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Abstract

In this paper we present a novel approach for cluster-based drawing of large planar graphs that maintains
planarity. Our technique works for arbitrary planar graphs and produces a clustering which satisfies the conditions
for compound-planarity (c-planarity). Using the clustering, we obtain a representation of the graph as a collection
of O(logn) layers, where each succeeding layer represents the graph in an increasing level of detail. At the same
time, the difference between two graphs on neighboring layers of the hierarchy is small, thus preserving the viewer’s
mental map. The overall running time of the algorithm @ @gn), wheren is the number of vertices of graggh
0 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In the lead article of its recent March/April 1999 iss8AM News highlighted computations involving
large graphs as a grand challenge, and it listed several applications of such computations, particularly
in the networking and telecommunications areas. While such application areas typically give rise to
non-planar graphs, there are nevertheless several application areas that give rise to large graphs the
are planar. Examples of such planar graph applications include computations arising in computational
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cartography and geographic information systems (GIS). In this paper we are therefore concerned with
the visualization of large planar graphs.

There are several approaches to the visualization of planar graphs, each of which must address the fac
that the resolution of most display technologies (and possibly even the human eye) is simply limited to
a few million pixels. Moreover, no matter how many pixels a display technology has, these pixels must
display not just the vertices of a graph of interest, but also, and more importantly, the edges connecting
these vertices. One approach to drawing large planar graphs is the so-called fish-eye or hyperbolic view
approach [9,10,15], which shows a single “cursor” vertex neighborhood in high detail while showing the
rest of the graph in decreasing detail (inversely proportional to the distance from the cursor).

A competing approach, however, and the one that is the focus of this paper, is based on representing
the graph by a hierarchical clustering in which the graph is represented by a collection of layers, where
each succeeding layer represents the graph in a decreasing level of detail. That is, togetGeoneth
gives a tre€el’ such that the leaves @f coincide with the vertices of;, and each internal nodeof T
represents theluster defined by the vertices aff associated with the descendent leaves of T. In
this caseG can be drawn in a “layered” manner, where we draw each cluster on the same |Zyas af
region of the plane and connect adjacent clusters by segments. It is desired that each such layer be draw
planar, with no segments intersecting each other or intersecting the boundary of a non-incident cluster
region. Thus, the general goal of clustered graph drawing is to preserve the global structure of@ graph
by recursively clustering smaller subgraphsoand drawing these subgraphs as single nodes or filled-in
regions in a rendering afi. By grouping vertices together into clusters in this way one can recursively
divide a given graph into layers of decreasing detail, which can then be viewed in a top-down fashion.

1.1. Prior related work on clustered graph drawing

If clusters of a graph are given as input along with the graph itself, then several authors give various
algorithms for displaying these clusters in two or three dimensions [4,5,7,8,13]. Still, as will often be the
case, if clusters of a graph are not given a priori, then various heuristics can be applied for finding clusters
using properties such as connectivity, cluster size, geometric proximity, or statistical variation [12,14,18].
If no clusters are given and no special properties are known in advance, Duncan et al. [2] show how to
create a hierarchical decomposition and a 3-dimensional drawing for general graphs. However, for planar
graphs, it is possible to introduce edge-region crossings, in which edges can cross the cluster regions they
are not part of. Even with no edge-edge crossings, the edge-region crossings are a serious drawback t
the readability of a drawing.

Eades et al. [5] describe a drawing algorithm that draws a planar grapesuming that the clusters
of G preserve certain recursive conditions, which they collectively calttpl@narity conditions. They
show that ifG and its clusters satisfy the c-planarity conditions, then one can produce a drawing of
G such that each layer of the cluster hierarchy is drawn planar, with each vertex drawn as a convex
region and each edge drawn as a straight line segment. This approach allows the graph to be represente
by a sequence of drawings of increasing detail. As illustrated by Eades and Feng [4], this hierarchical
approach to drawing large graphs can be very effective. However, we are not aware of any previous work
for deterministically producing a clustering of an arbitrary planar graph so as to satisfy all the c-planarity
conditions.
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1.2. Our results

In this paper we describe an algorithm for constructing a clustering of any planar graph so as to satisfy
the c-planarity conditions of Eades et al. [5]. Preliminary results can be found in Duncan et al. [3]. Our
algorithm runs in @n logn) time, uses @:) space, and can be implemented using simple “off-the-shelf”
data structures. We also show that the clustering Tredefined by our algorithm, has the additional
property that the number of clusters at layesf T (i.e., the clusters associated with the noded’ it
heighti) is a constant fraction larger than the number of clusters at the next higherilayér, Thus,

T has Qlogn) height. This in turn implies faster drawing times whg&ns used in a clustered graph
drawing algorithm, such as that of Eades et al. [5].

This logarithmic height result also implies some nice properties of the clustered drawing itself. For
example, had we instead produced a clustering Tred depth® (n), which is possible if one uses a
different clustering algorithm, then we would have a hierarchy that takes an extraordinarily long time to
traverse for large planar graphs. At the same time,(#ga) height for7 would imply drastic changes
between consecutive layers in the hierarchy.

In addition to this logarithmic height result, our algorithm produces a clustering such that the changes
between the graphs in consecutive layers of the hierdfcase “local”. In order to preserve the viewer's
mental map of the graph when moving from one layer to another, the changes in the graph should be
minimal. Given the graph in layer in T, to obtain the graph associated with the next higher layer
i+ 1inT, we need to group certain sets of vertices together and replace them by new vertices. In
this paper, we consider only changes that affect pairs of vertices, so that the igar fact abinary
tree.

Thus we restrict our clustering operation so as to allow only the combining of two adjacent clusters,
which is an operation typically referred to as edge contraction. Through a sequence of such edge
contractions, we obtain the layer grapfis, G1, ..., G, whereGo = G and Gy is a singleton graph. If
the changes necessary to obtain lay¢rl from layeri are to be local, then the following thréecality
conditions for edge contraction must be met:

(1) A vertex can participate in at most one edge contraction.

(2) Changes in the drawing of the graph that result from the contraction of an(eggeshould only
affect edges with endpoint or v.

(3) A contraction of edgéu, v) results in the creation of vertax. The placement of in the drawing
should be “close” to the edge:, v). Optimally, we would like thatw lie along the line segment
defined by(u, v).

We provide a clustering method that satisfies the above locality conditions. One of the main challenges
in creating the layers in a cluster hierarchy of a planar graph is to define clusters and the drawing
algorithm associated witk;'s clustering in such a way that no edge crossings are introduced in the
drawing of each layer. We provide a drawing algorithm which makes use of our clustering method
to produce a drawing that has neither edge-edge crossings nor edge-region crossings. In addition, we
show that one can use our clustering as input to the clustered planar graph drawing algorithm of Eades
et al. [5].
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2. Hierarchical embedding of planar graphs

A graph ismaximally planar if it is planar and adding any new edge results in a non-planar graph.
Maximally planar graphs are also callédly triangulated as every face of a maximally planar graph
(including the exterior face) is a triangle. Let us assume, without loss of generality, that all the graphs
that we are dealing with are maximally planar. If a particular graph is not maximally planar then we can
fully triangulate it. LetG = (V, E) be a maximally planar graph, whef€| =n. V(G) and E(G) as
usual refer to the set d@i’s vertices and edges, respectively and the degree of a veitegraphG is
dc(v). Letls(f;) be the length of a facg; in G, where by the length of the face we mean the number
of vertices on that face. Furthekuvw will refer to the triangle defined by vertices v, w and by the
edges(u, v), (v, w), (w, u).

Similar to the definition in [4] we define thaustered graph C = (G, T) to be the graplG and a tree
T such that the vertices @ coincide with the leaves df; see Fig. 1. An internal node @f represents
a cluster, which consists of all the vertices in its subtree. All the nod&satfa given height represent
the clusters of that level. diew at level i, G, = (V(G;);, E(G;)), consists of the nodes of heighin T
and a set of representative edges. The €dge) is in E(G;) if there exists an edge betweerandb in
G, wherea is in the subtree af andb is in the subtree of. Each node: € T has an associated region,
corresponding to the partition given iy

We create the graphs; in a bottom-up fashion, starting witfio = G and going all the way up to
G, wherek = hei ght (T). We obtainG,;,; from G; by contracting a carefully chosen set of edges of
G; in a certain order. The-coordinate of a vertex € V(G;) is equal toi, that is, all the vertices id;
are embedded in the plane given py- i. The edges of" are defined by the edge contractions. More
precisely, if(u, v) € E(G;) is contracted to a vertew € G;,1, then edgesw, ) and (w, v) are added
toT.

The problem of embedding planar graphs with straight lines and no crossings is well studied [1,6,16,
17,19]. Embedding clustered graphs without crossings poses additional difficulties. To embed the layers,
we reverse the sequence of graph contractions: we start with embeddi@g @fhich has only one
vertex). To obtain an embedding f6%_; from an embedding foG; we consider the set of edges@f_1
whose contraction resulted @&;. We then reverse the process by carefully expanding and embedding one
edge from that set at a time. Throughout this process we maintain the three locality conditions for edge
expansions/contractions.

2.1. Edge contraction and separating triangles

Contracting an edge is a standard operation on planar graphs; see [11]. We say thateasa edge
of G is contracted when its endpointsy andv, are replaced by a new vertex such that all resulting
multiple edges are removed. Formally,

e edgee = (u, v) is removed fromG.

e Vx € V(G): (x,u) and(x,v) € E(G), we remove edge&e, 1) and (x, v) and add edgéx, w); see
Fig. 2.

e Vx € V(G): (x,u) € E(G) and(x,v) ¢ E(G) (or (x,u) ¢ E(G) and (x,v) € E(G)), we remove
edge(x, u) (or (x,v)) and add edgéx, w).
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Fig. 1. A clustered grapld’ = (G, T). The underlying grapl&; is shown on the lowest level. The tr&eis represented by the
dashed edges that connect the layers. The thick edges on each level are contracted to vertices in the next layer.

Edge contractions always produce parallel edges. If parallel edges are not eliminated, further edge
contractions result in more parallel edges and even self loops. Ideally, we would like to perform edge
contractions in a straight-line drawing that can be continuously animated so as to preserve planarity.
Furthermore, so as to preserve the viewer's mental map, we prefer that only the endpoints of the
contracted edge move, resulting in only minimal changes in the drawing.

It is well-known that contracting an edge in a planar graph results in a planar graph [11]. Note that this
does not imply that contracting an edge in a straight line planar drawing of a graph results in a straight
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Fig. 2. Contracting an edge, v) down to a vertexw subject to the locality conditions.
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Fig. 3. A subgraph of an embedded fully triangulated graph. Edge) cannot be contracted without introducing a crossing,
if we are to keep all other vertices fixed. Note that the resulting vertex should lie beloly mel above linés.

line planar drawing! More precisely, consider a straight-line planar drawing of a graph and an edge to
be contracted. Suppose we are not allowed to move any other vertices in the drawing except the two
involved. Then there exist drawings in which the contraction of some such edge introduces a crossing.
We show this with an example in Fig. 3.

2.2. Smple edges and separating triangles

A well-known result in the theory of planar graphs states that if a g@@phmaximally planar, then it
has a unique combinatorial embedding on a sphere. This implies that the clockwise (counterclockwise)
order of the neighbors around every vertex is the same in every drawifighafthe sphere. As a result,
all embeddings of; in the plane are the same, up to the choice of the outer facg tfis important
to note that the statement is not true for general planar graphs, hence, maximal planarity is a necessar)
condition.

We have seen one of the problems that occur when an edge in an embedded graph is contracted
Another problem can occur even if we do not have a fixed embedding. When the contracted edge is a part
of a separating triangle, the resulting graph is not fully triangulated and in fact may have many different
embeddings. We call a triangle (7 a separating triangle if the removal of its vertices and their adjacent
edges disconnects; see Fig. 4.

Thus, we can divide the edges @finto two categories depending on the effect their contraction has
on the resulting graph. We say that an edgenpleif it is not a part of a separating triangle. Edges that
are part of separating triangles we aatih-simple. Let G’ be the graph obtained fro@ by removing
all non-simple edges. We refer & as thesimple skeleton or just theskeleton of G. Non-simple edges
present problems when contracted, so we will be contracting only simple edges, for their contraction
can be continuously animated while preserving planarity using straight lines. Moreover, eliminating the
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(a) (b)

Fig. 4. TriangleAuvx in part (a) is separating triangle. Contrast that with the non-separating triamgie in part (b). Note
that althoughAuvy is not a separating triangle, ed@e v) belongs to a separating triangle.

parallel edges after contracting a simple edge in a maximally planar graph results in a maximally planar
graph, as the following lemma shows:

Lemma 1. Contracting a simple edge in a maximally planar graph results in a maximally planar graph.

Proof. Suppose: = (u, v) does not belong to any separating triangle. Since every edge is a part of two
triangles,u andv have at least two neighbors in common. Suppose there are three or more neighbors in
common. Ther is a part of three or more triangles. One of those triangles must be a separating triangle.
Henceu andv have exactly two neighbors in common.

We also need to show that after the contractiom tife remaining graph is still fully triangulated. Let
x andy be the two neighbors af andv; see Fig. 2. When we contraetwe replace the pair of vertices
(u, v) with a new nodew. In the process we remove eddesx), (i, ), (v, x), (v, ¥), (u, v) and replace
them with edgesw, x), (w, y). Since contracting an edge in a planar graph results in a planar graph,
we know that the new graph is still planar. Also, if the original graph hagrtices and 3 — 6 edges,
the new graph has — 1 vertices and3— 6 — 5+ 2= 3(n — 1) — 6 edges. Thus the resulting graph is
maximally planar.

Note that a similar claim was stated in [16, Lemma 4.1

We showed that contracting a simple edge in a maximally planar graph results in a maximally planar
graph. This property is not true for non-simple edges. Suppose we were to contract edgie Fig. 5
and replace it with a new node. The resulting graph has more than one different embeddings. Note that
the difference in the graphs on Fig. 5 (b) and (c) is not just in the selection of the outer face: the order of
the neighboring vertices around verticeandw is different.

We first show that ifAuvw is a separating triangle i@ then there exist two disjoint paths between
andv in the skeletorG’ of G. Next we show thaG’ is biconnected.

Lemma2. Let G and G’ be amaximally planar graph and its skeleton. If Auvw isa separating triangle
in G, then there exist two digjoint paths between « and v in G” using only vertices frominside the triangle
Auvw for one and outside the triangle for the other.
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Fig. 5. The graph in part (a) contains a separating trianglex. If we contract edgéu, v) and replace it with a node we
can get combinatorially different graphs, depending on where we plaé®r example, the order of the neighboring vertices
around vertex in (b) and in (c) is different.

(a) (b) (c)

Fig. 6. If Auvw is a separating triangle then there exist two disjoint pathand p, connectingz andv. (b) If |V;| =1 then
p; = uxv for some vertex € V;. (c) If |V;| > 1 thenp; is made of two pathg, and p».

Proof. Let Auvw be a separating triangle i. Every separating triangle divides the vertices of
G into two classesy; (vertices inside the triangle) and, (vertices outside the triangle), such that
V: UV, U{u,v,w} =V(G) andV; NV, = @. We claim that there exist pathg and p, in G’ which
connecty andv such thatp; uses only vertices if¥; and p, uses only vertices i, ; see Fig. 6(a). We
first prove the existence gf; by induction on the number of vertices . Note that sinceAuvw is a
separating triangle, we hay¥;| > 1. Assume thatV;| = 1. ThenV; = {x}, for some vertex, and since
G is fully triangulated, edgeséx, u), (x, v) exist and are simple which implies that they belongsto
Thenp; = uxv; see Fig. 6(b).

Suppose the claim holds f¢V;| < k and consider the ca$¥;| = k + 1. Letx be the first vertex before
v in the counterclockwise order aroundIf (u«, x) and(x, v) are simple edges then = uxv. The other
possibility is that one or both are non-simple(if x) is a non-simple edge then it is a part of a separating
triangle. Lety be the third vertex of a separating triangle which usesdx; see Fig. 6(c).

We claim thaty ¢ V,. Otherwise the edgér, y) must cross one of the edges afivw which is a
contradiction to planarity. Thug, andy do not belong td/,. ConsiderAuxy. Since it is insideAuvw
and does not contain it contains at mosk vertices. Then the inductive hypothesis applies and there
exists a pattp; which connects: andx and uses only vertices .

If (x,v) is a simple edge, then the path together with edgéx, v) is the pathp; we are looking for.
Otherwise(x, v) is a non-simple edge. We just showed thatf x) is a non-simple edge, there exists a
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path p; which connects: to x using only simple edges with endpointsW¥h By a similar argument, if
(v, x) is a non-simple edge, there exists a ppghwhich connects: to v using only simple edges with
endpoints inV;. Then the two pathg; and p, form the pathp; from « to v of only simple edges with
endpoints inV;.

The above argument shows that there exits a pathihich connects andv using only simple edges
with endpoints inV;. A similar argument shows that there exists paghwhich connects: andv using
only simple edges with endpoints ). O

Lemma 3. If G isamaximally planar graph and G’ isits skeleton, then G’ is biconnected.

Proof. Let us first prove thaG’ is connected. Sinc€ is fully triangulated, there exists a path between
any two verticest andv. Let p be one such path. It is possible that some of the edges along that path
were non-simple and so the same path does not necessarily exist lfowever, for any non-simple
edge(x;, x; ;1) along that path we can find a pgthwhich uses only simple edges (from Lemma 2). We
can replace all non-simple edges with paths of simple edges to get a gathvitich connects andv.

Suppose thatG’ is not biconnected. Since we know th@t is connected, if it is not biconnected
there must exist a cut vertax(a vertex whose removal disconne¢t$). Sincev is a cut vertex, in the
counterclockwise traversal about there must exist two neighboring verticesand w which are not
connected inG’ — v. Since(u, w) is therefore a non-simple edge @, from Lemma 2, we know that
there exist two disjoint paths betwegrandw in G’. At least one of these paths cannot us&herefore,
there must exist a path fromto w in G’ — v'. Sincex andw are not connected i’ — v, we have a
contradiction, and>’ must be biconnected. T

The next two corollaries follow trivially from Lemma 3.

Corollary 1. Let G be a maximally planar graph and G’ be the graph obtained from G by removing all
the non-simple edges. For every vertex v € G’, we have dg/ (v) > 2, where dg (v) isthedegree of v in G'.

Corollary 2. If avertex v isa part of a separating triangle Avab in a maximally planar graph G, then
there exist at least two simple edges (v, x;) and (v, y;) adjacent to it, such that x; € V; and y; € V,,,
where V; and V, are theinside and outside vertices of G with respect to Auab.

3. Finding a simple matching in a maximally planar graph

In this section we show that any maximal matching that uses only simple edges contains a constant
fraction of all the edges iv, providedG is maximally planar. Next we show how to find a matching that
can be used to contract the graph so that the resulting graph is maximally planar. Furthermore, if the size
of that matching is @:), then after repeating this procesgldg») times we are left with only a constant
number of vertices. Thus, we need to show that we can construct a maximal matching(wjitbdQes
such that their contraction results in a maximally planar graph.

Let G’ be the skeleton ofr. Recall that we constru@’ from G by removing all the non-simple edges.
We start by showing that any maximal matchingdhcontains at least/12 edges. To prove this claim
we construct a maximal matching @& and consider faces of different lengths. Recall that the length of
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Fig. 7. LetAuab be a separating triangle, (a)dfandb are on opposite sides with respectAavw there must be an edge
crossing. (b) Ifa andb are on the same side, then there exists a third simple edge incident to

a face refers to the number of vertices on that face. We break the fac&simb three classesA, B,

C, which contain faces of length 3, faces of length 4, and faces of length 5 or more, respectively. We
then count the number of unmatched vertices in faces of the different classes. Finally, when we factor in
over-counting we show that any maximal matching must contain atdg¢atedges.

Lemmad4. Let G and G’ beamaximally planar graph and its skeleton. If f; isafaceof length 3 (f; € A),
then there is at most one unmatched vertex in f; and this vertex has degree at least 3.

Proof. Let M be the set of vertices that are incident to a matching edge in an arbitrary maximal matching
of G'. We first show that there can be at most one unmatched vertex in a triangular faceCansider
such a triangular face i@" and suppose there are two or more unmatched vetticesn that face. Then
u,v ¢ M which implies that edgéu, v) € G’ on that face can be safely added to the matching (recall
that all edges inG’ are simple and if both endpoints are unmatched then it is an eligible candidate for
the matching). Adding edge:, v) results in a larger matching which contradicts the maximality of the
existing matching. Thus there can be at most one unmatched vertex in a triangular ¢&ce of

We now show that the degree of a vertex on a faca is at least 3. Letz be an unmatched vertex in
a triangular face, defined hy, v, w in G’. We claim thatds (1) > 3 in G’. Clearly, the degree of is at
least 2 (from Corollary 1). Supposk; (u) = 2. We know that; (1) > 3 sinceG is fully triangulated.
Thenu participates in at least one separating triangl€ ifThere exist at least two verticesandb, such
that Auab is a separating triangle i@.

Note thata andb must be on the same side of the triangle, since otherwise @dgg would cross
one of the edges ohuvw; see Fig. 7. Sinc&’ is connected, it is not possible that bdth and V,
are non-empty (otherwisAuvw is a separating triangle). Without loss of generality, Wet= . Then
a,b € V, and there must exist a simple edge adjacent tnd insideAuab (from Corollary 2). Thus
de(u) >23. O

Lemmab. Let G and G’ be amaximally planar graph and its skeleton. If f; isa face of length 4 or more
(fi e Bor f; € C), thenthere exist at most I( f;)/2 unmatched verticesin f;.

Proof. Consider a maximal matching ii” and a face of length more than 3 @1. Suppose there are
more than/(f;)/2 unmatched vertices on that face. Sir€eis biconnected, at least two of them must
be adjacent. The edge that connects them is simple, so by adding the edge to the maximal matching its
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Fig. 8. Graphs in the clagq consist ofn — 2 nested triangles, all of which share one edge.

size is increased by one. This would contradict the maximality of the matching. Thus there are at most
1(f1)/2 unmatched vertices. O

For the unmatched vertices on facesdinve were able to show that they have degree at least3.in
This is not necessarily true for the unmatched vertices on facBinC. We are able to show, however,
that if a pair of unmatched vertices on a faceArhave degrees 2 in the skeleton th@nbelongs to
a special class of graplig. The class of nested trianglés is defined as the class of maximally planar
graphs in which there exist two adjacent vertiagg; such that every other vertex in the graph is adjacent
to bothu andv; see Fig. 8. IiG ¢ H then for any facef; € B, at most one vertex on that face has degree 2.

Lemma 6. If H isa maximally planar graph in the class H, then any maximal matching that uses only
simple edges contains /12 or more edges.

Proof. Let H be a graph in thé{ class such that the vertices &f are V(H) = u, v, x1, X2, ..., X,_2
and the edges off are E(H) = (u,v) U E1 U E5, where E; = {(u, x;), (v, x;), for 1 <i <n— 2}
and E; = {(x;_1,x;), for 1 <i <n — 2}. Let the counterclockwise order of the vertices arownide
u,x1,Xxo, ..., Xx,_2; see Fig. 8.

Let H' be the graph obtained fronHH by removing all non-simple edges. Thel(H') =
{(u, x1), (U, x,_2), (v, x1), (v, X,_2), (xi_1, x;), Vi: L<i <n—2}. The cycleu, x1, x2, ..., x,_2, u has
n — 1 edges so any maximal matching must use at least1)/2 edges. Sincé: — 1)/2 > n /12 for all
n > 1, this completes the proof of the lemmat

Lemma 7. Let G and G’ be a maximally planar graph and its skeleton. If there exists a face of length
four in G’ with more than one vertex of degree 2, then G € H.

Proof. Let f be a face of length four i6” with more than one vertex of degree 2 on that face. Assume
thatG ¢ H. Let the four vertices off bea, b, ¢, d; see Fig. 9. Sinc& is fully triangulated, there exists
an edge connecting two opposite vertices. Without loss of generality,datid be connected with an
edge inG. But the edgé€b, d) is not inG’ so it must be on a separating triangletin Then there exists a
vertexu such thatAbdu is a separating triangle i@. Since the edgeg:, b) and (b, ¢) are inG’, vertex

u cannot bez or c.
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(a) (b) (©) (d)

Fig. 9. A 4-cycle inG’ defined by vertices, b, c, d. If both verticesh andd are of degree 2, the € H.

Let us now consider the possible vertices of degree Z.iAssumeds (a) = 2. SinceG is fully
triangulateddgs (a) > 3. SinceG’ is connected and, b, c, d is a face inG’, there cannot be any non-
simple edges in the counterclockwise order betwéeand b in G. If a has degree 2 ir;’ then one
incident edge of: is not simple, hence there must exist a separating triangle whichausatside of
Aabd. But this implies that there exists at least one more simple edgeawdth one of its endpoints
(from Corollary 2). Henceds (a) > 3, which is a contradiction.

Similarly, we can show thads (c) > 3. Since there are at least two vertices of degree twg oit
must be thatl; (b) = 2 anddg (d) = 2. Let x be any neighbor ofl other thana, b, ¢, d, u. Since
de'(d) =2, (d,x) ¢ E(G"). Therefore,(d, x) is an edge of a separating trianghelxy. Consider the
different possibilities fory:

(8) Assumey = a then(a, d) must be a non-simple edge. Bt d) € G’, and soy # a; see Fig. 9(a).

(b) Assumey = c then(c, d) must be a hon-simple edge. Bidt d) € G’, and soy # c; see Fig. 9(b).

(c) Assumey = u. Then eitherm follows x in the clockwise order around or the other way around;
see Fig. 9(c). Without loss of generality, lefollow x. From Corollary 2 there must exist a simple
edge(d, z) between(d, u) and(d, x) in the counterclockwise order of the edges arodnBut then
dg (d) > 3, which is a contradiction. Thus# u.

(d) Assumey ¢ {a, b, c,d, u, x}. Similar to the previous case, there exists a separating triahgle
such thatz andc are on the same side dfdxy; see Fig. 9(d). Then there is at least one more simple
edge(d, z) wherez ¢ {a, b, ¢, d, u, x, y} implying thatd;- (d) > 3, which is a contradiction.

The only possibility left isy = b, which implies that every neighbor af is also a neighbor ob.
A similar argument shows that every neighbomahust be a neighbor af.

SinceG ¢ 'H, there must exist at least one vertexvhich is not a neighbor ab or d. In particular,
sinceG is connected, let us look at the vertex closest tr » in G which is not a neighbor o or d.
Without loss of generality let be closer tab. Let p be the shortest path frofto v. Sinceb is not a
neighbor ofv, the path has at least three vertices. In fact, sinisethe closest non-neighbor &oor d, p
has exactly three vertices, u, v, whereu is some neighbor df andv. Recall that from the arguments
aboveu must also be a neighbor @f. In the traversal about from 4 to v to d, there may be multiple
vertices. Since the path lengths are equivalent, without loss of generalitpkethe vertex closest
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in the traversal. Sincé& is fully triangulated,v must also be a neighbor dfand hence a neighbor 6f
However, this contradicts our choice @f Therefore,G must be inH. O

We have shown that ii” has a face of length four with more than two vertices of degree 2 ,Gher{
and hence any maximal matchingd contains at least/12 edges (from Lemma 6). Finally we show
that the same result holds for all maximally planar graphs.

Theorem 1. Let G be a maximally planar graph and let M be the set of matched vertices in a maximal
matching which uses only simple edges. Then |M| > n/6, where n isthe number of vertices of G.

Proof. If G € H, from Lemma 6 we know that the theorem holds. Then suppgbgeH. Let M andU

be the set of matched and unmatched vertices, respectively, in any maximal matcGingniorder to
count the number of matched edgeginwe will count the number of unmatched vertices. Let us define
a function

u(v)={

Note that) |, _;u(v) = |[U| =n — |M|. We are going to count the number of unmatched vertices in
each face, so we want to make sure we know how much we over-count. With this in mingplet
u(v)/d(v) if v is on a facef;. Thenzﬁepui(v) =u() andu(f;) = Zveﬁ u;(v) = Zveﬁ u(v)/d).
Recall thatA, B, C are the sets of faces of length 3, 4 and 5 or mor€'irrespectively. Then

U= u@) =) u(f) =Y ulf)+ Y ulf)+ Y ulf).

veV fieF fieA fieB fieC

1 ifv¢ M (visunmatchey
0 otherwise.

Next we look at each of the three classes of faces:

(a) Consider the faces of length 3d#. Recall from Lemma 4 that if; € A then there is at most one
unmatched vertex irf; and it has degree at least 3. Hence,

> u(f) <IAl/3.

ficeA

(b) Consider the faces of length 4 @&'. Recall we assumed that ¢ H, and then any face iB has
at most one vertex of degree 2, and there are no more than 2 unmatched vertices per face (from
Lemma 7). It is possible then to have one of the unmatched vertices of degree 2 but if there is a
second unmatched vertex it has degree at least 3. Then

> u(f) < (1/2+1/3)|B| =5|B|/6.
fieB

(c) Finally, consider the faces of length 5 or moreGh From Lemma 5 we know that if; € C, then
there are at mogt f;) /2 unmatched vertices ift. Putting this together with the fact that every vertex
in every face ofG’ has degree at least 2 gives us that

douf<), l(f).

fieC fieC
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c

Van\

a b

Fig. 10. Consider a grap&, with its simple and non-simple edges drawn with thin and thick lines, respectively. Girtas
no faces of length 34| = 0. G’ has one face of length 4, defined by vertiees, b, f and henceB| = 1. G’ has two faces
of length 5 or more, defined by verticesc, d, e, f andb, ¢, d, e, f, respectively, hencg| = 2. G has six faces of length 3
which end up as part of faces of length 5 or moresin These are defined by the triangl&afe, Aaed, Aadc, Abef, Abde,
Abcd. Hence|D| = 6.

We next calculate) .. % Let D be the set of faces ity which end up as a part of a face of
length 5 or more irG’. From Euler’s formula foiG, we havglA| + 2|B| + |D| = 2n — 4, since every
face of length 4 inG’ (recall thatB is the set of faces of length 4 ii’) corresponds to exactly two
faces inG. We can then expred3 in terms ofA, B,

|D|=2n—4—|A| —-2|B|. 1)

SetsA, B, C, D are illustrated with an example in Fig. 10.
Consider a facg; of lengthi( f;) > 3. There are exactly( f;) — 2 triangular faces it which merged
to form f;. Then

IDI=> (I, —2) = 1(f)—2C].

fieC fieC

From the last equation we can express the sum of the lengths in terdis bf Zﬁecl(fi) =
|D|+2|C|. Putting the last two results together we gettﬁgx[ecl(ﬁ) =2n—4—|A|—-2|B|+2|C|
and we obtain the bound

Al |B] | IC]

n
)<=-1—-— - — 4+ —.
2 u(f) 2 2 2173
fieC

Combining the results from parts (a), (b), (c) we get

|Al ' 5IB| n |Al |B|  IC| n Al |B]  IC]
S IR LV D L P e i 2
UiIsg+gt3- 4" 2173 2 Tt T3 T @

We need one more observation before we conclude the proof. It is easy to sge|thad|C|, since
every face inC corresponds to at least 3 faces Gh Using this observation, together with Eq. (1)
gives us a bound on the size @| in terms of the number of faces ia and inB: |C| < |D|/3 =
(2n — |A| — 2|B| — 4)/3. Substituting forC in (2) we obtain

n |Al |B] 2n—|A|—2|B|—4 _5n |[A] 5 5n

S L 1 .
Uisz+4+3+ 6 6 12 3 6

Since|U| < 5n/6, |M| > n/6, which concludes the proof of the theorenma
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4. Algorithm and analysis

Before we can consider a particular embedding we must show how to obtain all the graphs in the
hierarchy, Gy, G1, ..., G;. Recall thatGo = G is a fully triangulated planar graph onvertices. To
constructG;; from G; we find a matchingt; of G; and perform the graph contraction using the edges
in E;. We repeat this process undil;, ; is a singleton graph; see Fig. 11.

SetE; for 0 <i < k contains a maximal matching on the edge&ptvith some added constraints. Itis
important that after the contraction of the edgeg&irihe resulting grapld/; . ; remains fully triangulated.

In order to preserve the mental map, the three locality conditions must be maintained. Finally, in order
to maintain a small hierarchical height;| must be a constant fraction of the edge<Gin Thus, the
constraints that we have dr} are as follows:

(1) E; is a matching of simple edges.

(2) After the contraction of all the edges i, subject to the locality conditions, the resulting graph
G;1 is maximally planar.

) |E;| 2|V (G))|/c, for some constant > 1.

Note that condition (1) does not imply condition (2); see Fig. 12. Before we proceed we show how to
produce a sek; which satisfies the above three conditions. Suppose we have Gragid we want to
create sek; so that when all the edges K} are contracted, we gé€t; ;1. We will contract simple edges
of G; one at a time. When an edge, v) is contracted, it is replaced by a vertex The next time an
edge is contracted, it cannot haweas an endpoint. Le#; be the set of vertices that were created as a
result of contractions in phageThe edges that we place ify must be a matching, and so when a new

create_hi erarchy(G)
i<«0
Gi ~ G
while|V;(G;)| > 3
Git1 < mat ch(G;, E;)
i<i+1

Fig. 11. Creating the hierarchy of grap&ig, G4, .. ., G-

u v w

@ )

Fig. 12. Edgedqu, v) and (x, y) in part (a) are both simple, do not share an endpoint, and can be contracted as a part of a
matching. After(u, v) is contracted taw in part (b), edgex, y) becomes a part of a separating triangle and so it should not be
contracted.
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mat Ch(Gi, E,')

W,' <~
while (S; # ?)
Let uj € S;
Si < 8§ \ {u;}
if Iwj,vj) € Gij,stvj ¢ W, and(uj, vj) is simple
E; < E;jU{(uj,vj)}
Contract(u j,v;) tow; to getG; jy1
W, <~ W; U {wj}
j<j+1
return(G,-,j_l)

Fig. 13. Create5; 1 from G; by contracting a sequence of edgein

edge is considered for contraction, it cannot have an endpoifit.ifrinally, letS; be the set of vertices
of G, of small degrees. More precisely, I&t={v € V(G,): dg, (v) < 39}.

In general,G; is transformed intaG; ; one edge contraction at a time using the edges;iim the
order they were chosen. We select edges for contraction by first finding a veuigexof G; with small
degree (vertices of small degree are members of thg;eWe look for a simple edgéx;, v;), such
thatv; is not a vertex obtained from a contraction in the previous plasg¢ W;). Call the intermediate
graphs fromG; to G;;1, G; = G0, G; 1, ..., Gi j = Gi;1, and consider the algorithm on Fig. 13.

Proof. For G; with more than 3 verticegE;| > 1. Then consider the sequence of intermediate graphs
Gio,Gi1,...,G;; and letG; ; have no more edges that could be addedtoObserve that we have
contracted exactly edges oiG; and so|V (G; ;)| =n; — j. Then from Theorem 1 there afe; — j)/12
edges in any maximal matching 6f; ; which uses only simple edges. Consider such a matching
Recall thatW; is the set of vertices created as a result of edge contractions in ph&sere not allowed
to add toM vertices fromW,;. But sinceW; = j, at most; of the edges with matched endpointsin
can have endpoints iW;. Also note that if both endpoints of a simple edge in the matching have degrees
greater than or equal to 39 @, they cannot be added . If there exist at most vertices of degree
greater than or equal to 39, then there are at rhgatsuch edges. It is easy to show that n;/12:
Suppose there afevertices of degrees 39 or moredh. SinceG; is fully triangulated, every vertex has
degree at least 3 and sin¢g is maximally planar, the sum of the degrees is twice the sum of the edges.
Then 3% + 3(n; — k) < 6n; — 12. From this we get thadt < n; /12.

We stopped selecting good edges frémwhen we got to grapl@; ; in which we could not find
a simple edge to contract. The only other types of edges that might be availaig iout which we
cannot take are those that were at some point non-simple, but later became simple. Also, there can be a
most; such edges. The; — j)/12—2j —n; /24 < 0 which impliesj > n;/50. Thus, if we cannot find
another edge to add to the matching, we must haye= j > n; /50 which completes the proof.0
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We next argue that one call toat ch(G,, E;) takes Qn; logn;) time, and since:;; is a constant
fraction ofn;, the Qllogn) calls tomat ch(G;, E;) take Qnlogn) time overall thus yielding the desired
theorem:

Theorem 2. The clustering algorithm runs in O(zlogn) time and produces a sequence of graphs
Go, Gy, ..., G suchthat G; ismaximally planar for all 0 <i <k and k = O(logn).

Proof. Let us consider a grapfi;, 0 < i < k in the hierarchical decomposition. From Lemma 8 above
we have|E;| > n; /50, wheren; = |V (G;)|. Then|V(G;;1)| < 4%,/50, that is, the number of vertices
of G;,1 is a constant fraction of the vertices Gf.

Recall thatG; is a maximally planar graph and the callmat ch(G;, E;) completes when we have
contractedG; to G,1 by constructing the intermediate grapiis= G, o, G 1, ..., G; j = G;4+1. ASsume
that the vertices o¥ are uniquely labeled. Assume that the graph is maintained as an adjacency list
(an adjacency matrix will give us better running time but:®) space complexity). For every vertex
v € V(G;) we have a list of its neighbors in counterclockwise order. We can trivially sort these lists
according to the labels of the neighbors itn@ogn;) time.

Recall from the algorithm in Fig. 13 that we examine only vertices of small degrég {i8; is the
set of such small degree verticesh), and once a vertex is processed, it is not considered again in this
call tomat ch. Thus we perform Q:;) vertex examinations. Consider an intermediate g@phwhere
0< [ < j.For every vertex; € S; we are looking for an adjacent edge, v) in G;; such that ¢ W;
and (u;, v) is simple. To find out ifu belongs toW; takes Qlogn;) time, provided we maintain the set
W; sorted. To determine whethér,, v) is simple we need to check the number of common neighbors of
u; andv. Recall that ifu; andv have exactly two neighbors in common, themn, v) is simple; otherwise
itis non-simple. Sincea; € S;, we haved,, (u;) <dg, (u;) < 39. Then we can check in(@gn;) time if
a neighbor ofy, is also a neighbor af using binary search in the list of sorted neighbors)ofThere is a
constant number of neighbors @f, so to check all still takes @bgn;) time. Thus processing one vertex
of S; takes Qlogn;) time. SincgS;| < n;, it takes Qn; logn;) time to process the whole st O

5. Constructing the embedding

After we obtain the combinatorial graplt®y, G1, ..., G, we have to embed them in planes= 0,
z=1,...,z=k. While constructing the combinatorial graphs is a bottom up process, constructing the
embedding is a top-down one. The first graph to be embeddegd, iwhich only has one vertex. We then
expand the edges if,_; one at a time, in the reverse order of their insertion. We then argue that this can
be done in a way which guarantees that no crossings are introduced. We need the following lemma.

Lemma 9. Let G be a maximally planar graph embedded in the plane without crossings. For any
v € V(G), there exists a ball of radius ¢ > 0 such that if v is placed anywhere inside that ball, the
embedding has no crossings.

Proof. The main idea is to consider the visibility region around vetie@ny point inside that region
can “see” all the neighbors of It is not hard to show that this region cannot be empty. This would imply
the existence of > 0O for which the ball of size fits inside the visibility region. O
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(a) (b)

Fig. 14. Vertexw; and its neighbors iw; ;1 (a) before expansion, (b) after expansion.

Theorem 3. Given combinatorial representations of graphs G, Gi_1, ..., Go we can embed themin the
planesz =k,z=k —1, ...,z =0 s0 that there are no crossings in any of the drawings.

Proof. We first embed5,, in the planez = k without crossings using any straight-line drawing method.
Suppose we have embeddéd, G;_1, ..., G;. We will show how to embed;;_; given an embedding
for G;. Recall that we obtained@; from G;_; through a series of edge contractions from the edge set
E;_1 = {(uo, vo), (u1,v1),...(u;,v;)} which produced graph§;_10, Gi_11, ..., Gi—1,; = G;. We now
reverse the process and expafigd back toG;_; through the exact opposite sequence of expansions.
Since we have an embedding 16y in the planez =i, we can embed;;_, ; in the planez =i — 1. Next
we expand edgé:;, v;) by replacing vertexw; by the pairu;, v;. The resulting graph i&; ;_; and we
embed it without a crossing. We proceed until we gati@. We next show how to embad;; given an
embedding foiG,; ;41, for 0< 1/ < j.

Assume we have a straight-line embeddingdgy. 1 without crossings on the plane=i. To getG;,;
we must expand vertex, back to edg€u,, v;). Consider the subgraph on Fig. 14. Lkeandy be the
neighbors in common fag; andv,. We then consider the ball of maximal radius aroundvhich sees
all neighbors (we know it is of radius > O from Lemma 9). Consider a diagonal in this ball which is
perpendicular to the line connectingandy. Placeu; andv, on the two ends of the diagonal O

We define thedrawing of a clustered graph C = (G, T') as in [5]. GraphG is drawn as usual, while
for every nodev € T the cluster is drawn as a simple closed regiauch that:

e All sub-cluster regions ok are completely contained in the interior Bf

o All other cluster regions are completely contained in the exterigr.of

e Ifthere is an edge between two vertices contained in a clustethen the drawing of is completely
contained inR.

Following the definitions of Eades et al. the drawing of edgid regionR have aredge crossing if
the drawing ofe crosses the boundary & more than once. A drawing of a clustered grapb-ganar
if there are no edge crossings or edge-region crossings. Graphs with c-planar drawings are c-planar.

Theorem 4. The clustered graph C = (G, T) produced by our algorithm is c-planar and a c-planar
embedding can be obtained in O(n?) time.
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Proof. It suffices to show that there exists a drawing(divhich has no edge crossings and no edge-
region crossings. Let us embédusing any planar embedding algorithm. Define the region of a cluster,
v to be the simple closed curve around the subgraph imfduced by the clustet; (v). By the definition
of the clustering in our algorithm, the subgra@tiv) is connected.

If u is a vertex not in cluster, thenu cannot be contained inside the regifin Assume thai: is
contained inR. If we contract the edges ofin the order defined by our algorithm, eventuallyvill be
inside a triangular face. But then none of the edges on that face can be contracted. This is a contradiction
sincev is eventually contracted to one vertex.

Finally, sinceG is embedded in the plane without crossings and the regions are connected there can
be neither edge crossings nor edge-region crossings. Thert@ifgre-planar and from [5] it follows that
the c-planar embedding can be produced in®®time. O

6. Conclusion and open problems

We have shown how to decompose a large planar géapiio a hierarchy of graph€g, G4, ..., Gk
such that:

The height of the hierarchy is(@gn).

GraphG;, 0<i <k, is embedded in the plane=i with straight lines and no crossings.
The transition fromG; to G, ; preserves the mental map.

The running time of the algorithm is@logn).

Several open problems remain. In Theorem 3 we show that each of the graghembedded in the
plane with straight lines and no crossings. However, we have not obtained lower or upper bounds on the
area necessary for each of the drawings.

Recall that we create a drawing for the original gr@pk= G, in a top-down fashion, by first drawing
Gy, Gi_1, ..., Gy and thenGg. A natural question is whether we can achieve similar results in a bottom-
up fashion. That is, if we are given a drawing of a planar graph, what conditions are needed so that we
can create a hierarchy of graphs which has the above four properties.
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