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Three-Dimensional Layers of Maxima1

Adam L. Buchsbaum2 and Michael T. Goodrich3

Abstract. We present an O(n log n)-time algorithm to solve the three-dimensional layers-of-maxima prob-
lem. This is an improvement over the prior O(n log n log log n)-time solution. A previous claimed O(n log n)-
time solution due to Atallah et al. [2] has technical flaws. Our algorithm is based on a common framework
underlying previous work, but to implement it we devise a new data structure to solve a special case of dynamic
planar point location in a staircase subdivision. Our data structure itself relies on a new extension to dynamic
fractional cascading that allows vertices of high degree in the control graph.
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1. Introduction. A point p ∈ �d dominates another point q ∈ �d if each coordinate
of p exceeds that of q . Given a set S of n points in �d , the maximum points are those
that are not dominated by any point in S. The maxima set problem, of finding all the
maximum points in S, is a classic problem in computational geometry, dating back to
the early days of the discipline [11]. Interestingly, the algorithm presented in the original
paper by Kung et al. [11] is still the most efficient known method for solving this problem;
it runs in O(n log n) time when d = 2 or 3 and O(n logd−2 n) time when d ≥ 4. This
problem has subsequently been studied in many other contexts, including solutions for
parallel computation models [9], for point sets subject to insertions and deletions [10],
and for moving points [7].

The layers-of-maxima problem iterates this discovery: after finding the maximum
points, remove them from S and find the maximum points in the remaining set, iterating
until S becomes empty. The iteration index in which a point is a maximum is defined to
be its layer. More formally, for p ∈ S, layer(p) = 1 if p is a maximum point; otherwise,
layer(p) = 1+max{layer(q) : q dominates p}. The layers-of-maxima problem, which
is related to the convex layers problem [4], is to determine layer(p) for each p ∈ S,
given S.

With some effort [1], the three-dimensional layers-of-maxima problem can be solved
in time O(n log n log log n) using techniques from dynamic fractional cascading [13].
We sketch this result in Section 2. Atallah et al. [2] claim an O(n log n)-time algorithm,
but their presentation appears to have several problems. A simple, linear-time reduction
from sorting gives an �(n log n)-time lower bound in the comparison model.
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In this paper we give an O(n log n)-time, O(n log n/log log n)-space algorithm for the
three-dimensional layers-of-maxima problem. Before we present our algorithm, how-
ever, we briefly outline how it relates to the prior algorithm claimed to run in O(n log n)
time [2].

1.1. Relation to the Prior Claim. The previous algorithm [2] was based on the use of
two new data structures. The first was a dynamic extension of the point-location structure
of Preparata [14] to work in the context of staircase subdivisions, and the second was
an extension of the biased search tree data structure of Bent et al. [3] to support finger
searches and updates. The second structure was used as an auxiliary structure in the first,
and both were analyzed by detailed case analyses. Unfortunately, there are crucial cases
omitted in the original analyses of both of these structures, and filling in the details for
these omitted cases appears to require increasing the running time to negate the claimed
time bound of O(n log n) for the three-dimensional layers-of-maxima problem.

Our solution to the three-dimensional layers-of-maxima problem is also based on
a dynamic data structure for staircase subdivisions. However, our structure is not an
extension of Preparata’s point-location approach, nor is it based on any biased data
structures. Instead, our data structure exploits a new extension of dynamic fractional
cascading, which may be of independent interest.

We sketch the basic approach for our algorithm in Section 2, which follows the
space-sweeping framework that provided the basis for prior work [1], [2]. In Section
3 we present our new data structure to solve a special case of dynamic planar point
location in a staircase subdivision, which is the key to the basic algorithm. In Section 4
we present an extension of dynamic fractional cascading that allows our data structure to
achieve O(log n) amortized time per point in S, yielding an O(n log n)-time algorithm
for three-dimensional layers of maxima.

2. A Three-Dimensional Sweep Framework. Assume S ⊂ �3. We use a three-
dimensional sweep algorithm to solve the layers-of-maxima problem on S. Denote by
z(p) the z-coordinate of point p. Similarly define x(p) and y(p). Define Si (�) = {p ∈
S : z(p) > i ∧ layer(p) = �}; S−∞(·) thus partitions S by layer, and the problem is to
compute this partition. We process the points in S in order by decreasing z-coordinate,
breaking ties arbitrarily.

INVARIANT 2.1. When processing a point with z-coordinate i , points in
⋃
� Si (�) are

correctly labeled with their layers.

For each layer, we maintain a subset of the points so far assigned to that layer. Define
the dominance region, D(p), of a point p to be the set of all points in�d that are dominated
by p; for a set X of points, D(X) = ⋃p∈X D(p). For a point p ∈ �3, let π(p) be the
projection of p onto the (x, y) plane; for a set X of points, π(X) =⋃p∈X {π(p)}.

In two dimensions the dominance region of a set of points is bounded by a staircase,
which can be identified with its extremal points; see Figure 1(a). Denote by Mi (�) the
extremal points of D(π(Si (�))). That is, of the points so far assigned to each layer �,
Mi (�) is the set of extremal points of the staircase induced by the dominance region of
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Fig. 1. In this and succeeding pictures, the x-dimension increases left-to-right, and the y-dimension increases
bottom-to-top. (a) A set of points in the plane and the staircase bounding their dominance region. Extremal
points are shown filled. (b) A staircase subdivision of the plane. Staircases are labeled by their corresponding
layers.

their two-dimensional projections. We maintain Mi (�) for each layer � so far assigned a
point, thereby dividing the two-dimensional plane into staircase regions; see Figure 1(b).
We identify layers with their staircases.

Assume Invariant 2.1 is true before the first point with z-coordinate i is processed. We
process the points Pi = {p ∈ S : z(p) = i} as follows. First, we calculate layer(p) for
each p ∈ Pi . To do so, we identify where π(p) lies in the staircase subdivision defined
by Mi (·):
1. If π(p) lies on or above staircase 1, then assign layer(p) = 1.
2. Otherwise, if π(p) lies below the highest-numbered staircase, say s, then p is the

first point assigned to layer(p) = s + 1.
3. Otherwise, π(p) lies between two staircases, � and �+ 1, possibly lying on staircase
�+ 1; in this case, assign layer(p) = �+ 1.

(See Figure 2(a).) Assume Mi (·) is correctly maintained. In the first case no previously
processed point dominates p; in the other two cases, p is dominated by at least one
point in layer(p)− 1, and p is not dominated by any point in layer layer(p) or higher.
Finally, no point q processed after p dominates p, because for each such q we know that
z(q) ≤ z(p). Thus, the layer assignment maintains Invariant 2.1. We need only show
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Fig. 2. (a) New points a, b, c, and d are assigned layers: layer(a) = 1; layer(b) = layer(c) = 3; layer(d) = 5.
(b) Dotted lines show how a and b affect their staircases and d affects the plane. (c) After updating the
staircases; c has no effect after b’s insertion into staircase 3.
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how to represent Mi (·) to allow testing of whether a point lies on or above some staircase
and how to update Mi (·) to account for the points in Pi .

It suffices to maintain each Mi (�) as a list of points ordered by decreasing y-
coordinate (and hence increasing x-coordinate), including the sentinel points (−∞,∞)
and (∞,−∞). This representation allows easy determination of whether point π(p) lies
on or above the staircase �. Let u, v ∈ Mi (�) such that y(u) > y(p) ≥ y(v).

1. π(p) lies on staircase � if (a) x(p) = x(u) or (b) x(u) < x(p) ≤ x(v) and y(p) =
y(v);

2. otherwise, π(p) lies above staircase � if x(p) > x(u);
3. otherwise, π(p) lies below staircase �.

Having determined layers for all points in Pi , we update Mi (·) as follows. In any
order, consider each p ∈ Pi in turn; let � = layer(p). If π(p) lies on or below staircase
�, no further action for p is necessary; π(p) can lie below staircase � at this point due to
the addition of some other q ∈ Pi that was previously processed into Mi (�). Otherwise,
π(p) still lies above staircase � and so becomes an extremal point defining the new
staircase. In this case remove all points, if any, from Mi (�) that are no longer extremal
staircase points. Then insert π(p) into its proper place in Mi (�). Thus, Mi (·) becomes
Mj (·) for the next z-coordinate j processed by the sweep algorithm.

To find the points in Mi (�) that must be removed by the addition of π(p), find u, v ∈
Mi (�) such that y(u) > y(p) ≥ y(v). If x(p) ≥ x(v), then v is no longer extremal, so
remove it from Mi (�), and iterate at the successor of v in Mi (�). If x(p) < x(v), stop:
v and its successors are still extremal. At the termination of this iteration, insert π(p) as
the successor of u in Mi (�). See Figure 2(b), (c).

2.1. Analysis. Let Q(N ) be the time to determine the layer of a point. Let R(N ) be
the time to determine the points u, v in the corresponding staircase that isolate where a
new point begins to affect extremal points in that staircase. Let I (N ) and D(N ) be the
times to insert and delete (resp.) each extremal point into/from a staircase. Each point
p is the subject of one layer query and engenders at most one staircase transformation,
to the staircase defining the dominance region of layer(p). While the number of points
deleted during this transformation can be large, over the course of the entire procedure
each point is inserted and deleted at most once into/from its layer’s staircase. The total
time is thus O(n(Q(N )+ R(N )+ I (N )+ D(N ))).

If we implement each Mi (�) as a simple ordered list, then Q(n) = O(log2 n): each
query to determine where a point p lies with respect to a staircase takes O(log n) time,
and we use binary search on the staircases to determine layer(p). R(n) = I (n) =
D(n) = O(log n), so the algorithm runs in O(n log2 n) total time and O(n) space.

We can improve the running time to O(n log n log log n) by using van Emde Boas
trees [16] instead of ordered lists, but the space becomes O(n2). We can reduce the
space back to O(n) with the same O(n log n log log n) time bound using dynamic frac-
tional cascading [13]. We omit the details of this implementation. Instead, we devise a
more sophisticated representation for Mi (·), which itself uses an extension of dynamic
fractional cascading, and which reduces the running time to O(n log n) but uses space
O(n log n/log log n).
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Fig. 3. A staircase subdivision with an associated search tree on the y-coordinates. Each of (a) and (b) depicts
a slice (between the dashed lines) corresponding to the circled internal node. (a) Staircase 2 spans the slice,
but staircase 1 does not. (b) Point p stabs staircase 2 in the slice but stabs none of the other staircases in that
slice.

3. Improved Implementation. Since identifying the staircases that determine the
layer of a new point is the time-consuming part in Section 2, we build a data structure
to facilitate that query.

Let T be a search tree on the set of y-coordinates in S, i.e., each leaf an element of
{y(p) : p ∈ S}. T is built a priori and remains unchanged throughout the algorithm. Each
internal node u of T spans a slice of the y-coordinate space defined by the closed range
[min(u),max(u)], where min(u) (resp., max(u)) is the minimum (resp., maximum) y-
coordinate stored at a leaf descendant of u. Staircases pass through these slices; we say
a staircase enters a slice at the top (maximum y-coordinate in the slice) and exits at the
bottom (minimum y-coordinate in the slice). We say a staircase spans a slice if it enters
and exits at different x-coordinates; staircases that simply pass vertically through a slice
do not span that slice. See Figure 3(a). With each internal node u, we store the entry and
exit x-coordinates of the staircases that span u’s slice, associating with each such record
the index of the corresponding staircase.

We say a point p stabs a staircase in a slice if an infinite vertical line drawn through
p stabs a horizontal section of that staircase inside that slice. See Figure 3(b). We show
how by testing a specific set of slices for stabbed staircases, we can identify the layer
assigned to a new point. For some slice u and x-coordinate x let predentry(u)(x) (resp.,
predexit(u)(x)) be the predecessor of x among u’s entry (resp., exit) x-coordinates; let
succexit(u)(x) be the successor of x among u’s exit x-coordinates; and let lab(·) be the
index of the staircase with the corresponding entry/exit coordinates.

FACT 3.1. Point p stabs a staircase in a slice if and only if the entry and exit points of
the staircase fall on opposite sides of x(p).

LEMMA 3.2. Assume p stabs a staircase in some slice u. The highest staircase
stabbed by p in u, i.e., that with the lowest label, is staircase lab(predentry(u)(x(p)));
the lowest staircase stabbed by p in u, i.e., that with the highest label, is staircase
lab(succexit(u)(x(p))).

PROOF. This follows from Fact 3.1 and that staircases do not cross. See Figure 4.
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Fig. 4. A slice in which point p stabs staircases i and i − 1. Because staircases do not cross, it must be that
i − 1 = lab(predentry(u)(x(p))), or else p stabs a staircase higher than i − 1 in the slice. Symmetrically,
i = lab(succexit(u)(x(p))), or else p stabs a staircase lower than i in the slice.

LEMMA 3.3. Point p stabs a staircase in some slice u if and only if

lab(predentry(u)(x(p))) ≤ lab(succexit(u)(x(p))).

PROOF. The forward direction follows from Lemma 3.2. To see the reverse direction,
assume lab(predentry(u)(x(p))) = i ≤ j = lab(succexit(u)(x(p))). Since staircases do
not cross, the entry and exit points of both layers i and j must fall on opposite sides of
x(p); apply Fact 3.1.

Lemma 3.3 implies that we can determine if a point stabs a staircase in a given slice in
the time it takes to query some dictionary data structure. We use this lemma to determine
layer(p) for a new point p as follows (see Figure 5:)

1. Traverse the leaf-to-root path from y(p) in T .
2. Find the nearest ancestor u whose slice contains a staircase stabbed by p. If u = y(p),

stop: p lies on a horizontal segment of a staircase. Otherwise, go to step (3).
3. Determine the nearest child of u whose slice contains a staircase stabbed by p. There

must be some child as such, and it is not an ancestor of y(p). Formally, let c1, . . . , ci

be the children of u in top-down order (such that min(cj ) > max(cj+1)). Let cj be the
child of u that is an ancestor of y(p). Find ca such that p stabs a staircase in slice ca

and either (1) a < j and there exists no b such that a < b < j and p stabs a staircase
in slice cb; or (2) a > j and there exists no b such that a > b > j and p stabs a
staircase in slice cb.

124 3
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u

Fig. 5. The nearest ancestor, u, of leaf y(p) whose slice contains a staircase stabbed by p is circled. The
(one-dimensional) slice at the top child of u contains the stabbed staircase.
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LEMMA 3.4. If the procedure stops in step (2), then layer(p) = lab(predentry(p)
(x(p))). Otherwise, the procedure stops in step (3). In this case if a > j , then layer(p) =
lab(predentry(ca)

(x(p))); if a < j , then layer(p) = lab(succexit(ca)
(x(p)))+ 1.

PROOF. If (and only if) the procedure stops in step (2), then p lies on a horizontal
segment of a staircase, which is identified by predentry(p)(x(p)).

Otherwise, if a > j , then ca is below cj . By assumption, p stabs a staircase in slice
ca . By Lemma 3.2, the highest such staircase is identified by predentry(ca)

(x(p)). Since
p does not stab any staircase before stabbing this one, p lies between it and the next
higher one, and so layer(p) = lab(predentry(ca)

(x(p))).
If a < j , then ca is above cj . Arguing symmetrically, p must stab the staircase that is

identified by succexit(ca)
(x(p)). Since p does not stab any staircase before stabbing this

one, p lies between it and the next lower one, and so layer(p) = lab(succexit(ca)
(x(p)))

+ 1.

3.1. Updating T . Recall the sweep algorithm framework from Section 2. Once the
points in Pi have been assigned their layers, we must update the staircase extremal
points. Let p be a new point assigned to layer �. In addition to the new data structure
in T , we still maintain each Mi (�) as an ordered list to facilitate finding the points
u, v ∈ Mi (�) such that y(u) > y(p) ≥ y(v), indicating where π(p) begins to affect the
staircase. Assume π(p) still lies above staircase �, or else p engenders no further update.

While T itself remains static though this process, the sets of staircases spanning
various slices change to reflect the addition of π(p) to staircase �. As in Section 2,
iterate to find each v that is no longer extremal by the addition of π(p) to staircase �. Let
v′ be the first v encountered that remains in Mi (�); i.e., after deleting the obviated v’s
and inserting π(p), v′ is π(p)’s successor in Mi (�). The semi-closed range [y(p), y(v′))
(top-down) defines the extent of p’s effect on Mi (�), which we call p’s range of influence.
(In Figure 2(b) the dotted lines identify the ranges of influence for points a, b, and d.)

We must now update the slices at ancestors of y(v) in T for each v deleted from
Mi (�). For each, traverse the y(v)-to-root path. For the slice at each node u on the path,
there are four cases, depending on the relative positions of y(p) and max(u) (the top of
the slice) and those of y(v′) and min(u) (the bottom of the slice) (see Figure 6:)

1. max(u) > y(p), min(u) ≤ y(v′). Both the top and bottom of the slices are outside p’s
range of influence. This and further ancestor slices are not affected by p, so terminate
the traversal.

2. max(u) ≤ y(p), min(u) ≤ y(v′). The top of the slice is inside p’s range of influence,
but the bottom is outside. The entry point of staircase �, which in this case is given
by predentry(u)(x(p)), changes to x(p), so delete the old entry point and insert the
new one.

3. max(u) > y(p), min(u) > y(v′). The bottom of the slice is inside p’s range of
influence, but the top is outside. The exit point of staircase �, which in this case is
given by predexit(u)(x(p)), changes to x(p), so delete the old exit point and insert
the new one.

4. max(u) ≤ y(p), min(u) > y(v′). Both the top and bottom of the slice are in-
side p’s range of influence. Staircase � no longer spans this slice. If it did before,
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Fig. 6. A staircase, �, being updated by the insertion of p. The dotted line identifies the range of p’s influence:
[y(p), y(v′)). The open circles are extremal points that must be removed from the staircase (and hence from
which leaf-to-root traversals are applied). By the assumption that p belongs to layer �, if the top of some slice
u (indicated by dashed lines) is inside p’s range of influence, then the entry point for staircase � in that slice
is given by predentry(u)(x(p)); otherwise, some other staircase would intercede between staircase � and p.
Similarly, if the bottom of the slice is inside p’s range of influence, then the exit point for staircase � in that
slice is given by predexit(u)(x(p)).

predentry(u)(x(p)) and predexit(u)(x(p)) are both labeled � and give the old entry
and exit points, which are deleted. If predentry(u)(x(p)) and predexit(u)(x(p)) are
not labeled �, then staircase � did not span this slice before, and no update is required.

Finally, perform the same operations on the slices encountered during a y(p)-to-
root traversal of T . Correctness of this procedure follows from the fact that whenever
a staircase spans a slice, there exists at least one extremal point of the staircase within
the slice. That extremal point, having been the subject of such an update, caused entry
and exit points to be recorded appropriately. Note that any slice whose top or bottom (or
both) falls within p’s range of influence is an ancestor of y(p) or some y(v) that was
deleted above and hence gets updated appropriately.

3.2. Analysis. Straightforward implementations of T do not improve upon the results
of Section 2. For example, if we construct T as a balanced, binary search tree and use
red–black trees [8] to implement the entry and exit lists, then Q(N ) = O(log2 N ) as
before: O(log n) time at each level of T to perform a stabbing test using Lemma 3.3.
R(N ) = O(log n), and I (N ) = D(N ) = O(log2 N ) (argue as with Q(N )). Each point
in S yields an element in at most one entry and exit list in each level of T . The algorithm
thus runs in O(n log2 n) time and O(n log n) space.

Using van Emde Boas trees [16] for the entry and exit lists reduces the running time
to O(n log n log log n), but as each slice’s entry and exit list requires O(n) space, the
total space increases to O(n2). Using Willard’s q-fast tries [17] yields time O(n log1.5 n)
and space O(n log n).

In general, however, if we set the arity of T to some d and use a dictionary that on N
items admits predecessor and successor queries, insertions, and deletions in timeD(N ),
then Q(N ) = O(D(N )(logd N + d)): D(N ) logd N to find the first ancestor slice that
contains a stabbed staircase, and d · D(N ) to find the nearest child slice containing the
stabbed staircase. R(N ) = O(log N ) as before, and I (N ) = D(N ) = O(D(N ) logd N ).
If d = O(

√
log n) and D(N ) = O(log log n), this would yield an O(n log n)-time

algorithm. Again we could use van Emde Boas trees [16], but the space would still be
O(n2). Using Mehlhorn and Näher’s [12] modification reduces the space to O(n), but
the time bound becomes randomized.
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In the next section we show how to apply dynamic fractional cascading with this
method to achieve O(n log n) time (worst case) and O(n log n/log log n) space.

4. Dynamic Fractional Cascading. Let G = (V, E) be a control graph with a catalog
C(v) ⊂ �+ = �∪ {−∞,∞} associated with each vertex v ∈ V and a range R(u, v) =
R(v, u), which is an interval on the open real line, associated with each edge {u, v} ∈ E .
The local degree, d(v), of a vertex v is the maximum number of incident edges whose
ranges contain any given element of �+. That is, if Nx (v) = {u : {v, u} ∈ E ∧ x ∈
R(v, u)}, then d(v) = max{|Nx (v)| : x ∈ �+}. G has locally bounded degree d if
d ≥ max{d(v) : v ∈ V }. Let N = |V | + |E | +∑v∈V |C(v)|.

A generalized path in G is a sequence (v1, . . . , vp) of vertices such that for each
1 < j ≤ p, there exists an edge {vi , vj } ∈ E for some 1 ≤ i < j . Chazelle and
Guibas [5] consider the problem of traversing a generalized path of G, at each vertex v
determining the predecessor in C(v) (or at each finding the successor) of a query value
x ∈ �+, given that x ∈ R(e) for each edge e induced by the path. They design the
fractional cascading data structure, which requires O(N ) space and answers each such
query in time O(p log d + log N ) time, where p is the number of vertices in the path
and G is of locally bounded degree d. They show how insertions and deletions from
individual catalogs can be performed in O(log N ) amortized time each, but then the
query time degrades to O(p log d log log N + log N ).

Mehlhorn and Näher [13] show how to accommodate each update in O(log log N )
amortized time if the position of the update is known, i.e., given a pointer to the successor
(or predecessor) of the element to be inserted or deleted. The query time becomes
O(p log log N + log N ). Their results assume that d = O(1). Raman [15] notes that
this result is easily extended to yield O(p(log d + log log N )+ log N ) query time in the
case of arbitrary d and with Dietz goes on [6], [15] to make the update time worst case
O(log d + log log N ).

The above extension of dynamic fractional cascading to arbitrary d uses an idea of
Chazelle and Guibas that replaces each vertex of G by a uniform star tree. Using a more
local technique, we can show the following slightly more general result. Let (v1, . . . , vp)

denote a generalized path. Let ({u2, v2}, . . . , {up, vp}) be any sequence of edges that can
be used to traverse the path; i.e., for each 1 < j ≤ p, {uj , vj } ∈ E and there is some
1 ≤ i < j such that uj = vi . Redefine d(v) to be the (real) degree of v.

THEOREM 4.1. A dynamic fractional cascading data structure can be built that uses
O(N ) space, performs queries in time O(p log log N + log N + ∑p

i=2(log d(ui ) +
log d(vi ))), and accommodates insertions and deletions in O(log log N ) amortized time
each, given a pointer to the predecessor or successor of the item to be inserted or deleted.

Note that this allows a (constant) few vertices in the traversal of the path to be of
arbitrarily high degree while still maintaining the overall time bound in Mehlhorn and
Näher’s original result.

PROOF OF THEOREM 4.1. Construct a new graph G ′ = (V ′, E ′) as follows. For each
v ∈ V , build a balanced binary tree Tv on d(v) leaves. Let ηv(i) be the i th neighbor
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Fig. 7. A control graph G (left) and the associated new graph G ′ (right). Numbers on edges of G indicate an
ordering of the neighbors of each vertex. Leaves of subtrees in G ′ are implicitly numbered left to right.

of v in G for some arbitrary but fixed ordering of neighbors; and let vi denote the i th
leaf of Tv in symmetric order. G ′ is comprised of all the trees Tv plus an edge {ui , vj },
connecting the appropriate leaves of Tu and Tv , for each edge {u, v} ∈ E such that
ηu(i) = v and ηv( j) = u. (See Figure 7.) The degree of each vertex in G ′ is thus
two. We maintain a dynamic fractional cascading data structure on G ′. Each catalog
C(v) is stored at the root of the corresponding Tv . Since |V ′| ≤ 4|E | and |E ′| ≤ 5|E |,
N ′ = |V ′| + |E ′| +∑v∈V |C(v)| = (N ).

Now map paths in G to paths in G ′. To start a query at v ∈ V , start at the root of Tv
in V ′. To traverse edge {u, v} in G, traverse in G ′ the path from the root of Tu to that
of Tv , via the appropriate leaves. (Record with each edge {u, v} ∈ E the indices of the
appropriate leaves in Tu and Tv .)

Mehlhorn and Näher [13, Lemma 2] show that traversing the new path takes O(�)
time, where � = log d(u) + log d(v) is the length of the new path, while querying the
catalogs C(u) and C(v) can still be done in O(log log N ) time each [13, Lemma 3], as
can insertion and deletion (in O(log log N ) amortized time) into each catalog.

It remains to combine this result with Raman’s worst-case update technique.

4.1. Application to Layers of Maxima

THEOREM 4.2. The three-dimensional layers-of-maxima problem can be solved in
O(n log n) time and O(n log n/log log n) space.

PROOF. We use the algorithm framework of Section 3. Let T be a static, balanced
search tree of arity

√
log n. (At most one internal child of every node has degree less

than
√

log n; the others have degree
√

log n.) The depth of T is thus O(log n/log log n).
The leaves of T correspond to the y-coordinates of points in S.

Now modify T as follows. Transform each internal node u into a length-3 path
(u1, u2, u3); let the parent of u1 correspond to the parent of u, which will be similarly
modified; and let the children of u3 correspond to the children of u, which will be
similarly modified unless they were leaves. That is, if v is the parent of u, v3 becomes
the parent of u1. For each pair (u, v) of consecutive children in the original T , doubly
link the corresponding nodes u2 (u if it is a leaf) and v2 (v if it is a leaf). See Figure 8.
While T is no longer a tree, the notion of levels of T extends easily; in particular, the
leaf-to-root paths maintain length O(log n/log log n).
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Fig. 8. A 3-ary tree (left) and the derived control graph (right). Expanding the internal nodes facilitates
traversing the children of each node in the original tree.

Apply dynamic fractional cascading as per Theorem 4.1 with T as the control graph;
for each original node u, store catalogs at the new node u2 (or u if it is a leaf) to record slice
u’s entry and exit lists. Q(N ) = O(log n): O(log log n) time at each level of T to perform
a stabbing test using Lemma 3.3; O(

√
log n log log n) time to find the appropriate stabbed

child of the first stabbed ancestor, using the children links; and O(log log n) time per
level of T to traverse edges incident to nodes of degree O(

√
log n). The transformation

of the original T allows traversing the children of a node in O(
√

log n log log n) time,
since they are linked at constant-degree nodes. R(N ) = O(log n) if we continue to
maintain ordered lists of extremal points for each staircase. I (N ) = D(N ) = O(log n):
each update due to a point p is identified by the predecessor of x(p) in the entry and
exit lists of slices encountered in a leaf-to-root traversal of T , which we maintain while
traversing the query path in T , so we can update the fractional cascading structure at a
cost of O(log log n) per level of T . The overall time is thus O(n log n).

Each point in S engenders an element in at most one entry and exit list in each level
of T . The space is thus O(n log n/log log n).

5. Conclusion. We have provided an O(n log n)-time, O(n log n/log log n)-space al-
gorithm to solve the three-dimensional layers-of-maxima problem. Our algorithm uses a
three-dimensional sweep on the input point set, maintaining a staircase subdivision of the
plane with an improved dynamic fractional cascading data structure that accommodates
vertices of high degree in the control graph.

While�(n log n) is a lower bound on the time to solve this problem in the comparison
model, it remains open to achieve that bound using linear or at least o(n log n/log log n)
space as well as to provide bounds for higher dimensions. The static nature of the plane-
sweep approach to solving this problem makes bootstrapping our solution for higher
dimensions seem problematic.

Our algorithm framework employs a special case of dynamic point location in a
staircase subdivision: namely, when all the y-coordinates are known a priori. It remains
open to solve this problem in general. It is also open whether there are other applications
of the dynamic fractional cascading extension.

Acknowledgement. We thank Rajeev Raman for helping set our dynamic fractional
cascading extension in context with prior work.
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