
HEAD:

JDSL: The Data
Structures Library

In Java
DEK

Byline

Bio

Making advanced algorithms and data
structures a programming reality

Roberto Tamassiayz, Michael T. Goodrich,
Luca Vismara, Mark Handy, Galina Shubina,

Robert Cohen, Benoit Hudson, Ryan S. Baker,
Natasha Gelfand, and Ulrik Brandes

Pullquotes

The authors can be contacted at jdsl@cs.brown.edu.

The library was designed so that
each algorithm uses data

structures only via the
interface methods

A good library of algorithms
should be able to integrate

smoothly with other
existing libraries

Tuesday, January 9, 2001 3:13:38 PMPage 1 of 8d04luca(LEAD).x.g2ds

NOTE TO AUTHORS:
PLEASE CHECK ALL URLs AND
SPELLINGS OF NAMES CAREFULLY.
THANK YOU.

O
nce mainly used as number processors to perform fast
numerical computations, computers have evolved into in-
formation processors for storing, analyzing, searching,
transferring, and updating large collections of structured

information. For computer programs to perform these tasks ef-
fectively, the data they manipulate must be well organized, and
the methods for accessing and maintaining those data must be
reliable and efficient. In other words, programs need advanced
data structures and algorithms. However, implementing advanced
data structures and algorithms is not an easy task and presents
some risks because of their complexity, proneness to subtle er-
rors, and long development time. Consequently, programmers
tend to ignore advanced data structures and algorithms, opting
for simple, less efficient ones that are easier to implement and
test. Clearly, the development of complex software applications—
in particular their rapid prototyping— can benefit from libraries
of reliable and efficient data structures and algorithms.

Various libraries are available for C++, including the Standard
Template Library (STL; see STL Tutorial and Reference Guide:
C++ Programming with the Standard Template Library, by D.R.
Musser and A. Saini, Addison-Wesley, 1996), now part of the
C++ Standard; the Library of Efficient Data Structures and Al-
gorithms (LEDA; see LEDA: A Platform for Combinatorial and
Geometric Computing, by K. Mehlhornand and S. Naher, Cam-
bridge University Press, 1999); and the Generic Graph Com-
ponent Library (GGCL; see “The Generic Graph Component Li-
brary,” by J. Siek, Lie-Quan Lee, and A. Lumsdaine, DDJ,
September 2000).

The situation with Java is different, however. A small library of
data structures and algorithms, usually referred to as “Java Col-
lections” (JC), is included in the Java 2 java.util package (http://
java.sun.com/j2se/1.3/). Likewise, there’s the Generic Library for
Java (JGL) by ObjectSpace (http://www.objectspace.com/
products/voyager/jgl.asp/), which is patterned after STL. Both the
JC and JGL provide implementations of basic data structures such
as maps, sets, dictionaries, and sequences. JGL also provides a
number of template-based algorithms for permuting data. The
Graph Foundation Classes for Java (GFC) by IBM’s alphaWorks
(http://www.alphaworks.ibm.com/tech/gfc/), a framework for pro-
gramming with graphs is still in a preliminary stage. The GFG pro-
vides more advanced data structures (such as trees and graphs)
and some graph drawing algorithms. However, none of these Java
libraries provide a coherent framework— capable of accommo-
dating both elementary and advanced data structures and algo-
rithms— required by developers of complex software.

With this in mind, we designed and developed the Data Struc-
tures Library in Java (JDSL), a collection of Java interfaces and
classes implementing fundamental data structures and algorithms
such as:

• Sequences, trees, priority queues, search trees, and hash tables.
• Sorting and searching algorithms.
• Graphs.
• Graph traversals, topological sorting, shortest path, and min-

imum spanning tree.

The library was designed so that each data structure is spec-
ified by an interface and each algorithm uses data structures
only via the interface methods. Actual classes need only be spec-
ified when objects are instantiated. Programming through in-
terfaces (rather than through actual classes) creates more gen-
eral code. It lets different implementations of the same interface
be used interchangeably, without having to modify the algo-
rithm code. This way, users can choose the most appropriate
implementation, in terms of time or space complexity, for the
application at hand.

Tuesday, January 9, 2001 3:13:38 PMPage 2 of 8d04luca(LEAD).x.g2ds

2.1

–

–

–

2.5

–

–

–

–

2.10

–

–

–

–

2.15

–

–

–

–

2.20

–

–

–

–

2.25

–

–

–

–

2.30

–

–

–

–

2.35

–

–

–

–

2.40

–

–

–

–

2.45

–

–

–

–

2.50

–

–

–

–

2.55

–

–

–

–

2.60

–

–

–

–

–

–

2.67

Initial JDSL development began in September 1996 at the Cen-
ter for Geometric Computing at Brown University and Johns
Hopkins University, and culminated with the release of JDSL 1.0
in 1998. A major part of the project in the first year was the ex-
perimentation with different models for data structures and al-
gorithms, and the construction of prototypes. A significant reim-
plementation, documentation, and testing effort was carried out
in 1999 in collaboration with Algomagic Technologies
(http://www.algomagic.com/) leading to the current JDSL 2.0;
this version was officially released in August 2000. The two JDSL
releases were accompanied by the publication of the book Data
Structures and Algorithms In Java, by Michael Goodrich and
Roberto Tamassia (John Wiley & Sons, 1998).

JDSL comes with extensive documentation, including detailed
Javadoc, overview, tutorial with seven lessons, and several asso-
ciated research papers. It is available free of charge for noncom-
mercial use (see http://www.cs.brown.edu/cgc/jdsl/). Commer-
cial licenses are also available. Table 1 compares the key features
of JC, JGL, GFC, and JDSL, respectively. In our opinion, the main
advantages of JDSL are the definition of a large set of data struc-
ture APIs in terms of Java interfaces (in particular the tree and
graph APIs), availability of reliable and efficient implementations
of those APIs, and availability of some fundamental graph algo-
rithms.

A good library of data structures and algorithms should be
able to integrate smoothly with other existing libraries. In par-
ticular, we have pursued compatibility with the Java Collections.
JDSL supplements the JC and is not meant to replace them. No
conflicts arise when using data structures from JDSL and JC in
the same program. To facilitate the use of JDSL data structures
in existing programs, we provided adapter classes to translate
a Java Collection into a JDSL container and vice versa, when-
ever such a translation is applicable.

JDSL Data Organization Concepts
Data structures in JDSL are viewed as containers; that is, as an
organized collection of objects (called the “elements” of the con-
tainer). An element can be stored in many containers at the same
time and stored multiple times in the same container. Each JDSL
container element is an instance of java.lang.Object; this lets
containers store heterogeneous elements. JDSL provides two
general and implementation-independent ways to access (but
not modify) elements stored in a container: individually, by
means of accessors; and globally, by means of iterators. An ac-
cessor abstracts the notion of membership of an element into a
container, hiding the details of the implementation. It provides
constant-time access to an element stored in a container, inde-
pendently from its implementation. Every time an element is in-
serted in a container, an accessor associated with it is returned.
Most operations on JDSL containers take one or more accessors
as their operands.

As Figure 1 illustrates, we distinguish between two kinds of
containers and accessors:

• Positional containers. Typical examples are sequences, trees,
and graphs. In a positional container, some topological rela-
tion is established among the placeholders that store the ele-
ments (such as the predecessor-successor relation in a se-
quence), the parent-child relation in a tree, and the incidence
relation in a graph. When inserting an element in the con-
tainer, users decide what the relationship is between the new
placeholder and existing ones (in a sequence, for instance,
users may decide to insert an element before a given place-
holder). A positional container does not change its topology,
unless users specifically request a change. The implementa-
tion of these containers usually involves linked structures or
arrays.

Tuesday, January 9, 2001 3:13:38 PMPage 3 of 8d04luca(LEAD).x.g2ds

3.1

–

–

–

3.5

–

–

–

–

3.10

–

–

–

–

3.15

–

–

–

–

3.20

–

–

–

–

3.25

–

–

–

–

3.30

–

–

–

–

3.35

–

–

–

–

3.40

–

–

–

–

3.45

–

–

–

–

3.50

–

–

–

–

3.55

–

–

–

–

3.60

–

–

–

–

–

–

3.67

• Positions. The concept of position is an abstraction of the var-
ious types of placeholders in the implementation of a posi-
tional container (typically the nodes of a linked structure or
cells of an array). Each position stores an element. Position
implementations can store the following additional informa-
tion: adjacent positions (that is, the previous and next posi-
tions in a sequence, the right and left child and the parent in
a binary tree, the list of incident edges in a graph); and con-
sistency information (what container the position is in).

A position can be directly queried for its element through
method element(), which hides the details of where the ele-
ment is actually stored, be it an instance variable or array cell.
Instead, through the positional container, it is possible to re-
place the element of a position or swap the elements between
two positions. As an element moves about in its container (or
even from container to container), its position changes. Posi-
tions are similar to the concept of items used in LEDA.

• Key-based containers. Typical examples of key-based containers
are dictionaries and priority queues. Each element stored in a
key-based container has a key associated with it; keys are used
as an indexing mechanism for associated elements. Each key
of a key-based container is an instance of java.lang.Object.
Typically, key-based containers are internally implemented us-
ing a positional container; for example, a possible implemen-
tation of a priority queue uses a binary tree (heap). The details
of the internal representation, however, are completely hidden
to users. Thus, users have no control over the organization of the
positions that store the key/element pairs. It is the key-based
container itself that modifies its internal representation based
on the keys of the key/element pairs inserted or removed.

• Locators. The key/element pairs stored in a key-based container
may change their positions in the underlying positional con-
tainer due to some internal restructuring; say, after the inser-
tion of a new key/element pair. For example, in the binary tree
implementation of a priority queue, the key/element pairs move
around the tree to preserve the top-down ordering of the keys,
and thus their positions change. Hence, a different, more ab-
stract type of accessor called a “locator” is provided to access
a key/element pair stored in a key-based container. Locators
hide the complications of dynamically maintaining the
implementation-dependent binding between the key/element
pairs and their positions in the underlying positional container
implementation. A locator can be directly queried for its key
and element, and through the key-based container, it is possi-
ble to replace the key and element of a locator.

While accessors let users access single elements or key/element
pairs in a container, iterators provide a simple mechanism for
iteratively listing through a collection of objects. JDSL provides
various iterators over the elements, keys, and accessors of a con-
tainer; see Figure 2. They are similar to the iterators provided
by the Java Collections.

All JDSL containers provide methods that return iterators over
the entire container (that is, all the nodes of a tree or all the lo-
cators of a dictionary). In addition, some methods return itera-
tors over portions of the container (the children of a node of a
tree or locators with a given key in a dictionary). JDSL iterators
can be traversed only forward; however, they can be reset to
start a new traversal.

For simplicity, JDSL iterators have snapshot semantics— they
refer to the state of the container at the time the iterator was
created, regardless of the possible subsequent modifications of
the container. For example, if an iterator is created over all the
nodes of a tree and then a subtree is cut off, the iterator still in-
cludes the nodes of the removed subtree.

Tuesday, January 9, 2001 3:13:38 PMPage 4 of 8d04luca(LEAD).x.g2ds

4.1

–

–

–

4.5

–

–

–

–

4.10

–

–

–

–

4.15

–

–

–

–

4.20

–

–

–

–

4.25

–

–

–

–

4.30

–

–

–

–

4.35

–

–

–

–

4.40

–

–

–

–

4.45

–

–

–

–

4.50

–

–

–

–

4.55

–

–

–

–

4.60

–

–

–

–

–

–

4.67

Decorations
Another feature of JDSL is the ability to decorate individual po-
sitions of a positional container with attributes (that is, arbitrary
objects). This mechanism is more convenient and flexible than
either subclassing the position class to add new instance vari-
ables or creating global hash tables to store the attributes. Dec-
orations are useful for storing temporary or permanent results
of the execution of an algorithm. For example, in a depth-first
search traversal of a graph, you can use decorations to (tem-
porarily) mark the vertices being visited and to (permanently)
store the computed DFS number of each vertex. We use in-
stances of java.lang.Object for both the name and value of each
attribute.

Comparators
When using a key-based container, users should be able to spec-
ify the comparison relation to be used with the keys. In gener-
al, this relation depends on the type of the keys and specific
application for which the key-based container is used. Keys of
the same type may be compared differently in different appli-
cations. One way to meet this requirement is to specify the com-
parison relation through a comparator object, which is passed
to the key-based container constructor and then used by the
key-based container every time two keys need to be compared.
As Figure 3 shows, JDSL defines three comparator interfaces. A
comparator interface is also defined in the Java 2 java.util pack-
age, but is not present in JDK 1.1. To maintain the backward
compatibility of JDSL with the latter, the JDSL Comparator does
not extend the Java Comparator.

Algorithms
JDSL views algorithms as objects that receive the input data as
parameters of their execute method, and provide access to the
output during or after the execution via additional methods. Most
algorithms in JDSL are implemented by applying the template
method pattern (see Design Patterns, by Erich Gamma et al.,
Addison-Wesley, 1995). The invariant part of an algorithm is im-
plemented once in an abstract class, deferring the implementa-
tion of the steps that can vary to subclasses. These varying steps
can be defined either as abstract methods (whose implementa-
tion must be provided by a subclass) or as hook methods (whose
default implementation may be overridden in a subclass). In oth-
er words, algorithms perform generic computations that can be
specialized to specific tasks by subclasses.

To illustrate the use of the template method pattern, we ex-
amine the JDSL implementation of Dijkstra’s single-source short-
est path algorithm. The algorithm refers to the edge weights by
means of an abstract method that can be specialized depending
on how the weights are actually stored or computed in the ap-
plication at hand.

JDSL Architecture
JDSL currently consists of eight Java packages, each containing
a set of interfaces and/or classes. The interfaces for the various
containers are organized into two hierarchies— one for the po-
sitional containers (Figure 4) and another for key-based con-
tainers (Figure 5), with a common root given by interfaces In-
spectableContainer and Container. Most containers are described
by two interfaces— one that contains all the methods to query
the container (its name is prefixed with Inspectable), and the
other, extending the first, that contains all the methods to mod-
ify the container. Inspectable interfaces can be used as variable
or parameter types to obtain an immutable view of a container
(for instance, to prevent an algorithm from modifying the con-
tainer it operates on).

• jdsl.core.api. Interfaces and exceptions that compose the API

Tuesday, January 9, 2001 3:13:38 PMPage 5 of 8d04luca(LEAD).x.g2ds

5.1

–

–

–

5.5

–

–

–

–

5.10

–

–

–

–

5.15

–

–

–

–

5.20

–

–

–

–

5.25

–

–

–

–

5.30

–

–

–

–

5.35

–

–

–

–

5.40

–

–

–

–

5.45

–

–

–

–

5.50

–

–

–

–

5.55

–

–

–

–

5.60

–

–

–

–

–

–

5.67

for the core containers (sequences, trees, priority queues, and
dictionaries), and for the iterators on their elements, positions,
and locators.

• jdsl.core.ref. Implementations of the interfaces in jdsl.core.api.
Most implementations have names of the form {Implementa-
tionStyle}{InterfaceName}. For instance, ArraySequence and
NodeSequence implement the jdsl.core.api.Sequence interface
with a growable array and with a linked structure, respec-
tively. Classes with names of the form Abstract {InterfaceName}
implement some methods of the interface for the convenience
of developers building alternative implementations.

• jdsl.core.algo.sorts. Sorting algorithms that operate on the el-
ements stored in a jdsl.core.api.Sequence object. They are pa-
rameterized with respect to the comparison rule used to sort
the elements, provided as a jdsl.core.api.Comparator object.

• jdsl.core.algo.traversals. Traversal algorithms that operate on
jdsl.core.api.InspectableTree objects. A traversal algorithm per-
forms operations while visiting the nodes of the tree, and can
be extended applying the template method pattern.

• jdsl.core.util. This package currently contains a Converter class to
convert JDSL data structures to Java Collections and vice versa.

• jdsl.graph.api. Interfaces and exceptions that compose the API
for the graph container, and for the iterators on its vertices
and edges.

• jdsl.graph.ref. Implementations of the interfaces in jdsl.graph.api;
in particular, class IncidenceListGraph is an implementation
of interface jdsl.graph.api.Graph.

• jdsl.graph.algo. Basic graph algorithms, including depth-first
search, topological sorting, shortest path, and minimum span-
ning tree, all of which can be extended applying the template
method pattern.

A Sample Application
To illustrate how you can use JDSL, we present a sample applica-
tion that uses concepts such as the graph and priority queue data
structures, locators, decorations, and template method pattern.
Specifically, we consider the problem of calculating a minimum-
time flight itinerary between two airports. The flight network
can be modeled using a directed graph: Each vertex of the graph
represents an airport, and each directed edge represents a flight
from the origin airport to the destination airport. The problem
can be solved by computing a shortest path between two ver-
tices of a directed weighted graph, or determining that a path
does not exists. To this purpose, we can suitably modify the
classical algorithm by Dijkstra (see “A Note on Two Problems
in Connection with Graphs,” by E.W. Dijkstra, Numerische Math-
ematik, 1959), which takes as input a graph G with nonnega-
tive edge weights and a distinguished source vertex s, and com-
putes a shortest path from s to any reachable vertex of G.
Dijkstra’s algorithm maintains a priority queue Q of vertices: At
any time, the key of a vertex u in the priority queue is the length
of the shortest path from s to u found so far. The priority queue
is initialized by inserting vertex s with key 0 and all the other
vertices with key+1 (some very large number). The algorithm
repeatedly executes the steps:

1. Remove a minimum-key vertex u from the priority queue
and mark it as finished, since a shortest path from s to u has
been found.

2. For each edge e connecting vertex u to an unfinished vertex
v, if the path formed by extending a shortest path from s to
u with edge e is shorter than the shortest known path from
s to v, update the key of v (this operation is known as the
“relaxation of edge e”).

JDSL includes an implementation of Dijkstra’s algorithm that
applies the template method pattern. The primitive operations

Tuesday, January 9, 2001 3:13:38 PMPage 6 of 8d04luca(LEAD).x.g2ds

6.1

–

–

–

6.5

–

–

–

–

6.10

–

–

–

–

6.15

–

–

–

–

6.20

–

–

–

–

6.25

–

–

–

–

6.30

–

–

–

–

6.35

–

–

–

–

6.40

–

–

–

–

6.45

–

–

–

–

6.50

–

–

–

–

6.55

–

–

–

–

6.60

–

–

–

–

–

–

6.67

of the algorithm are defined by some abstract or overridable
methods. The invariant steps of the algorithm are implemented
in a few unmodifiable methods that call the primitive operation
methods. To specialize the algorithm to the application at hand,
you must subclass the algorithm and define or override the prim-
itive operation methods. The abstract class implementing Dijk-
stra’s algorithm is IntegerDijkstraTemplate in package jdsl-
.graph.algo (see Listings One through Three; for brevity, we
removed the Javadoc comments). The simplest way to run the
algorithm is by calling execute(g,source), which first initializes
the various auxiliary data structures with init(g,source) and then
repeatedly invokes doOneIteration(). The number of times
doOneIteration() is invoked is controlled by shouldContinue().
Instead of calling execute(g,source), another possibility is to call
init(g,source) directly and then single-step the algorithm by ex-
plicitly calling doOneIteration().

For an efficient implementation of the algorithm, it is impor-
tant to access a vertex stored in the priority queue in constant
time, whenever its key has to be modified. This is possible
through the locator accessors provided by the priority queue.
In init(g,source), each vertex u of the graph is inserted in the
priority queue and a locator uLoc for the key/vertex pair is re-
turned. Through setLocator(u,uLoc), each vertex u is decorated
with its locator uLoc; variableLOCATOR is used as the attribute
name. Later, in doOneIteration(), the locator is retrieved with
getLocator(v), in order to access and possibly modify the key of
vertex v; we recall that the key of v is the shortest known dis-
tance from source to v. In addition to its locator in the priority
queue, every unfinished vertex v is also decorated with its last
relaxed incident edge uv through setEdgeToParent(v,uv); vari-
able EDGE_TO_PARENT is used as the attribute name, in this
case. When a vertex is finished, this decoration stores the edge
to the parent in the shortest path tree, and can be retrieved with
getEdgeToParent(Vertex).

Methods runUntil() and doOneIteration() are declared final
and thus cannot be overridden. However, they invoke some meth-
ods, namely shouldContinue(), vertexNotReachable(u), shortest-
PathFound(u,uDist), and edgeRelaxed(u,uDist,uv,uvWeight,v,vDist),
that may be overridden for special applications. For each vertex
u of the graph, either vertexNotReachable(u) or shortestPath-
Found(u,uDist) is called exactly once, when u is removed from
the priority queue and marked as finished. In particular, short-
estPathFound(u,uDist) decorates u with uDist, the shortest dis-
tance from source; variableDISTANCE is used as the attribute
name. Method edgeRelaxed(u,uDist,uv,uvWeight,v,vDist) is called
every time an edge uv from a finished vertex u to an unfinished
vertex v is examined. The only method whose implementation
must be provided by a subclass is abstract method weight(Edge),
which returns the weight of an edge. Finally, distance(Vertex)
lets users query each finished vertex for the shortest distance
from source.

JDSL also provides a specialization of Dijkstra’s algorithm to
the problem of finding a shortest path between two vertices of
a graph. This algorithm is implemented by abstract class Inte-
gerDijkstraPathfinder (see Listing Four), which extends Inte-
gerDijkstraTemplate. The execution of Dijkstra’s algorithm is
stopped as soon as the destination vertex is finished. To this pur-
pose, shouldContinue() is overridden to return True only if the
destination vertex has not been finished yet. Additional methods
are provided in IntegerDijkstraPathfinder to test, after the exe-
cution of the algorithm, whether a path from the source vertex
to the destination vertex exists, and in this case, to return it.

Our application for computing a minimum-time flight itinerary
between two airports can be implemented as a specialization of
IntegerDijkstraPathfinder. The distance of each vertex repre-
sents, in this case, the time elapsed between the arrival at the
corresponding airport and the beginning of the travel. Listing

Tuesday, January 9, 2001 3:13:38 PMPage 7 of 8d04luca(LEAD).x.g2ds

7.1

–

–

–

7.5

–

–

–

–

7.10

–

–

–

–

7.15

–

–

–

–

7.20

–

–

–

–

7.25

–

–

–

–

7.30

–

–

–

–

7.35

–

–

–

–

7.40

–

–

–

–

7.45

–

–

–

–

7.50

–

–

–

–

7.55

–

–

–

–

7.60

–

–

–

–

–

–

7.67

Five is class FlightDijkstra. All it takes to implement our appli-
cation is to override incidentEdges(), so that only the outgoing
edges of a finished vertex are examined, and to define
weight(Edge). The weighted graph representing the flight net-
work is a directed graph. Each edge stores, as an element, an in-
stance of FlightSpecs, an auxiliary class that provides the depar-
ture time and the duration of the corresponding flight. The weight
of each edge is not determined before the execution of the algo-
rithm, but depends on the computed shortest distance between
the source and origin of the edge. Namely, it is obtained by adding
the duration of the flight corresponding to the edge and the con-
necting time at the origin airport for that flight. (In the sample ap-
plication we ignore the minimum connecting time requirement,
which could be accommodated with minor code modifications.)
The algorithm is run by calling execute(g,source,dest,startTime),
where startTime is the earliest time the passenger can begin trav-
eling. Method TimeTable.diff(int,int) simply computes the differ-
ence between its two arguments modulo 24 hours.

As you can see, the availability in JDSL of a set of carefully
designed and extensible algorithms and data structures makes
it possible to implement moderately complex applications with
a small amount of code, thus dramatically reducing the devel-
opment time.

Future Directions
In the current version of JDSL, our emphasis has been on data
structures, while only a basic repertory of algorithms has been
provided. Future versions will include a wider selection of al-
gorithms such as biconnected components, maximum flow,
matching, and graph drawing algorithms. More complex data
structures such as topological graphs and planar subdivisions,
will be added as well. We also plan to make JDSL data struc-
tures thread-safe and serializable. Finally, future versions will
include a package for testing whether the (user-provided) im-
plementation of a data structure complies with the interface spec-
ification, and a data structure visualization package.

Acknowledgments
This work was supported in part by the U.S. Army Research Of-
fice under grant DAAH04-96-1-0013 and the National Science
Foundation under grant CCR-9732327. Send correspondence to
Luca Vismara, Department of Computer Science, Brown Uni-
versity, 115 Waterman Street, Providence, RI 02912-1910, phone
401-863-7664, fax 401-863-7657, e-mail lv@cs.brown.edu.

DDJ
(Listings begin on page xx.)

Tuesday, January 9, 2001 3:13:38 PMPage 8 of 8d04luca(LEAD).x.g2ds

8.1

–

–

–

8.5

–

–

–

–

8.10

–

–

–

–

8.15

–

–

–

–

8.20

–

–

–

–

8.25

–

–

–

–

8.30

–

–

–

–

8.35

–

–

–

–

8.40

–

–

–

–

8.45

–

–

–

–

8.50

–

–

–

–

8.55

–

–

–

–

8.60

–

–

–

–

–

–

8.67

Listing One
package jdsl.graph.algo;

import jdsl.core.api.*;
import jdsl.core.ref.ArrayHeap;
import jdsl.core.ref.IntegerComparator;
import jdsl.graph.api.*;

public abstract class IntegerDijkstraTemplate {

// instance variables
protected PriorityQueue pq_;
protected InspectableGraph g_;
protected Vertex source_;
private final Integer ZERO = new Integer(0);
private final Integer INFINITY = new Integer(Integer.MAX VALUE);
private final Object LOCATOR = new Object();
private final Object DISTANCE = new Object();
private final Object EDGE_TO_PARENT = new Object();

// abstract instance methods
protected abstract int weight (Edge e);

// instance methods that may be overridden for special applications
protected void shortestPathFound (Vertex v, int vDist) {

v.set(DISTANCE,new Integer(vDist));
}
protected void vertexNotReachable (Vertex v) {

v.set(DISTANCE,INFINITY);
setEdgeToParent(v,Edge.NONE);

}
protected void edgeRelaxed (Vertex u, int uDist, Edge uv, int uvWeight,

Vertex v,int vDist) { }
protected boolean shouldContinue () {

return true;
}
protected boolean isFinished (Vertex v) {
return v.has(DISTANCE);

}
protected void setLocator (Vertex v, Locator vLoc) {
v.set(LOCATOR,vLoc);

}
protected Locator getLocator (Vertex v) {
return (Locator)v.get(LOCATOR);

}
protected void setEdgeToParent (Vertex v, Edge vEdge) {
v.set(EDGE TO PARENT,vEdge);

}

Listing Two
protected EdgeIterator incidentEdges (Vertex v) {

return g_.incidentEdges(v,EdgeDirection.OUT | EdgeDirection.UNDIR);
}
protected Vertex destination (Vertex origin, Edge e) {
return g_.opposite(origin,e);

}
protected VertexIterator vertices () { return } .vertices();
}
protected PriorityQueue newPQ () {
return new ArrayHeap(new IntegerComparator());

}
// output instance methods
public final boolean isReachable (Vertex v) {
return v.has(EDGE_TO_PARENT) &&v.get(EDGE_TO_PARENT) !=Edge.NONE;

}
public final int distance (Vertex v) throws InvalidQueryException {
try {
return ((Integer)v.get(DISTANCE)).intValue();

}
catch (InvalidAttributeException iae) {
throw new InvalidQueryException(v+" has not been reached yet");

}
}
public Edge getEdgeToParent (Vertex v) throws InvalidQueryException {

try {
return (Edge)v.get(EDGE_TO_PARENT);

}
catch (InvalidAttributeException iae) {

String s = (v == source) ?" is the source vertex" :
" has not been reached yet";

throw new InvalidQueryException(v+s);
}

}
// instance methods composing the core of the algorithm
public void init (InspectableGraph g, Vertex source) {

g_= g;
source = source;
pq_= newPQ();
VertexIterator vi = vertices();
while (vi.hasNext()) {
Vertex u = vi.nextVertex();
Integer uKey = (u == source) ?ZERO : INFINITY;
Locator uLoc = pq_.insert(uKey,u);
setLocator(u,uLoc);

}
}

Listing Three
protected final void runUntil () {

while (!pq .isEmpty() && shouldContinue())
doOneIteration();

}
public final void doOneIteration () throws InvalidEdgeException {

Integer minKey = (Integer)pq_.min().key();

Vertex u = (Vertex)pq_.removeMin();
// remove a vertex with minimum distance from the source

if (minKey == INFINITY)
vertexNotReachable(u);

else { // the general case
int uDist = minKey.intValue();
shortestPathFound(u,uDist);
int maxEdgeWeight = INFINITY.intValue() - uDist - 1;
EdgeIterator ei = incidentEdges(u);
while (ei.hasNext()) { // examine all the edges incident with u

Edge uv = ei.nextEdge();
int uvWeight = weight(uv);
if (uvWeight < 0 || uvWeight > maxEdgeWeight)

throw new InvalidEdgeException
("The weight of "+uv+" is either negative or causing overflow");
Vertex v = destination(u,uv);
Locator vLoc = getLocator(v);
if (pq_.contains(vLoc)) { // v is not finished yet

int vDist = ((Integer)vLoc.key()).intValue();
int vDistViaUV = uDist+uvWeight;
if (vDistViaUV < vDist) { // relax

pq_.replaceKey(vLoc,new Integer(vDistViaUV));
setEdgeToParent(v,uv);

}
edgeRelaxed(u,uDist,uv,uvWeight,v,vDist);

}
}

}
}
public final void execute (InspectableGraph g, Vertex source) {

init(g,source);
runUntil();

}
public void cleanup () {

VertexIterator vi = vertices();
while (vi.hasNext()) {

vi.nextVertex().destroy(LOCATOR);
try {
vi.vertex().destroy(EDGE_TO_PARENT);
vi.vertex().destroy(DISTANCE);

}
catch (InvalidAttributeException iae) { }

}
}

} // class IntegerDijkstraTemplate

Listing Four
package jdsl.graph.algo;

import jdsl.core.api.*;
import jdsl.core.ref.NodeSequence;
import jdsl.graph.api.*;
import jdsl.graph.ref.EdgeIteratorAdapter;

public abstract class IntegerDijkstraPathfinder
extends IntegerDijkstraTemplate {

// instance variables
private Vertex dest_;

// overridden instance methods from IntegerDijkstraTemplate
protected boolean shouldContinue () {

return !isFinished(dest_);
}
// output instance methods
public boolean pathExists () {

return isFinished(dest_);
}
public EdgeIterator reportPath () throws InvalidQueryException {

if (!pathExists())
throw new InvalidQueryException("No path exists

between "+source +" and "+dest_);
else { Sequence retval = new NodeSequence();

Vertex currVertex = dest_;
while (currVertex != source_) {

Edge currEdge = getEdgeToParent(currVertex);
retval.insertFirst(currEdge);
currVertex = g_.opposite(currVertex,currEdge);

}
return new EdgeIteratorAdapter(retval.elements());

}
}
// instance methods
public final void execute (InspectableGraph g, Vertex source, Vertex dest) {

dest_= dest;
init(g,source);
if (source != dest)

runUntil();
}

} // class IntegerDijkstraPath_nder

Listing Five
import jdsl.graph.api.*;
import jdsl.graph.algo.IntegerDijkstraPath_nder;
import support.*;

public class FlightDijkstra extends IntegerDijkstraPathfinder {
// instance variables
private int startTime ;
// overridden instance methods from IntegerDijkstraPathfinder
protected int weight (Edge e) {

FlightSpecs eFS = (FlightSpecs)e.element();
// the flightspecs for the flight along edge e

int connectingTime =
TimeTable.diff(eFS.departureTime(),startTime_+distance(g_.origin(e)));

return connectingTime+eFS.flightDuration();

Thursday, December 21, 2000 10:22:23 AMPage 1 of 2d04luca.l.g1db

}
protected EdgeIterator incidentEdges (Vertex v) {

return g_.incidentEdges(v,EdgeDirection.OUT);
}
// instance methods
public void execute (InspectableGraph g, Vertex source,

Vertex dest, int startTime) {
startTime = startTime;
super.execute(g,source,dest);
}

}

DDJ

Thursday, December 21, 2000 10:22:23 AMPage 2 of 2d04luca.l.g1db

Table 1: Comparing the Java Collections (JC), Generic
Library for Java (JGL), Graph Foundation Classes for Java
(GFC), and Data Structures Library in Java (JDSL).

Figure 1: The accessors interface hierarchy.

<<Interface>>
Accessor

<<Interface>>
Decorable

<<Interface>>
Vertex

<<Interface>>
Edge

<<Interface>>
Locator

<<Interface>>
Position

Thursday, December 21, 2000 10:11:13 AMPage 1 of 2d04luca.g.g1db

Figure 2: The iterators interface hierarchy.

<<Interface>>
ObjectIterator

<<Interface>>
VertexIterator

<<Interface>>
EdgeInterator

<<Interface>>
LocatorIterator

<<Interface>>
PositionIterator

Figure 3: The comparators interface hierarchy.

<<Interface>>
EqualityComparator

<<Interface>>
Comparator

<<Interface>>
HashComparator

JC JGL GFC JDSL

Sequences (lists, vectors) x x x x
Trees x x
Priority queues (heaps) x x
Dictionaries (hash tables, red-black trees) x x x
Sets x
Graphs x x
Templated algorithms x
Sorting algorithms x x x
Data permutation algorithms x
Graph traversals x x
Topological sorting x
Shortest path, Minimum spanning tree x
Graph drawing algorithms x
Accessors (positions and locators) x
Iterators x x x
Range views x x
Decorations (attributes) x x
Thread-safety and serializability x x

Thursday, December 21, 2000 10:11:13 AMPage 2 of 2d04luca.g.g1db

Figure 4: The positional containers interface hierarchy.

<<Interface>>
InspectableContainer

<<Interface>>
InspectablePostionalContainer

<<Interface>>
Container

<<Interface>>
PostionalContainer

<<Interface>>
InspectableSequence

<<Interface>>
InspectableTree

<<Interface>>
InspectableBinaryTree

<<Interface>>
Tree

<<Interface>>
Sequence

<<Interface>>
BinaryTree

<<Interface>>
Graph

<<Interface>>
ModifiableGraph

<<Interface>>
InspectableGraph

Figure 5: The key-based containers interface hierarchy.

<<Interface>>
InspectableContainer

<<Interface>>
InspectableKeyBasedContainer

<<Interface>>
InspectableDictionary

<<Interface>>
InspectableOrderedDictionary

<<Interface>>
Container

<<Interface>>
KeyBasedContainer

<<Interface>>
Dictionary

<<Interface>>
OrderedDictionary

<<Interface>>
PriorityQuey

