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Abstract

In this paper we present a novel approach for cluster-based drawing of large planar graphs that maintains
planarity. Our technique works for arbitrary planar graphs and produces a clustering which satisfies the conditions
for compound-planarity (c-planarity). Using the clustering, we obtain a representation of the graph as a collection
of O(logn) layers, where each succeeding layer represents the graph in an increasing level of detail. At the same
time, the difference between two graphs on neighboring layers of the hierarchy is small, thus preserving the viewer’s
mental map. The overall running time of the algorithm is O(n logn), wheren is the number of vertices of graphG.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In the lead article of its recent March/April 1999 issue,SIAM News highlighted computations involving
large graphs as a grand challenge, and it listed several applications of such computations, particularly
in the networking and telecommunications areas. While such application areas typically give rise to
non-planar graphs, there are nevertheless several application areas that give rise to large graphs that
are planar. Examples of such planar graph applications include computations arising in computational
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cartography and geographic information systems (GIS). In this paper we are therefore concerned with
the visualization of large planar graphs.

There are several approaches to the visualization of planar graphs, each of which must address the fact
that the resolution of most display technologies (and possibly even the human eye) is simply limited to
a few million pixels. Moreover, no matter how many pixels a display technology has, these pixels must
display not just the vertices of a graph of interest, but also, and more importantly, the edges connecting
these vertices. One approach to drawing large planar graphs is the so-called fish-eye or hyperbolic view
approach [9,10,15], which shows a single “cursor” vertex neighborhood in high detail while showing the
rest of the graph in decreasing detail (inversely proportional to the distance from the cursor).

A competing approach, however, and the one that is the focus of this paper, is based on representing
the graph by a hierarchical clustering in which the graph is represented by a collection of layers, where
each succeeding layer represents the graph in a decreasing level of detail. That is, together withG one
gives a treeT such that the leaves ofT coincide with the vertices ofG, and each internal nodev of T
represents thecluster defined by the vertices ofG associated with the descendent leaves ofv in T . In
this caseG can be drawn in a “layered” manner, where we draw each cluster on the same layer ofT as a
region of the plane and connect adjacent clusters by segments. It is desired that each such layer be drawn
planar, with no segments intersecting each other or intersecting the boundary of a non-incident cluster
region. Thus, the general goal of clustered graph drawing is to preserve the global structure of a graphG

by recursively clustering smaller subgraphs ofG and drawing these subgraphs as single nodes or filled-in
regions in a rendering ofG. By grouping vertices together into clusters in this way one can recursively
divide a given graph into layers of decreasing detail, which can then be viewed in a top-down fashion.

1.1. Prior related work on clustered graph drawing

If clusters of a graph are given as input along with the graph itself, then several authors give various
algorithms for displaying these clusters in two or three dimensions [4,5,7,8,13]. Still, as will often be the
case, if clusters of a graph are not given a priori, then various heuristics can be applied for finding clusters
using properties such as connectivity, cluster size, geometric proximity, or statistical variation [12,14,18].
If no clusters are given and no special properties are known in advance, Duncan et al. [2] show how to
create a hierarchical decomposition and a 3-dimensional drawing for general graphs. However, for planar
graphs, it is possible to introduce edge-region crossings, in which edges can cross the cluster regions they
are not part of. Even with no edge-edge crossings, the edge-region crossings are a serious drawback to
the readability of a drawing.

Eades et al. [5] describe a drawing algorithm that draws a planar graphG, assuming that the clusters
of G preserve certain recursive conditions, which they collectively call thec-planarity conditions. They
show that ifG and its clusters satisfy the c-planarity conditions, then one can produce a drawing of
G such that each layer of the cluster hierarchy is drawn planar, with each vertex drawn as a convex
region and each edge drawn as a straight line segment. This approach allows the graph to be represented
by a sequence of drawings of increasing detail. As illustrated by Eades and Feng [4], this hierarchical
approach to drawing large graphs can be very effective. However, we are not aware of any previous work
for deterministically producing a clustering of an arbitrary planar graph so as to satisfy all the c-planarity
conditions.



C.A. Duncan et al. / Computational Geometry 24 (2003) 95–114 97

1.2. Our results

In this paper we describe an algorithm for constructing a clustering of any planar graph so as to satisfy
the c-planarity conditions of Eades et al. [5]. Preliminary results can be found in Duncan et al. [3]. Our
algorithm runs in O(n logn) time, uses O(n) space, and can be implemented using simple “off-the-shelf”
data structures. We also show that the clustering treeT , defined by our algorithm, has the additional
property that the number of clusters at layeri of T (i.e., the clusters associated with the nodes ofT at
height i) is a constant fraction larger than the number of clusters at the next higher layer,i + 1. Thus,
T has O(logn) height. This in turn implies faster drawing times whenT is used in a clustered graph
drawing algorithm, such as that of Eades et al. [5].

This logarithmic height result also implies some nice properties of the clustered drawing itself. For
example, had we instead produced a clustering treeT of depth	(n), which is possible if one uses a
different clustering algorithm, then we would have a hierarchy that takes an extraordinarily long time to
traverse for large planar graphs. At the same time, an o(logn) height forT would imply drastic changes
between consecutive layers in the hierarchy.

In addition to this logarithmic height result, our algorithm produces a clustering such that the changes
between the graphs in consecutive layers of the hierarchyT are “local”. In order to preserve the viewer’s
mental map of the graph when moving from one layer to another, the changes in the graph should be
minimal. Given the graph in layeri in T , to obtain the graph associated with the next higher layer
i + 1 in T , we need to group certain sets of vertices together and replace them by new vertices. In
this paper, we consider only changes that affect pairs of vertices, so that the treeT is in fact abinary
tree.

Thus we restrict our clustering operation so as to allow only the combining of two adjacent clusters,
which is an operation typically referred to as anedge contraction. Through a sequence of such edge
contractions, we obtain the layer graphsG0,G1, . . . ,Gk, whereG0=G andGk is a singleton graph. If
the changes necessary to obtain layeri + 1 from layeri are to be local, then the following threelocality
conditions for edge contraction must be met:

(1) A vertex can participate in at most one edge contraction.
(2) Changes in the drawing of the graph that result from the contraction of an edge(u, v) should only

affect edges with endpointu or v.
(3) A contraction of edge(u, v) results in the creation of vertexw. The placement ofw in the drawing

should be “close” to the edge(u, v). Optimally, we would like thatw lie along the line segment
defined by(u, v).

We provide a clustering method that satisfies the above locality conditions. One of the main challenges
in creating the layers in a cluster hierarchy of a planar graph is to define clusters and the drawing
algorithm associated withG’s clustering in such a way that no edge crossings are introduced in the
drawing of each layer. We provide a drawing algorithm which makes use of our clustering method
to produce a drawing that has neither edge-edge crossings nor edge-region crossings. In addition, we
show that one can use our clustering as input to the clustered planar graph drawing algorithm of Eades
et al. [5].
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2. Hierarchical embedding of planar graphs

A graph ismaximally planar if it is planar and adding any new edge results in a non-planar graph.
Maximally planar graphs are also calledfully triangulated as every face of a maximally planar graph
(including the exterior face) is a triangle. Let us assume, without loss of generality, that all the graphs
that we are dealing with are maximally planar. If a particular graph is not maximally planar then we can
fully triangulate it. LetG = (V ,E) be a maximally planar graph, where|V | = n. V (G) andE(G) as
usual refer to the set ofG’s vertices and edges, respectively and the degree of a vertexv in graphG is
dG(v). Let lG(fi) be the length of a facefi in G, where by the length of the face we mean the number
of vertices on that face. Further,�uvw will refer to the triangle defined by verticesu, v, w and by the
edges(u, v), (v,w), (w,u).

Similar to the definition in [4] we define theclustered graph C = (G,T ) to be the graphG and a tree
T such that the vertices ofG coincide with the leaves ofT ; see Fig. 1. An internal node ofT represents
a cluster, which consists of all the vertices in its subtree. All the nodes ofT at a given heighti represent
the clusters of that level. Aview at level i, Gi = (V (Gi)J ,E(Gi)), consists of the nodes of heighti in T

and a set of representative edges. The edge(u, v) is in E(Gi) if there exists an edge betweena andb in
G, wherea is in the subtree ofu andb is in the subtree ofv. Each nodeu ∈ T has an associated region,
corresponding to the partition given byT .

We create the graphsGi in a bottom-up fashion, starting withG0 = G and going all the way up to
Gk , wherek = height(T ). We obtainGi+1 from Gi by contracting a carefully chosen set of edges of
Gi in a certain order. Thez-coordinate of a vertexv ∈ V (Gi) is equal toi, that is, all the vertices inGi

are embedded in the plane given byz = i. The edges ofT are defined by the edge contractions. More
precisely, if(u, v) ∈ E(Gi) is contracted to a vertexw ∈Gi+1, then edges(w,u) and(w, v) are added
to T .

The problem of embedding planar graphs with straight lines and no crossings is well studied [1,6,16,
17,19]. Embedding clustered graphs without crossings poses additional difficulties. To embed the layers,
we reverse the sequence of graph contractions: we start with embedding ofGk (which has only one
vertex). To obtain an embedding forGi−1 from an embedding forGi we consider the set of edges ofGi−1

whose contraction resulted inGi . We then reverse the process by carefully expanding and embedding one
edge from that set at a time. Throughout this process we maintain the three locality conditions for edge
expansions/contractions.

2.1. Edge contraction and separating triangles

Contracting an edge is a standard operation on planar graphs; see [11]. We say that an edgee= (u, v)

of G is contracted when its endpoints,u andv, are replaced by a new vertexw such that all resulting
multiple edges are removed. Formally,

• edgee= (u, v) is removed fromG.
• ∀x ∈ V (G): (x, u) and(x, v) ∈ E(G), we remove edges(x, u) and(x, v) and add edge(x,w); see

Fig. 2.
• ∀x ∈ V (G): (x, u) ∈ E(G) and (x, v) /∈ E(G) (or (x, u) /∈ E(G) and (x, v) ∈ E(G)), we remove

edge(x, u) (or (x, v)) and add edge(x,w).
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Fig. 1. A clustered graphC = (G,T ). The underlying graphG is shown on the lowest level. The treeT is represented by the
dashed edges that connect the layers. The thick edges on each level are contracted to vertices in the next layer.

Edge contractions always produce parallel edges. If parallel edges are not eliminated, further edge
contractions result in more parallel edges and even self loops. Ideally, we would like to perform edge
contractions in a straight-line drawing that can be continuously animated so as to preserve planarity.
Furthermore, so as to preserve the viewer’s mental map, we prefer that only the endpoints of the
contracted edge move, resulting in only minimal changes in the drawing.

It is well-known that contracting an edge in a planar graph results in a planar graph [11]. Note that this
does not imply that contracting an edge in a straight line planar drawing of a graph results in a straight
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Fig. 2. Contracting an edge(u, v) down to a vertexw subject to the locality conditions.

Fig. 3. A subgraph of an embedded fully triangulated graph. Edge(u, v) cannot be contracted without introducing a crossing,
if we are to keep all other vertices fixed. Note that the resulting vertex should lie below linel1 and above linel2.

line planar drawing! More precisely, consider a straight-line planar drawing of a graph and an edge to
be contracted. Suppose we are not allowed to move any other vertices in the drawing except the two
involved. Then there exist drawings in which the contraction of some such edge introduces a crossing.
We show this with an example in Fig. 3.

2.2. Simple edges and separating triangles

A well-known result in the theory of planar graphs states that if a graphG is maximally planar, then it
has a unique combinatorial embedding on a sphere. This implies that the clockwise (counterclockwise)
order of the neighbors around every vertex is the same in every drawing ofG on the sphere. As a result,
all embeddings ofG in the plane are the same, up to the choice of the outer face ofG. It is important
to note that the statement is not true for general planar graphs, hence, maximal planarity is a necessary
condition.

We have seen one of the problems that occur when an edge in an embedded graph is contracted.
Another problem can occur even if we do not have a fixed embedding. When the contracted edge is a part
of a separating triangle, the resulting graph is not fully triangulated and in fact may have many different
embeddings. We call a triangle inG a separating triangle if the removal of its vertices and their adjacent
edges disconnectsG; see Fig. 4.

Thus, we can divide the edges ofG into two categories depending on the effect their contraction has
on the resulting graph. We say that an edge issimple if it is not a part of a separating triangle. Edges that
are part of separating triangles we callnon-simple. Let G′ be the graph obtained fromG by removing
all non-simple edges. We refer toG′ as thesimple skeleton or just theskeleton of G. Non-simple edges
present problems when contracted, so we will be contracting only simple edges, for their contraction
can be continuously animated while preserving planarity using straight lines. Moreover, eliminating the
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Fig. 4. Triangle�uvx in part (a) is separating triangle. Contrast that with the non-separating triangle�uvy in part (b). Note
that although�uvy is not a separating triangle, edge(u, v) belongs to a separating triangle.

parallel edges after contracting a simple edge in a maximally planar graph results in a maximally planar
graph, as the following lemma shows:

Lemma 1. Contracting a simple edge in a maximally planar graph results in a maximally planar graph.

Proof. Supposee = (u, v) does not belong to any separating triangle. Since every edge is a part of two
triangles,u andv have at least two neighbors in common. Suppose there are three or more neighbors in
common. Thene is a part of three or more triangles. One of those triangles must be a separating triangle.
Henceu andv have exactly two neighbors in common.

We also need to show that after the contraction ofe the remaining graph is still fully triangulated. Let
x andy be the two neighbors ofu andv; see Fig. 2. When we contracte we replace the pair of vertices
(u, v) with a new nodew. In the process we remove edges(u, x), (u, y), (v, x), (v, y), (u, v) and replace
them with edges(w, x), (w, y). Since contracting an edge in a planar graph results in a planar graph,
we know that the new graph is still planar. Also, if the original graph hadn vertices and 3n− 6 edges,
the new graph hasn− 1 vertices and 3n− 6− 5+ 2= 3(n− 1)− 6 edges. Thus the resulting graph is
maximally planar.

Note that a similar claim was stated in [16, Lemma 4.1].✷
We showed that contracting a simple edge in a maximally planar graph results in a maximally planar

graph. This property is not true for non-simple edges. Suppose we were to contract edge(u, v) in Fig. 5
and replace it with a new nodew. The resulting graph has more than one different embeddings. Note that
the difference in the graphs on Fig. 5 (b) and (c) is not just in the selection of the outer face: the order of
the neighboring vertices around verticesx andw is different.

We first show that if�uvw is a separating triangle inG then there exist two disjoint paths betweenu

andv in the skeletonG′ of G. Next we show thatG′ is biconnected.

Lemma 2. Let G and G′ be a maximally planar graph and its skeleton. If �uvw is a separating triangle
in G, then there exist two disjoint paths between u and v in G′ using only vertices from inside the triangle
�uvw for one and outside the triangle for the other.
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Fig. 5. The graph in part (a) contains a separating triangle�uvx. If we contract edge(u, v) and replace it with a nodew we
can get combinatorially different graphs, depending on where we placew. For example, the order of the neighboring vertices
around vertexx in (b) and in (c) is different.

Fig. 6. If �uvw is a separating triangle then there exist two disjoint pathspi andpo connectingu andv. (b) If |Vi | = 1 then
pi = uxv for some vertexx ∈ Vi . (c) If |Vi |> 1 thenpi is made of two pathsp1 andp2.

Proof. Let �uvw be a separating triangle inG. Every separating triangle divides the vertices of
G into two classes,Vi (vertices inside the triangle) andVo (vertices outside the triangle), such that
Vi ∪ Vo ∪ {u, v,w} = V (G) andVi ∩ Vo = ∅. We claim that there exist pathspi andpo in G′ which
connectu andv such thatpi uses only vertices inVi andpo uses only vertices inVo; see Fig. 6(a). We
first prove the existence ofpi by induction on the number of vertices inVi. Note that since�uvw is a
separating triangle, we have|Vi|� 1. Assume that|Vi| = 1. ThenVi = {x}, for some vertexx, and since
G is fully triangulated, edges(x, u), (x, v) exist and are simple which implies that they belong toG′.
Thenpi = uxv; see Fig. 6(b).

Suppose the claim holds for|Vi|� k and consider the case|Vi| = k+1. Letx be the first vertex before
v in the counterclockwise order aroundu. If (u, x) and(x, v) are simple edges thenpi = uxv. The other
possibility is that one or both are non-simple. If(u, x) is a non-simple edge then it is a part of a separating
triangle. Lety be the third vertex of a separating triangle which usesu andx; see Fig. 6(c).

We claim thaty /∈ Vo. Otherwise the edge(x, y) must cross one of the edges of�uvw which is a
contradiction to planarity. Thus,x andy do not belong toVo. Consider�uxy. Since it is inside�uvw

and does not containv it contains at mostk vertices. Then the inductive hypothesis applies and there
exists a pathp1 which connectsu andx and uses only vertices inVi .

If (x, v) is a simple edge, then the pathp1 together with edge(x, v) is the pathp1 we are looking for.
Otherwise(x, v) is a non-simple edge. We just showed that if(u, x) is a non-simple edge, there exists a
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pathpi which connectsu to x using only simple edges with endpoints inVi . By a similar argument, if
(v, x) is a non-simple edge, there exists a pathp2 which connectsx to v using only simple edges with
endpoints inVi. Then the two pathsp1 andp2 form the pathpi from u to v of only simple edges with
endpoints inVi .

The above argument shows that there exits a pathpi which connectsu andv using only simple edges
with endpoints inVi . A similar argument shows that there exists pathpo which connectsu andv using
only simple edges with endpoints inVo. ✷
Lemma 3. If G is a maximally planar graph and G′ is its skeleton, then G′ is biconnected.

Proof. Let us first prove thatG′ is connected. SinceG is fully triangulated, there exists a path between
any two verticesu andv. Let p be one such path. It is possible that some of the edges along that path
were non-simple and so the same path does not necessarily exist inG′. However, for any non-simple
edge(xi, xi+1) along that path we can find a pathpi which uses only simple edges (from Lemma 2). We
can replace all non-simple edges with paths of simple edges to get a path inG′ which connectsu andv.

Suppose thatG′ is not biconnected. Since we know thatG′ is connected, if it is not biconnected
there must exist a cut vertexv (a vertex whose removal disconnectsG′). Sincev is a cut vertex, in the
counterclockwise traversal aboutv, there must exist two neighboring verticesu andw which are not
connected inG′ − v. Since(u,w) is therefore a non-simple edge inG, from Lemma 2, we know that
there exist two disjoint paths betweenu andw in G′. At least one of these paths cannot usev. Therefore,
there must exist a path fromu to w in G′ − v′. Sinceu andw are not connected inG′ − v, we have a
contradiction, andG′ must be biconnected.✷

The next two corollaries follow trivially from Lemma 3.

Corollary 1. Let G be a maximally planar graph and G′ be the graph obtained from G by removing all
the non-simple edges. For every vertex v ∈G′, we have dG′(v) � 2, where dG′(v) is the degree of v in G′.

Corollary 2. If a vertex v is a part of a separating triangle �vab in a maximally planar graph G, then
there exist at least two simple edges (v, xi) and (v, yj ) adjacent to it, such that xi ∈ Vi and yj ∈ Vo,
where Vi and Vo are the inside and outside vertices of G with respect to �uab.

3. Finding a simple matching in a maximally planar graph

In this section we show that any maximal matching that uses only simple edges contains a constant
fraction of all the edges inG, providedG is maximally planar. Next we show how to find a matching that
can be used to contract the graph so that the resulting graph is maximally planar. Furthermore, if the size
of that matching is O(n), then after repeating this process O(logn) times we are left with only a constant
number of vertices. Thus, we need to show that we can construct a maximal matching with O(n) edges
such that their contraction results in a maximally planar graph.

LetG′ be the skeleton ofG. Recall that we constructG′ from G by removing all the non-simple edges.
We start by showing that any maximal matching inG′ contains at leastn/12 edges. To prove this claim
we construct a maximal matching inG′ and consider faces of different lengths. Recall that the length of
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Fig. 7. Let�uab be a separating triangle, (a) Ifa andb are on opposite sides with respect to�uvw there must be an edge
crossing. (b) Ifa andb are on the same side, then there exists a third simple edge incident tou.

a face refers to the number of vertices on that face. We break the faces ofG′ into three classes,A, B,
C, which contain faces of length 3, faces of length 4, and faces of length 5 or more, respectively. We
then count the number of unmatched vertices in faces of the different classes. Finally, when we factor in
over-counting we show that any maximal matching must contain at leastn/12 edges.

Lemma 4. Let G and G′ be a maximally planar graph and its skeleton. If fi is a face of length 3 (fi ∈A),
then there is at most one unmatched vertex in fi and this vertex has degree at least 3.

Proof. LetM be the set of vertices that are incident to a matching edge in an arbitrary maximal matching
of G′. We first show that there can be at most one unmatched vertex in a triangular face ofG′. Consider
such a triangular face inG′ and suppose there are two or more unmatched verticesu, v on that face. Then
u, v /∈M which implies that edge(u, v) ∈ G′ on that face can be safely added to the matching (recall
that all edges inG′ are simple and if both endpoints are unmatched then it is an eligible candidate for
the matching). Adding edge(u, v) results in a larger matching which contradicts the maximality of the
existing matching. Thus there can be at most one unmatched vertex in a triangular face ofG′.

We now show that the degree of a vertex on a face inA is at least 3. Letu be an unmatched vertex in
a triangular face, defined byu, v, w in G′. We claim thatdG′(u) � 3 in G′. Clearly, the degree ofu is at
least 2 (from Corollary 1). SupposedG′(u) = 2. We know thatdG(u) � 3 sinceG is fully triangulated.
Thenu participates in at least one separating triangle inG. There exist at least two vertices,a andb, such
that�uab is a separating triangle inG.

Note thata andb must be on the same side of the triangle, since otherwise edge(a, b) would cross
one of the edges of�uvw; see Fig. 7. SinceG′ is connected, it is not possible that bothVi andVo

are non-empty (otherwise�uvw is a separating triangle). Without loss of generality, letVi = ∅. Then
a, b ∈ Vo and there must exist a simple edge adjacent tou and inside�uab (from Corollary 2). Thus
dG′(u) � 3. ✷
Lemma 5. Let G and G′ be a maximally planar graph and its skeleton. If fi is a face of length 4 or more
(fi ∈ B or fi ∈ C), then there exist at most l(fi)/2 unmatched vertices in fi .

Proof. Consider a maximal matching inG′ and a face of length more than 3 inG′. Suppose there are
more thanl(fi)/2 unmatched vertices on that face. SinceG′ is biconnected, at least two of them must
be adjacent. The edge that connects them is simple, so by adding the edge to the maximal matching its
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Fig. 8. Graphs in the classH consist ofn− 2 nested triangles, all of which share one edge.

size is increased by one. This would contradict the maximality of the matching. Thus there are at most
l(f1)/2 unmatched vertices.✷

For the unmatched vertices on faces inA we were able to show that they have degree at least 3 inG′.
This is not necessarily true for the unmatched vertices on faces inB or C. We are able to show, however,
that if a pair of unmatched vertices on a face inB have degrees 2 in the skeleton thenG belongs to
a special class of graphsH. The class of nested trianglesH is defined as the class of maximally planar
graphs in which there exist two adjacent vertices,u, v such that every other vertex in the graph is adjacent
to bothu andv; see Fig. 8. IfG /∈H then for any facefi ∈ B, at most one vertex on that face has degree 2.

Lemma 6. If H is a maximally planar graph in the class H, then any maximal matching that uses only
simple edges contains n/12 or more edges.

Proof. Let H be a graph in theH class such that the vertices ofH areV (H) = u, v, x1, x2, . . . , xn−2

and the edges ofH are E(H) = (u, v) ∪ E1 ∪ E2, whereE1 = {(u, xi), (v, xi), for 1 � i � n − 2}
andE2 = {(xi−1, xi), for 1 < i � n − 2}. Let the counterclockwise order of the vertices aroundv be
u, x1, x2, . . . , xn−2; see Fig. 8.

Let H ′ be the graph obtained fromH by removing all non-simple edges. ThenE(H ′) =
{(u, x1), (u, xn−2), (v, x1), (v, xn−2), (xi−1, xi), ∀i: 1 < i � n− 2}. The cycleu, x1, x2, . . . , xn−2, u has
n− 1 edges so any maximal matching must use at least(n− 1)/2 edges. Since(n− 1)/2> n/12 for all
n > 1, this completes the proof of the lemma.✷
Lemma 7. Let G and G′ be a maximally planar graph and its skeleton. If there exists a face of length
four in G′ with more than one vertex of degree 2, then G ∈H.

Proof. Let f be a face of length four inG′ with more than one vertex of degree 2 on that face. Assume
thatG /∈H. Let the four vertices off bea, b, c, d; see Fig. 9. SinceG is fully triangulated, there exists
an edge connecting two opposite vertices. Without loss of generality, letb andd be connected with an
edge inG. But the edge(b, d) is not inG′ so it must be on a separating triangle inG. Then there exists a
vertexu such that�bdu is a separating triangle inG. Since the edges(a, b) and(b, c) are inG′, vertex
u cannot bea or c.
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Fig. 9. A 4-cycle inG′ defined by verticesa, b, c, d. If both verticesb andd are of degree 2, thenG ∈H.

Let us now consider the possible vertices of degree 2 inf . AssumedG′(a) = 2. SinceG is fully
triangulated,dG(a) � 3. SinceG′ is connected anda, b, c, d is a face inG′, there cannot be any non-
simple edges in the counterclockwise order betweend and b in G. If a has degree 2 inG′ then one
incident edge ofa is not simple, hence there must exist a separating triangle which usesa outside of
�abd. But this implies that there exists at least one more simple edge witha as one of its endpoints
(from Corollary 2). Hence,dG′(a) � 3, which is a contradiction.

Similarly, we can show thatdG′(c) � 3. Since there are at least two vertices of degree two onf , it
must be thatdG′(b) = 2 anddG′(d) = 2. Let x be any neighbor ofd other thana, b, c, d, u. Since
dG′(d) = 2, (d, x) /∈ E(G′). Therefore,(d, x) is an edge of a separating triangle�dxy. Consider the
different possibilities fory:

(a) Assumey = a then(a, d) must be a non-simple edge. But(a, d) ∈G′, and soy �= a; see Fig. 9(a).
(b) Assumey = c then(c, d) must be a non-simple edge. But(c, d) ∈G′, and soy �= c; see Fig. 9(b).
(c) Assumey = u. Then eitheru follows x in the clockwise order aroundd or the other way around;

see Fig. 9(c). Without loss of generality, letu follow x. From Corollary 2 there must exist a simple
edge(d, z) between(d, u) and(d, x) in the counterclockwise order of the edges aroundd. But then
dG′(d) � 3, which is a contradiction. Thusy �= u.

(d) Assumey /∈ {a, b, c, d, u, x}. Similar to the previous case, there exists a separating triangle�dxy

such thata andc are on the same side of�dxy; see Fig. 9(d). Then there is at least one more simple
edge(d, z) wherez /∈ {a, b, c, d, u, x, y} implying thatdG′(d) � 3, which is a contradiction.

The only possibility left isy = b, which implies that every neighbor ofd is also a neighbor ofb.
A similar argument shows that every neighbor ofb must be a neighbor ofd.

SinceG /∈H, there must exist at least one vertexv which is not a neighbor ofb or d. In particular,
sinceG is connected, let us look at the vertex closest tod or b in G which is not a neighbor ofb or d.
Without loss of generality letv be closer tob. Let p be the shortest path fromb to v. Sinceb is not a
neighbor ofv, the path has at least three vertices. In fact, sincev is the closest non-neighbor tob or d, p
has exactly three vertices,b, u, v, whereu is some neighbor ofb andv. Recall that from the arguments
aboveu must also be a neighbor ofd. In the traversal aboutu from b to v to d, there may be multiple
vertices. Since the path lengths are equivalent, without loss of generality letv be the vertex closest tod
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in the traversal. SinceG is fully triangulated,v must also be a neighbor ofd and hence a neighbor ofb.
However, this contradicts our choice ofv. Therefore,G must be inH. ✷

We have shown that ifG′ has a face of length four with more than two vertices of degree 2, thenG ∈H
and hence any maximal matching inG′ contains at leastn/12 edges (from Lemma 6). Finally we show
that the same result holds for all maximally planar graphs.

Theorem 1. Let G be a maximally planar graph and let M be the set of matched vertices in a maximal
matching which uses only simple edges. Then |M|� n/6, where n is the number of vertices of G.

Proof. If G ∈H, from Lemma 6 we know that the theorem holds. Then supposeG /∈H. Let M andU

be the set of matched and unmatched vertices, respectively, in any maximal matching inG′. In order to
count the number of matched edges inG, we will count the number of unmatched vertices. Let us define
a function

u(v)=
{

1 if v /∈M (v is unmatched),
0 otherwise.

Note that
∑

v∈Gu(v) = |U | = n− |M|. We are going to count the number of unmatched vertices in
each face, so we want to make sure we know how much we over-count. With this in mind, letui(v)=
u(v)/d(v) if v is on a facefi . Then

∑
fi∈F ui(v) = u(v) andu(fi) =∑

v∈fi
ui(v) =∑

v∈fi
u(v)/d(v).

Recall thatA, B, C are the sets of faces of length 3, 4 and 5 or more inG′, respectively. Then

|U | =
∑
v∈V

u(v)=
∑
fi∈F

u(fi)=
∑
fi∈A

u(fi)+
∑
fi∈B

u(fi)+
∑
fi∈C

u(fi).

Next we look at each of the three classes of faces:

(a) Consider the faces of length 3 inG′. Recall from Lemma 4 that iffi ∈ A then there is at most one
unmatched vertex infi and it has degree at least 3. Hence,

∑
fi∈A

u(fi) � |A|/3.

(b) Consider the faces of length 4 inG′. Recall we assumed thatG /∈H, and then any face inB has
at most one vertex of degree 2, and there are no more than 2 unmatched vertices per face (from
Lemma 7). It is possible then to have one of the unmatched vertices of degree 2 but if there is a
second unmatched vertex it has degree at least 3. Then

∑
fi∈B

u(fi) � (1/2+ 1/3)|B| = 5|B|/6.

(c) Finally, consider the faces of length 5 or more inG′. From Lemma 5 we know that iffi ∈ C, then
there are at mostl(fi)/2 unmatched vertices infi . Putting this together with the fact that every vertex
in every face ofG′ has degree at least 2 gives us that

∑
fi∈C

u(fi) �
∑
fi∈C

l(fi)

4
.
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Fig. 10. Consider a graphG, with its simple and non-simple edges drawn with thin and thick lines, respectively. SinceG′ has
no faces of length 3,|A| = 0. G′ has one face of length 4, defined by verticesa, c, b, f and hence|B| = 1. G′ has two faces
of length 5 or more, defined by verticesa, c, d, e, f andb, c, d, e, f , respectively, hence|C| = 2. G has six faces of length 3
which end up as part of faces of length 5 or more inG′. These are defined by the triangles�af e, �aed, �adc, �bef , �bde,
�bcd. Hence|D| = 6.

We next calculate
∑

fi∈C
l(fi)

4 . Let D be the set of faces inG which end up as a part of a face of
length 5 or more inG′. From Euler’s formula forG, we have|A| +2|B| + |D| = 2n−4, since every
face of length 4 inG′ (recall thatB is the set of faces of length 4 inG′) corresponds to exactly two
faces inG. We can then expressD in terms ofA, B,

|D| = 2n− 4− |A| − 2|B|. (1)

SetsA, B, C, D are illustrated with an example in Fig. 10.
Consider a facefi of lengthl(fi) � 3. There are exactlyl(fi)−2 triangular faces inG which merged
to formfi . Then

|D| =
∑
fi∈C

(
l(fi)− 2

)=
∑
fi∈C

l(fi)− 2|C|.

From the last equation we can express the sum of the lengths in terms ofC, D:
∑

fi∈C l(fi) =
|D|+2|C|. Putting the last two results together we get that

∑
fi∈C l(fi)= 2n−4−|A|−2|B|+2|C|

and we obtain the bound
∑
fi∈C

u(fi) � n

2
− 1− |A|

4
− |B|

2
+ |C|

2
.

Combining the results from parts (a), (b), (c) we get

|U |� |A|
3
+ 5|B|

6
+ n

2
− |A|

4
− |B|

2
+ |C|

2
− 1= n

2
− 1+ |A|

12
− |B|

3
+ |C|

2
. (2)

We need one more observation before we conclude the proof. It is easy to see that|D|� 3|C|, since
every face inC corresponds to at least 3 faces inG. Using this observation, together with Eq. (1)
gives us a bound on the size of|C| in terms of the number of faces inA and inB: |C| � |D|/3=
(2n− |A| − 2|B| − 4)/3. Substituting forC in (2) we obtain

|U |� n

2
+ |A|

12
+ |B|

3
+ 2n− |A| − 2|B| − 4

6
− 1= 5n

6
− |A|

12
− 5

3
� 5n

6
.

Since|U |� 5n/6, |M|� n/6, which concludes the proof of the theorem.✷
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4. Algorithm and analysis

Before we can consider a particular embedding we must show how to obtain all the graphs in the
hierarchy,G0,G1, . . . ,Gk . Recall thatG0 = G is a fully triangulated planar graph onn vertices. To
constructGi+1 from Gi we find a matchingEi of Gi and perform the graph contraction using the edges
in Ei . We repeat this process untilGi+1 is a singleton graph; see Fig. 11.

SetEi for 0 � i < k contains a maximal matching on the edges ofGi with some added constraints. It is
important that after the contraction of the edges inEi the resulting graphGi+1 remains fully triangulated.
In order to preserve the mental map, the three locality conditions must be maintained. Finally, in order
to maintain a small hierarchical height,|Ei| must be a constant fraction of the edges inGi . Thus, the
constraints that we have onEi are as follows:

(1) Ei is a matching of simple edges.
(2) After the contraction of all the edges inEi , subject to the locality conditions, the resulting graph

Gi+1 is maximally planar.
(3) |Ei |� |V (Gi)|/c, for some constantc > 1.

Note that condition (1) does not imply condition (2); see Fig. 12. Before we proceed we show how to
produce a setEi which satisfies the above three conditions. Suppose we have graphGi and we want to
create setEi so that when all the edges inEi are contracted, we getGi+1. We will contract simple edges
of Gi one at a time. When an edge(u, v) is contracted, it is replaced by a vertexw. The next time an
edge is contracted, it cannot havew as an endpoint. LetWi be the set of vertices that were created as a
result of contractions in phasei. The edges that we place inEi must be a matching, and so when a new

create_hierarchy(G)

i← 0
Gi←G

while |Vi(Gi)|> 3
Gi+1← match(Gi ,Ei)

i← i + 1

Fig. 11. Creating the hierarchy of graphsG0,G1, . . . ,Gk .

Fig. 12. Edges(u, v) and (x, y) in part (a) are both simple, do not share an endpoint, and can be contracted as a part of a
matching. After(u, v) is contracted tow in part (b), edge(x, y) becomes a part of a separating triangle and so it should not be
contracted.
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match(Gi ,Ei)

j← 0
Gi,j ←Gi

Wi←∅
while (Si �= ∅)

Let uj ∈ Si
Si← Si \ {uj }
if ∃(uj , vj ) ∈Gi,j , s.t.vj /∈Wi and(uj , vj ) is simple

Ei←Ei ∪ {(uj , vj )}
Contract(uj , vj ) to wj to getGi,j+1
Wi←Wi ∪ {wj }
j← j + 1

return(Gi,j−1)

Fig. 13. CreateGi+1 from Gi by contracting a sequence of edges inEi .

edge is considered for contraction, it cannot have an endpoint inWi . Finally, letSi be the set of vertices
of Gi of small degrees. More precisely, letSi = {v ∈ V (Gi): dGi

(v) < 39}.
In general,Gi is transformed intoGi+1 one edge contraction at a time using the edges inEi in the

order they were chosen. We select edges for contraction by first finding a vertexuj of Gi with small
degree (vertices of small degree are members of the setSi). We look for a simple edge(uj , vj ), such
thatvj is not a vertex obtained from a contraction in the previous phase(vj /∈Wi). Call the intermediate
graphs fromGi to Gi+1, Gi =Gi,0,Gi,1, . . . ,Gi,j =Gi+1, and consider the algorithm on Fig. 13.

Lemma 8. Let |V (Gi)| = ni . Then |Ei |� ni/50.

Proof. For Gi with more than 3 vertices,|Ei |� 1. Then consider the sequence of intermediate graphs
Gi,0,Gi,1, . . . ,Gi,j and letGi,j have no more edges that could be added toEi . Observe that we have
contracted exactlyj edges ofGi and so|V (Gi,j )| = ni − j . Then from Theorem 1 there are(ni − j)/12
edges in any maximal matching ofGi,j which uses only simple edges. Consider such a matchingM .
Recall thatWi is the set of vertices created as a result of edge contractions in phasei. We are not allowed
to add toM vertices fromWi . But sinceWi = j , at mostj of the edges with matched endpoints inM

can have endpoints inWi . Also note that if both endpoints of a simple edge in the matching have degrees
greater than or equal to 39 inGi they cannot be added toM . If there exist at mostk vertices of degree
greater than or equal to 39, then there are at mostk/2 such edges. It is easy to show thatk < ni/12:
Suppose there arek vertices of degrees 39 or more inGi . SinceGi is fully triangulated, every vertex has
degree at least 3 and sinceGi is maximally planar, the sum of the degrees is twice the sum of the edges.
Then 39k + 3(ni − k) � 6ni − 12. From this we get thatk < ni/12.

We stopped selecting good edges fromGi when we got to graphGi,j in which we could not find
a simple edge to contract. The only other types of edges that might be available inGi,j but which we
cannot take are those that were at some point non-simple, but later became simple. Also, there can be at
mostj such edges. Then(ni− j)/12−2j −ni/24� 0 which impliesj � ni/50. Thus, if we cannot find
another edge to add to the matching, we must have|Ei | = j � ni/50 which completes the proof.✷
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We next argue that one call tomatch(Gi,Ei) takes O(ni logni) time, and sinceni+1 is a constant
fraction ofni , the O(logn) calls tomatch(Gi,Ei) take O(n logn) time overall thus yielding the desired
theorem:

Theorem 2. The clustering algorithm runs in O(n logn) time and produces a sequence of graphs
G0,G1, . . . ,Gk such that Gi is maximally planar for all 0� i � k and k =O(logn).

Proof. Let us consider a graphGi , 0� i < k in the hierarchical decomposition. From Lemma 8 above
we have|Ei |> ni/50, whereni = |V (Gi)|. Then|V (Gi+1)| � 49ni/50, that is, the number of vertices
of Gi+1 is a constant fraction of the vertices ofGi .

Recall thatGi is a maximally planar graph and the call tomatch(Gi,Ei) completes when we have
contractedGi toGi+1 by constructing the intermediate graphsGi =Gi,0,Gi,1, . . . ,Gi,j =Gi+1. Assume
that the vertices ofV are uniquely labeled. Assume that the graph is maintained as an adjacency list
(an adjacency matrix will give us better running time but O(n2) space complexity). For every vertex
v ∈ V (Gi) we have a list of its neighbors in counterclockwise order. We can trivially sort these lists
according to the labels of the neighbors in O(ni logni) time.

Recall from the algorithm in Fig. 13 that we examine only vertices of small degree inGi (Si is the
set of such small degree vertices inGi ), and once a vertex is processed, it is not considered again in this
call tomatch. Thus we perform O(ni) vertex examinations. Consider an intermediate graphGi,l where
0 � l < j . For every vertexul ∈ Si we are looking for an adjacent edge(ul, v) in Gi,l such thatv /∈Wi

and(ul, v) is simple. To find out ifv belongs toWi takes O(logni) time, provided we maintain the set
Wi sorted. To determine whether(ul, v) is simple we need to check the number of common neighbors of
ul andv. Recall that iful andv have exactly two neighbors in common, then(ul, v) is simple; otherwise
it is non-simple. Sinceul ∈ Si , we havedGi,l

(ul) � dGi
(ul) < 39. Then we can check in O(logni) time if

a neighbor oful is also a neighbor ofv using binary search in the list of sorted neighbors ofv). There is a
constant number of neighbors oful , so to check all still takes O(logni) time. Thus processing one vertex
of Si takes O(logni) time. Since|Si|< ni , it takes O(ni logni) time to process the whole setSi . ✷

5. Constructing the embedding

After we obtain the combinatorial graphsG0,G1, . . . ,Gk we have to embed them in planesz = 0,
z = 1, . . . , z = k. While constructing the combinatorial graphs is a bottom up process, constructing the
embedding is a top-down one. The first graph to be embedded isGk , which only has one vertex. We then
expand the edges inEk−1 one at a time, in the reverse order of their insertion. We then argue that this can
be done in a way which guarantees that no crossings are introduced. We need the following lemma.

Lemma 9. Let G be a maximally planar graph embedded in the plane without crossings. For any
v ∈ V (G), there exists a ball of radius ε > 0 such that if v is placed anywhere inside that ball, the
embedding has no crossings.

Proof. The main idea is to consider the visibility region around vertexv. Any point inside that region
can “see” all the neighbors ofv. It is not hard to show that this region cannot be empty. This would imply
the existence ofε > 0 for which the ball of sizeε fits inside the visibility region. ✷
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Fig. 14. Vertexwl and its neighbors inGi,l+1 (a) before expansion, (b) after expansion.

Theorem 3. Given combinatorial representations of graphs Gk,Gk−1, . . . ,G0 we can embed them in the
planes z= k, z= k − 1, . . . , z= 0 so that there are no crossings in any of the drawings.

Proof. We first embedGk in the planez= k without crossings using any straight-line drawing method.
Suppose we have embeddedGk,Gk−1, . . . ,Gi . We will show how to embedGi−1 given an embedding
for Gi . Recall that we obtainedGi from Gi−1 through a series of edge contractions from the edge set
Ei−1 = {(u0, v0), (u1, v1), . . . (uj , vj )} which produced graphsGi−1,0,Gi−1,1, . . . ,Gi−1,j =Gi . We now
reverse the process and expandGi back toGi−1 through the exact opposite sequence of expansions.
Since we have an embedding forGi in the planez= i, we can embedGi−1,j in the planez= i−1. Next
we expand edge(uj , vj ) by replacing vertexwj by the pairuj , vj . The resulting graph isGi,j−1 and we
embed it without a crossing. We proceed until we get toGi,0. We next show how to embedGi,l given an
embedding forGi,l+1, for 0� l < j .

Assume we have a straight-line embedding forGi,l+1 without crossings on the planez= i. To getGi,l

we must expand vertexwl back to edge(ul, vl). Consider the subgraph on Fig. 14. Letx andy be the
neighbors in common forul andvl. We then consider the ball of maximal radius aroundwl which sees
all neighbors (we know it is of radiusε > 0 from Lemma 9). Consider a diagonal in this ball which is
perpendicular to the line connectingx andy. Placeul andvl on the two ends of the diagonal.✷

We define thedrawing of a clustered graph C = (G,T ) as in [5]. GraphG is drawn as usual, while
for every nodev ∈ T the cluster is drawn as a simple closed regionR such that:

• All sub-cluster regions ofR are completely contained in the interior ofR.
• All other cluster regions are completely contained in the exterior ofR.
• If there is an edgee between two vertices contained in a clusterν, then the drawing ofe is completely

contained inR.

Following the definitions of Eades et al. the drawing of edgee and regionR have anedge crossing if
the drawing ofe crosses the boundary ofR more than once. A drawing of a clustered graph isc-planar
if there are no edge crossings or edge-region crossings. Graphs with c-planar drawings are c-planar.

Theorem 4. The clustered graph C = (G,T ) produced by our algorithm is c-planar and a c-planar
embedding can be obtained in O(n2) time.
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Proof. It suffices to show that there exists a drawing ofC which has no edge crossings and no edge-
region crossings. Let us embedG using any planar embedding algorithm. Define the region of a cluster,
ν to be the simple closed curve around the subgraph ofG induced by the cluster,G(ν). By the definition
of the clustering in our algorithm, the subgraphG(ν) is connected.

If u is a vertex not in clusterν, thenu cannot be contained inside the regionR. Assume thatu is
contained inR. If we contract the edges ofν in the order defined by our algorithm, eventuallyu will be
inside a triangular face. But then none of the edges on that face can be contracted. This is a contradiction
sinceν is eventually contracted to one vertex.

Finally, sinceG is embedded in the plane without crossings and the regions are connected there can
be neither edge crossings nor edge-region crossings. ThereforeC is c-planar and from [5] it follows that
the c-planar embedding can be produced in O(n2) time. ✷

6. Conclusion and open problems

We have shown how to decompose a large planar graphG into a hierarchy of graphsG0,G1, . . . ,Gk

such that:

• The height of the hierarchy is O(logn).
• GraphGi , 0� i � k, is embedded in the planez= i with straight lines and no crossings.
• The transition fromGi to Gi+1 preserves the mental map.
• The running time of the algorithm is O(n logn).

Several open problems remain. In Theorem 3 we show that each of the graphsGi is embedded in the
plane with straight lines and no crossings. However, we have not obtained lower or upper bounds on the
area necessary for each of the drawings.

Recall that we create a drawing for the original graphG=G0 in a top-down fashion, by first drawing
Gk,Gk−1, . . . ,G1 and thenG0. A natural question is whether we can achieve similar results in a bottom-
up fashion. That is, if we are given a drawing of a planar graph, what conditions are needed so that we
can create a hierarchy of graphs which has the above four properties.
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