Online publication Octobe?5, 2000.



