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Abstract

We investigate the problem of drawing an arbitraryn-node binary tree orthogonally and upwardly in an integer
grid using straight-line edges. We show that one can simultaneously achieve good area bounds while also allowing
the aspect ratio to be chosen as a fixed constant or a parameter under the user’s control. In addition, we show that
one can also achieve an additional desirable aesthetic criterion, which we call “subtree separation”. Our drawings
require O(n logn) area, which we show is optimal to within constant factors in the worst case (i.e. there are trees
that need�(n logn) area for any upward orthogonal straight-line drawing with good aspect ratio). An improvement
for non-upward drawings is briefly mentioned. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Binary trees are, of course, very common structures in many application areas, so obtaining good
drawings of binary trees is an important component in a wide variety of visualization tasks. Nevertheless,
there are a number of interesting issues regarding binary-tree drawings that are still unresolved, including
those related to drawings that optimize the easily-motivated aesthetic criterion of using straight line
segments to display edges while also optimizing the area and aspect ratio of the drawing.

Optimizing the area of a drawing is important, because a drawing typically needs to be displayed on
a medium of limited area and resolution, such as a terminal window on a workstation screen. Formally,
we define thearea of a drawing to be the area of a smallest rectangle enclosing the drawing. Of course,
this assumes a reasonable rule for defining the resolution of a drawing, such as that used inplanar grid
drawings, where all nodes are placed at integer grid points and edges are drawn as polygonal chains that
bend only at integer grid points, without crossing. Additionally, one may wish to restrict the drawing
further to be anorthogonal drawing, which is a drawing where the polygonal chains representing edges
must be composed of only vertical and horizontal segments. When drawn on a rastered device such as
a laser printer or computer monitor, such drawings avoid the aliasing effect caused by the “staircased”
drawing of edges that are neither vertical nor horizontal.

An optimization parameter that is perhaps equal in importance to area for a drawing, however, is the
aspect ratio of a drawing’s enclosing rectangle, i.e. the ratio of the width to height of the rectangle.
A drawing that is, for example, tall and narrow would be difficult to display nicely on a printed page or in
a screen window even if the area is reasonably small (although it might fit quite nicely on a cash-register
tape). Ideally, the aspect ratio should be a parameter that could be chosen from a large range of values,
or, failing that, it should at least be allowed to be that of a “well proportioned” rectangle (e.g., 1, 5/3,
8.5/11, or(1+ √

5)/2).
Another aesthetic criterion that may be desirable in some applications is that a tree drawing beupward.

That is, that the tree be drawn so that no child is placed higher (in they-direction) than its parent. This
criterion is desirable, for example, if the tree represents an inherently hierarchical relationship, such as
the organizational structure of a large business.

1.1. Previous related research

There has been a fair amount of research involving area and aspect ratio tradeoffs of tree drawings
(e.g., see the annotated bibliography of Di Battista et al. [5]). We summarize the previous bounds for
planarpolyline grid drawings, for example, where edges are drawn as polygonal chains that bend only at
integer grid points, in Table 1.

Table 1
Summary of some area/aspect ratio results for planar polyline grid drawings of trees (we useε to denote an
arbitrarily small positive constant)

Class Drawing type Area Aspect ratio(s) Source

Degree-O(1) rooted tree Upward 
(n) [1/n1−ε, n1−ε] [6]
Binary tree Upward orthogonal 
(n log logn) log2 n/n log logn [6]
Degree-4 tree Orthogonal 
(n) 1 [8,14]
Degree-4 tree Leaves-on-hull orthogonal 
(n logn) 1 [1]
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Table 2
Summary of previous area/aspect ratio results for planar straight-line grid drawings

Class Drawing type Area Aspect ratio(s) Source

Rooted tree Upward layered grid O(n2) 1 [9]
Rooted tree Upward grid O(n logn) logn/n or n/ logn [3,10]
Rooted tree Strictly upward grid 
(n logn) logn/n [3]
Complete or Strictly upward grid 
(n) 1 [3,13]

Fibonacci tree
AVL tree Strictly upward grid 
(n) [log2+ε n/n, n/ log2+ε n] [4]
Balanced tree of Upward grid O(n logn) n/ logn [3,10]

height O(logn)

Notice that each of the area bounds for polyline drawings are tight in the worst case, to within constant
factors, even for upward orthogonal drawings. The related issues for straight-line drawings are not as
well-understood, however. We summarize relevant previous results for this class of drawings in Table 2.

We are not aware, for example, of any non-trivial previous work on straight-line orthogonal grid
drawings of arbitrary binary trees. This seems to be a fairly serious omission, since straight-line edges
are easier for the eye to follow than polyline edges, and orthogonal drawings automatically avoid small
angles between edges, which can also cause confusion, and they also avoid aliasing edges drawn on a
rasterized device.

1.2. Subtree separation

There is, in fact, an additional desirable aesthetic property for drawings of binary trees. We say that a
regionR in the plane isrectilinearly convex if the intersection ofR and any vertical or horizontal line is
connected. For any setS of integer grid points, define therectilinear convex hull of S to be the smallest
rectilinearly-convex region containingS. Let T [v] denote the subtree of a treeT that is rooted at nodev
and contains all the descendants ofv in T , i.e.T [v] is the subtree ofT induced byv. If, for any disjoint
induced subtreesT [v] andT [w] in a binary treeT , the rectilinear convex hulls ofT [v] andT [w] are
disjoint in a drawingD of T , then we say thatD achievessubtree separation. This property is desired
for binary tree drawings, because it allows the eye to quickly distinguish between different parts of the
tree. It also allows for multi-resolutional renderings of a drawingD, so that, for example, ifD has too
many nodes to all simultaneously fit in a screen window, thenD can be rendered up to the resolution
of the screen, with some induced subtrees rendered as filled-in rectilinearly-convex regions. Of course,
it might not always be possible to achieve subtree separation while also optimizing for other aesthetic
criteria. For example, many of the drawings produced by the algorithms of Garg et al. [6] do not achieve
subtree separation. But it is certainly desirable to achieve this property whenever possible.

1.3. Our results

In this paper we present a general approach, based upon a simple “recursive winding” paradigm, for
drawing arbitrary binary trees in small area with good aspect ratio, while satisfying the upward straight-
line orthogonal drawing criterion. Intuitively, our recursive winding paradigm draws a binary treeT by
laying down a small chain of nodes from left to right until we are near a distinguished node,vk , and then
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“winding” by recursively laying outT [v′] andT [v′′] in the otherx-direction (from right to left), where
v′ andv′′ denote the children ofvk . We show that the area bound obtained by this approach is optimal to
within a constant factor. Specifically, we establish the following results:

• Everyn-node binary tree has a planar upward orthogonal straight-line grid drawingD with O(n logn)

area for any aspect ratio in the range[logn/n, n/ logn]. Moreover,D can be made to achieve subtree
separation, and it can be produced in O(n) time.

• There aren-node binary trees that require�(n logn) area in any planar upward orthogonal straight-
line drawing that achieves an aspect ratio in the range[1/n1−ε, n/ logn], for any fixedε > 0.

We also comment on how the area bound can be improved if we drop the upward condition.
Interestingly, our recursive winding approach can be used to prove the existence of a (non-upward)
orthogonal straight-line drawing ofT with O(n log logn) area. This particular result was independently
obtained by Shin et al. [11], who went on to achieve arbitrary aspect ratio for these non-upward drawings.
Their strategy is quite similar to ours but has a somewhat more complicated description. (In fact,
subsequent papers by Shin et al. [7,12] have adopted our framework to study related problems.)

Remark. The original proof of the O(n logn) area result in the extended abstract of this paper [2] was
flawed, as pointed to us by T. Shermer (personal communication, July 2000). We have modified our
upward algorithm in the present version to correct this error and, at the same time, extend the range of
aspect ratios from constant to arbitrary.

2. Upward drawings with arbitrary aspect ratios

In this section, we present our recursive winding paradigm and obtain an algorithm that can produce
upward straight-line orthogonal tree drawings of O(n logn) area with any feasible aspect ratio the user
desires:

Theorem 1. Given any binary tree T with n nodes and a parameter 2� A � n, there is a planar upward
straight-line orthogonal grid drawing of T with O((n/A) logA) height and O(A logn/ logA) width.
Such a drawing can be constructed in O(n) time, and it achieves subtree separation.

Without loss of generality, assume that each internal node has degree 2. Given an internal nodev,
let left(v) andright(v) denote the left child and the right child ofv respectively. LetT [v] again denote
the subtree ofT rooted atv, and letN[v] be the number of leaves inT [v]. Arrange the tree so that
N[left(v)] � N[right(v)] at every nodev. This preprocessing requires only linear time. We first review
the following lemma (all logarithms in this paper have base 2):

Lemma 2 [3,10]. If T has n leaves, then there is a planar upward orthogonal straight-line grid drawing
of T with height at most 	logn
 and width n − 1. The root is placed at the upper left-hand corner and
the construction time is O(n).

Proof. The construction is recursive. Ifn = 1, the drawing is trivial. Supposen > 1 andv0 is the root of
T . LettingT1 = T [left(v0)] andT2 = T [right(v0)], we can drawT as shown in Fig. 1, where the subtrees
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Fig. 1. Drawing of a binary tree with O(logn) height and O(n) width.

T1 andT2 are drawn recursively. SinceN[left(v0)] � N[right(v0)], an induction argument shows that the
height of the drawing is bounded by logn. ✷

Next we analyze a recurrence relation.

Lemma 3. Suppose A > 1 and f is a function such that

• if n � A, then f (n) � 1; and
• if n > A, then f (n) � f (n′) + f (n′′) + 1 for some n′, n′′ � n − A with n′ + n′′ � n.

Then f (n) = O(n/A) for all n > A.

Proof. We prove the following statement by strong induction onn: if n > A, thenf (n) < 4n/A−1. The
statement holds vacuously forn � A. So supposen > A and the statement holds forn′ andn′′. If both
n′, n′′ � A, thenf (n) � 3< 4n/A − 1. If n′ � A andn′′ > A, then by the inductive hypothesis forn′′,

f (n) � f (n′′) + 2< 4n′′/A + 1� 4(n − A)/A + 1 < 4n/A − 1.

If n′ > A and n′′ � A, the argument is symmetric. Finally, if bothn′, n′′ > A, then by the inductive
hypothesis forn′ andn′′,

f (n) � f (n′) + f (n′′) + 1< 4n′/A + 4n′′/A − 1 � 4n/A − 1. ✷
Proof of Theorem 1. Let 1� B � A be a fixed parameter to be determined later. We now prove the
theorem by a recursive algorithm. The drawing produced will obey the additional condition that the root
is placedB units to the right of the upper left-hand corner of an enclosing rectangle, and no nodes come
between the root and this upper left-hand corner. LetH(n) andW(n) denote the height and width of the
enclosing rectangle for the drawing of a tree withn leaves. Ifn � A, then we use the scheme in Lemma 2
(and stretch the enclosing rectangle byB units to the left to satisfy the above condition). This provides
the base case:

H(n) � logA and W(n) � A + B if n � A.

Supposen > A. Define a sequence{vi} of nodes as follows:v1 is the root andvi+1 = right(vi) for
i = 1,2. . . . SinceN[v1],N[v2], . . . is a strictly decreasing sequence of integers, there is an indexk with
N[vk] > n − A andN[vk+1] � n − A. Let Ti = T [left(vi)] andni = N[left(vi)] for i = 1, . . . , k − 1.
Let T ′ = T [left(vk)], T ′′ = T [right(vk)], n′ = N[left(vk)], andn′′ = N[right(vk)]. (See Fig. 2.) Note that
n′ � n′′, sinceT is “right-heavy”. The following properties then hold:
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Fig. 2. The binary treeT .

Fig. 3. Upward drawing ofT with O((n/A) logA) height and O(A logn/ logA) width.

1. n1 + · · · + nk−1 = n − N[vk] < A,
2. max{n′, n′′} = N[vk+1] � n − A, and
3. n′ � n/2.

Now, consider the planar upward orthogonal straight-line grid drawing ofT in Fig. 3(a) or (b),
depending on whetherk � A/B + 2 or k > A/B + 2. As required, the rootv1 is placedB units to the
right of the upper left-hand corner (by stretching if necessary). The subtreesT1, . . . , Tk−1 are all drawn
according to Lemma 2, while the subtreesT ′ andT ′′ are drawn recursively.

Case (a): k � A/B + 2. The drawing has the following height and width:

H(n) � H(n′) + H(n′′) + logA + k + 1,

W(n) � max
{
n1 + · · · + nk−1 + B, W(n′) + B + 1, W(n′′)

}
.
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Case (b): k > A/B +2. Here, the drawings ofTj+1, . . . , Tk−1, T
′, andT ′′ are all reflected; for example,

the root of the subtreeT ′′ is now placedB units left of the right side of its enclosing rectangle (this is
the “recursive winding”). We choose an indexj ∈ {k − �A/B�, . . . , k − 1} such thatnj � B (so that the
right side of the overall enclosing rectangle is indeed determined byT ′′). By property 1, such an index
exists (otherwise,n1 + · · · + nk−1 would exceed�A/B�B � A, a contradiction). Therefore, the drawing
can be made with the following height and width bounds:

H(n) � H(n′) + H(n′′) + 2 logA + k − j + 3,

W(n) � max
{
n1 + · · · + nj−1 + 2B, nj+1 + · · · + nk−1 + B, W(n′) + B + 1, W(n′′)

}
.

In any case, by properties 1 and 3, we can write the recurrences as

H(n) � H(n′) + H(n′′) + O(logA + A/B),

W(n) � max
{
O(A + B),W(n/2) + O(B),W(n′′)

}
.

We can see thatW(n) = O(B logn + A). By property 2 and an application of Lemma 3, we can also
conclude thatH(n) = O((n/A)(logA + A/B)). SettingB = [A/ logA] proves the theorem.

The construction time is clearly linear in the number of nodes (since we spend constant time per node).
Moreover, by induction, the drawing satisfies subtree separation.✷

3. A lower bound for upward drawings

In this section, we show that the area bound of the preceding algorithm is the best possible by
exhibiting binary trees that require�(n logn) area for any planar upward straight-line orthogonal
drawing with good aspect ratio. Specifically, we prove the theorem below. (If the aspect ratio exceeds
1/n1−ε, then the width must be at leastnε/2, and we can, for instance, setA = �nε/4� to obtain an
�(εn logn) area bound.)

Theorem 4. Given any n and a parameter 2 � A � n, there exists a binary tree T with n nodes, such
that any planar straight-line orthogonal upward grid drawing D with width W � A logA has height
H = �((n/W) logA).

We begin with a simple lemma that gives a logarithmic lower bound on the height of the drawing
of a complete tree. Here, arightward (resp. leftward) path refers to a path that is drawn so that the
x-coordinates of its nodes are non-decreasing (resp. non-increasing).

Lemma 5. If T is an n-node complete binary tree, then any planar upward straight-line orthogonal grid
drawing D of T contains both a rightward and a leftward root-to-leaf path of height at least 	(logn)/2
.

Proof. The proof is based upon an induction argument similar to that used by Crescenzi et al. [3] for
upward non-orthogonal grid drawings. Consider the two childrenv1 andv2 of the rootv0. If one of them,
sayv1, is placed directly belowv0 in D, then we can generate a rightward path fromv1 recursively and
appendv0 in front to increase the path height by one. On the other hand, if bothv1 andv2 are placed on
the same level asv0, with v1 to the right, then one of the children ofv1, sayv11, must be placed directly
below v1, and we can generate a rightward path fromv11 recursively and appendv0 andv1 in front to
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increase the path height by one. By induction, this implies the existence of a rightward path from the root
of length	(logn)/2
. The other part of the lemma is symmetric.✷
Proof of Theorem 4. The proof is based upon a non-trivial adaptation of a “chain pinning” argument of
Garg et al. [6], originally used to establish an�(n log logn) area bound on upward polyline orthogonal
drawings (here, we basically use a different parameter, and by exploiting the straight-line condition with
the above lemma, we also simplify the proof somewhat). We choose the treeT defined by a chainC of
n/2 nodesv1, v2, . . . , vn/2, where every nodevi with i being a multiple ofA—called ajoint—is attached
a complete binary tree withA nodes (rooted at a child of the joint).

In the drawingD of this treeT , the chainC is drawn as a sequence of horizontal segments mixed with
vertical drops. Call a joint aboundary joint if it is the leftmost or rightmost joint in its row; otherwise,
call it aninterior joint. Clearly, there are O(H) boundary joints. We claim that any rectangleR of height
	(logA)/2
 and widthA − 1 contains at most one interior joint; therefore, the number of interior joints
is O(HW/(A logA)). Since there are
(n/A) joints in total,

n

A
= O

(
H + HW

A logA

)
= O

(
HW

A logA

)
,

and the theorem follows.
To prove the claim, suppose the rectangleR contains two interior jointsvi and vj . SinceR has

width A − 1, each row insideR has at most one joint. Now, in the drawing ofC, the horizontal
segmentSi throughvi must completely crossR (otherwise,vi would be a boundary joint), and similarly,
the horizontal segmentSj through vj must completely crossR. Without loss of generality, saySi

is aboveSj . Their distance is upper-bounded by the height ofR, 	(logA)/2
. By Lemma 5, the
subtree attached tovi has both a leftward and rightward path of height	(logA)/2
, so the chainC
(in particular, the segmentSj ) cannot reach the points at distance� 	(logA)/2
 directly belowvi :
a contradiction. ✷

4. Non-upward drawings

In the non-upward case, the area bound can actually be improved by our recursive winding paradigm
with a slightly simpler construction. In the following, ignoring the aspect ratio, we can, for example, take
A = �logn� and obtain a drawing with width O(logn) and height O((n/ logn) log logn), and hence, area
O(n log logn).

Theorem 6. Given any binary tree T with n nodes and a parameter 2� A � n, there is a planar straight-
line orthogonal grid drawing of T with O((n/A) logA) height and O(logn + A) width. Such a drawing
can be constructed in O(n) time, and it achieves subtree separation.

Proof. We use the same notation as in Section 2. This time, the drawing will satisfy the condition that
the root is placed on the left side of the enclosing rectangle, and no nodes come between the root and
the upper left-hand corner. The drawing ofT is depicted in Fig. 4(a), (b), or (c), depending on whether
k = 1, k = 2, or k > 2. The subtreesT1, . . . , Tk−1 are drawn according to Lemma 2, where incase (c),
the drawing ofTk−1 is rotated 180 degrees. As in the previous construction, the subtreesT ′ andT ′′ are
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Fig. 4. Non-upward drawing ofT with O((n/A) logA) height and O(logn + A) width.

drawn recursively, and incase (c), they are reflected, so that their roots are placed on the right side of
their respective rectangles.

This all implies that this (non-upward) planar straight-line orthogonal grid drawing can be made with
the following bounds on the height and width:

H(n) � H(n′) + H(n′′) + 2 logA + 4,

W(n) � max
{
n1 + · · · + nk−1,W(n′) + 1, W(n′′)

}
.

By properties 1 and 3, we can rewrite the recurrences as

H(n) � H(n′) + H(n′′) + O(logA),

W(n) � max
{
A,W(n/2) + 1, W(n′′)

}
.

It follows that W(n) = O(logn + A), and again by property 2 and Lemma 3,H(n) = O((n/A) logA).
The construction time is linear and the drawing satisfies subtree separation.✷

5. Conclusion

We have investigated several issues related to space-efficient planar straight-line orthogonal grid
drawings of arbitrary binary trees. In the case of upward drawings we have established matching
upper and lower bounds of
(n logn) on the worst-case area needed, with arbitrary aspect ratios.
A modification of the same idea in fact yields a non-upward drawing with area O(n log logn), as
independently proved by Shin et al. [11]. Some interesting problems that remain open include the
following:
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• Can one prove that there are binary trees requiring�(n logn) area for any planar upward straight-line
orthogonal grid drawing regardless of the aspect ratio? (Currently, the best lower bound is still the
�(n log logn) bound for upward polyline orthogonal drawings [6].)

• Are there binary trees that require�(n log logn) area for any (non-upward) planar straight-line
orthogonal grid drawing?

Acknowledgements

We would like to thank Stina Bridgeman, Marek Chrobak, and Sue Whitesides for several stimulating
discussions and e-mail exchanges relating to the topics of this paper. We also thank Tom Shermer for
pointing out the error in the preliminary version of this paper.

References

[1] R.P. Brent, H.T. Kung, On the area of binary tree layouts, Inform. Process. Lett. 11 (1980) 521–534.
[2] T.M. Chan, M.T. Goodrich, S.R. Kosaraju, R. Tamassia, Optimizing area and aspect ratio in straight-line orthogonal tree

drawings, in: S. North (Ed.), Graph Drawing (Proc. GD ’96), Lecture Notes Comput. Sci., Vol. 1190, Springer, Berlin,
1997, pp. 63–75.

[3] P. Crescenzi, G. Di Battista, A. Piperno, A note on optimal area algorithms for upward drawings of binary trees,
Computational Geometry 2 (1992) 187–200.

[4] P. Crescenzi, P. Penna, A. Piperno, Linear-area upward drawings of AVL trees, Computational Geometry 9 (1998) 25–42
(Special Issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).

[5] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Algorithms for drawing graphs: an annotated bibliography, Computational
Geometry 4 (1994) 235–282.

[6] A. Garg, M.T. Goodrich, R. Tamassia, Planar upward tree drawings with optimal area, Internat. J. Comput. Geom. Appl. 6
(1996) 333–356.

[7] S.K. Kim, Logarithmic width, linear area upward drawing of AVL trees, Inform. Process. Lett. 63 (1997) 303–307.
[8] C.E. Leiserson, Area-efficient graph layouts (for VLSI), ACM Doctoral Dissertation Award Series, MIT Press, Cambridge,

MA, 1983.
[9] E. Reingold, J. Tilford, Tidier drawing of trees, IEEE Trans. Softw. Engrg. SE-7 (2) (1981) 223–228.

[10] Y. Shiloach, Arrangements of Planar Graphs on the Planar Lattice, PhD Thesis, Weizmann Institute of Science, 1976.
[11] C.-S. Shin, S.K. Kim, K.-Y. Chwa, Area-efficient algorithms for straight-line tree drawings, Computational Geometry 15

(2000) 175–202.
[12] C.-S. Shin, S.K. Kim, S.-H. Kim, K.-Y. Chwa, Algorithms for drawing binary trees in the plane, Inform. Process. Lett. 66

(1998) 133–139.
[13] L. Trevisan, A note on minimum-area drawing of complete and Fibonacci trees, Inform. Process. Lett. 57 (1996) 231–236.
[14] L. Valiant, Universality considerations in VLSI circuits, IEEE Trans. Comput. C-30 (2) (1981) 135–140.


