Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. COMPUT. © 1989 Society for Industrial and Applied Mathematics
Vol. 18, No. 3, pp. 499-532, June 1989 006

CASCADING DIVIDE-AND-CONQUER: A TECHNIQUE FOR
DESIGNING PARALLEL ALGORITHMS*

MIKHAIL J. ATALLAHt, RICHARD COLEf, AND MICHAEL T. GOODRICHS§

Abstract. Techniques for parallel divide-and-conquer are presented, resulting in improved parallel
algorithms for a number of problems. The problems for which improved algorithms are given include
segment intersection detection, trapezoidal decomposition, and planar point location. Efficient parallel
algorithms are algo given for fractional cascading, three-dimensional maxima, two-set dominance counting,
and visibility from a point. All of the algorithms presented run in O(log n) time with either a linear or a
sublinear number of processors in the CREW PRAM model.

Key words. parallel algorithms, parallel data structures, divide-and-conquer, computational geometry,
fractional cascading, visibility, planar point location, trapezoidal decomposition, dominance, intersection
detection

AMS(MOS) subject classifications. 68E05, 68C0S, 68C25

1. Introduction. This paper presents a number of general techniques for parallel
divide-and-conquer. These techniques are based on nontrivial generalizations of Cole’s
recent parallel merge sort result [13] and enable us to achieve improved complexity
bounds for a large number of problems. In particular, our techniques can be applied
to any problem solvable by a divide-and-conquer method such that the subproblem
merging step can be implemented using a restricted, but powerful, set of operations,
which include (i) merging sorted lists, (ii) computing the values of labeling functions
on elements stored in sorted lists, and (iii) changing the identity of elements in a sorted
list monotonically. The elements stored in such sorted lists need not belong to a total
order, so long as the computation can be specified so that we will never try to compare
two incomparable elements. We demonstrate the power of these techniques by using
them to design efficient parallel algorithms for solving a number of fundamental
problems from computational geometry.

The general framework is one in which we want to design efficient parallel
algorithms for the CREW PRAM or EREW PRAM models. Recall that the CREW
PRAM model is the synchronous shared memory model in which processors may
simultaneously read from any memory location but simultaneous writes are not allowed.
The EREW PRAM model does not allow for any simultaneous access to a memory
cell. Our goal is to find algorithms that run as fast as possible and are efficient in the
following sense: if p(n) is the processor complexity, ¢(n) the parallel time complexity,
and seq(n) the time complexity of the best-known sequential algorithm for the problem

* Received by the editors September 14, 1987; accepted for publication (in revised form) August 12,
1988. This paper appeared in preliminary form as [3] and as portions of [17].

t Department of Computer Science, Purdue University, West Lafayette, Indiana 47907. The research
of this author was supported by the Office of Naval Research under grants N00014-84-K-0502 and N00014-86-
K-0689, and by the National Science Foundation under grant DCR-84-51393, with matching funds from
AT&T.

1 Courant Institute, New York University, New York, New York 10012. The research of this author
was supported in part by National Science Foundation grants DCR-84-01633 and CCR-8702271, and by
an Office of Naval Research grant N00014-85-K-0046.

§ Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218. The research
of this author was supported by Office of Naval Research grants N00014-84-K-0502 and N000-86-K-0689,
National Science Foundation grants DCR-84-51393, with matching funds from AT&T, and CCR-88-10568,
and a David Ross grant from the Purdue Research Foundation.

499

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

500 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

under consideration, then #(n) * p(n) = O(seq(n)). If the product t(n) * p(n) achieves
the sequential lower bound for the problem, then we say the algorithm is optimal.
When specifying the processor complexity, we omit the “big oh,” e.g., we say “n
processors” rather than “O(n) processors”; this is justified because we can always
save a constant factor in the number of processors at a cost of the same constant factor
in the running time. In all of the problems listed below, we achieve t(n)= O(log n)
and, simultaneously (except for planar point location), an optimal t(n) * p(n).

Previous work on parallel divide-and-conquer has produced relatively few
algorithms that are optimal in the above sense. Exceptions to this include some of the
previous algorithms for the convex hull problem [1], [4],[6], [18], [27] and the problem
of circumscribing a convex polygon with a minimum-area triangle [1]. Unfortunately,
each of these approaches was very problem-specific. Thus, there is a need for techniques
of wider scope.

This is in fact the motivation for our work, for we give a number of general
techniques for efficiently solving problems in parallel by divide-and-conquer. We model
the divide-and-conquer paradigm as a binary tree whose nodes contain sorted lists of
some kind. The computation involves computing on this tree in a recursively defined
bottom-up fashion using lists of items and labeling functions defined for each node
in the tree. In Cole’s scheme [13], the list at a node was defined to be the sorted merge
of the two lists stored at its children. In our scheme, however, the lists at a node of
the tree can depend on the lists of its children in more complex ways. For example,
in our solution to the segment intersection detection problem, the lists at a node depend
on computing, in addition to merges, set difference operations that are not directly
solvable by the “‘cascading” method used by Cole [13]. Such operations arise here
because the lists at a node contain segments ordered by their intersections with a
vertical line (the so-called “above” relationship), which is obviously not a total order.
One may be tempted to try to solve this problem by delaying the performance of these
set difference operations until the end of the computation. Unfortunately, this is not
feasible for many reasons, not the least of which is that this approach could lead to
a situation in which a processor tries to compare two incomparable items. Nor does
it seem possible to explicitly perform the set difference operations on-line without
sacrificing the time-efficiency of the cascading method. Our solution avoids both of
these problems by using an on-line “identity-changing” technique.

Another significant contribution of this paper is an optimal parallel construction
of the “fractional cascading” data structure of Chazelle and Guibas [12]. This too is
based on a generalization of Cole’s method [13] in the sense that instead of having
the computation proceeding up and down a tree, it now moves around a directed
graph (possibly with cycles). Our solution to fractional cascading is quite different
from the sequential method of Chazelle and Guibas (their method relies on an
amortization scheme to achieve a linear running time).

The following is a list of the problems for which our techniques result in improved
complexity bounds. Unless otherwise specified, each performance bound is expressed
as a pair (t(n), p(n)), where t(n) and p(n) are the time and processor complexities,
respectively, in the CREW PRAM model.

Fractional cascading. Given a directed graph G =(V, E), such that every node v
contains a sorted list C(v), construct a data structure that, given a walk (v, v,, " -+, v,,)
in G and an arbitrary element x, enables a single processor to locate x quickly in each
C(v;), where n=|V|+|E|+Y _, |C(v)|. In [12] Chazelle and Guibas gave an elegant
O(n) time, O(n) space, sequential construction, where n=Y,_, |C(v)|. We give a
(log n, n/log n) construction.

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 501

Trapezoidal decomposition. Given aset S of n line segments in the plane, determine
for each segment endpoint p the first segment ““stabbed” by the vertical ray emanating
upward (and downward) from p. A (log” n, n) solution to this problem was given by
Aggarwal et al. in [1], later improved to (log n log log n, n) by Atallah and Goodrich
in [5]. We improve this to (log n, n).

Planar point location. Given a subdivision of the plane into (possibly unbounded)
polygons, construct, in parallel, a data structure that, once built, enables one processor
to determine for any query point p the polygonal face containing p. Let Q(n) denote
the time for performing such a query, where n is the number of edge segments in the
subdivision. A (log’ n, n), Q(n)= O(log” n) solution was given by Aggarwal et al. in
[1], later improved to (log n loglog n, n), Q(n)= O(log n) by Atallah and Goodrich
in [5]. In [14] Dadoun and Kirkpatrick further improved this to (log n log* n, n),
Q(n)=0O(log n). We give a (log n, n), Q(n)= O(log n) solution.

Segment intersection detection. Given a set S of n line segments in the plane,
determine if any two segments in S intersect. A (log®> n, n) solution was given in [1],
later improved to (log n log log n, n) in [5]. We improve this to (log n, n).

Three-dimensional maxima. Given a set S of n points in three-dimensional space,
determine which points are maxima. A maximum in S is any point p such that no
other point of S has x, y, and z coordinates that simultaneously exceed the correspond-
ing coordinates of p. A (log n log log n, n) solution was given in [5]. We improve this
to (log n, n).

Two-set dominance counting. Given a set A={q,,q,, **,q} and a set B=
{ry, r, -+ -, rn} of points in the plane, determine for each point r; in B the number of
points in A whose x and y coordinates are both less than the corresponding coordinates
of r;. The problem size is n =1+ m. A (log n log log n, n) solution was given in [5]. We
improve this to (log n, n).

Visibility from a point. Given n line segments such that no two intersect (except
possibly at endpoints) and a point p, determine that part of the plane visible from p
if all-the segments are opaque. A (log n loglog n, n) solution was given in [5]. We
improve this to (log n, n).

We recently learned that Reif and Sen [24] solved planar point location, trapezoidal
decomposition, segment intersection and visibility in randomized O(log n) time using
O(n) processors in the CREW PRAM model. All of our algorithms are deterministic.

This paper is organized as follows. In § 2 we present a generalized version of the
cascading merge procedure and in § 3 we give our method for doing fractional cascading
in parallel. In § 4 we show how to apply the fractional cascading technique to a data
structure we call the plane sweep tree, showing how to solve the trapezoidal decomposi-
tion and point location problems. In § 5 we show how to extend the cascading merge
technique to allow for cascading in the “above’ partial order of line segments, giving
solutions to the problems of building the plane sweep tree and solving the intersection
detection problem. In § 6 we use the cascading divide-and-conquer technique to
compute labeling functions and show how to use this approach to solve three-
dimensional maxima, two-set dominance counting, and visibility from a point. Finally,
in §7, we briefly describe how most of our algorithms can be implemented in the
EREW PRAM model with the same time and processor bounds as our CREW PRAM
algorithms, and we conclude in § 8.

2. A generalized cascading merge procedure. In this section we present a technique
for a generalized version of the merge sorting problem. Suppose we are given a binary
tree T (not necessarily complete) with items, taken from some total order, placed at

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

502 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

the leaves of T, so that each leaf contains at most one item. For simplicity, we assume
that the items are distinct. We wish to compute for each internal node v € T the sorted
list U(v) that consists of all the items stored in descendant nodes of v. (See Fig. 1.)
In this section we show how to constrict U(v) for every node in the tree in O(height (T))
time using |T| processors, where |T| denotes the number of nodes in T. This is a
generalization of the problem studied by Cole [13], because in his version the tree T
is complete. Without loss of generality, we assume that every internal node v of T
has two children. For if v has only one child then we can add a child to v (a leaf
node) that does not store any items from the total order. Such an augmentation will
at most double the size of T and does not change its height.

Need to construct

U(v) = (4,12,13,50,103)

v

4 50

F1G. 1. An example of the generalized merge problem.

Let a, b, and ¢ be three items, with a = b. We say c is between a and b if a<c=b.
Let two sorted (nondecreasing) lists A=(a,, a,,* -+, a,) and B=(b,,b,, -+, b,,) be
given. Given an element a, we define the predecessor of a in B to be the greatest
element in B that is less than or equal to a. If a <b,, then we say that the predecessor
of a is —0o. We define the rank of a in B to be the rank of the predecessor of a in B
(—o0 has rank zero). We say that A is ranked in B if for every element in A we know
its rank in B. We say that A and B are cross-ranked if A is ranked in B and B is
ranked in A. We define two operations on sorted lists. We define AU B to be the sorted
merged list of all elements in A or B. If B is a subset of A, then we define A— B to
be the sorted list of the elemented in A that are not in B.

Let T be a binary tree. For any node v in T we let parent(v), sibling(v), Ichild (v),
rchild (v), and depth(v) denote the parent of v, the sibling of v, the left child of v, the
right child of v, and the depth of v (the root is at depth zero), respectively. We also
let root(T) and height(T) denote the root node of T and the height of T, respectively.
The altitude, denoted alt(v), is defined alt(v) = height(T) — depth(v). Desc(v) denotes
the set of descendant nodes of v (including v itself).

Let a sorted list L and a sorted list J be given. Using the terminology of Cole
[13], we say that L is a c-cover of J if between each two adjacent items in (—0o, L, 00)
there are at most ¢ items from J (where (—o0, L,) denotes the list consisting of —co,
followed by the elements of L, followed by o). We let SAMP,(L) denote the sorted

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 503

list consisting of every cth element of L, and call this list the c-sample of L. That is,
SAMP,(L) consists of the cth element of L followed by the (2¢)th element of L, and
so on.

The algorithm for constructing U (v) for each v e T proceeds in stages. Intuitively,
in each stage we will be performing a portion of the merge of U(lchild (v)) and
U (rchild (v)) to give the list U(v). After performing a portion of this merge we will
gain some insight into how to perform the merge at v’s parent. Consequently, we will
pass some of the elements formed in the merge at v to v’s parent, so we can begin
performing the merge at v’s parent.

Specifically, we denote the list stored at a node v in T at stage s by U (v). Initially,
U,y(v) is empty for every node except the leaf nodes of T, in which case Uy(v) contains
the item stored at the leaf node v (if there is such an item). We say that an internal
node v is active at stage s if |s/3] =alt(v)=s, and we say v is full at stage s if
alt(v) = |s/3]. As will become apparent below, if a node v is full, then U,(v)= U(v).

!

For each active node ve T we define the list U’ ,(v) as follows:

SAMP,(U,(v)) if alt(v)=s/3,
Ui (v) ={ SAMP,(U,(v)) if alt(v)=(s—1)/3,
SAMP,(U,(v)) if alt(v)=(s—2)/3.

At stage s+ 1 we perform the following computation at each internal node v that is
currently active.

Per-stage computation (v,s+1). Form the two lists U’ (lchild (v)) and
U’ (rchild (v)), and compute the new list

Usni(v) = U (Ichild (v)) U Us.((rchild (v)).

This formalizes the notion that we pass information from the merges performed
at the children of v in stage s to the merge being performed at v in stage s+ 1. Note
that until v becomes full, U}.,,(v) will be the list consisting of every fourth element
of U,(v). This continues to be true about U},,(v) up to the point that v becomes full.
If s, is the stage at which v becomes full (and U,(v)= U(v)), then at stage s,+1,
Ui, (v) is the two-sample of U(v), and, at stage s,+2, Ul (v)= U,(v) (=U(v)).
Thus, at stage s, + 3, parent(v) is full. Therefore, after 3 * height(T) stages every node
has become full and the algorithm terminates. We have yet to show how to perform
each stage in O(1) time using n processors.

We begin by showing that the number of items in U, ,(v) can be only a little
more than twice the number of items in U,(v), a property that is essential to the
construction.

LEMMA 2.1. For any stage s =0 and any node ve T, |U,,,(v)| = 2|U,(v)| + 4.

Proof. The proof is by induction on s.

Basis (s =0). The claim is clearly true for s =0.

Induction step (s>0). Assume the claim is true for stage s —1. If v is full (i.e.,
alt(v) = |s/3]), then the claim is obviously true, since U,.,(v)= U,(v)= U(v). Con-
sider the case where either the children of v were not full at stage s or had just become
full at stage s. We know that U,,,(v)= U/, (x)U U/, ,(y), where x = Ichild(v) and

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

504 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

y = rchild (v). In addition, we have the following:

|Usii(v)| = [l Usix)lj + ll USiY)lJ (from definitions)

[2| Us—l(x)l +4

lIA

4

of| L | L)

=2|U,(v)|+4.

2|U,_ +4 . . :
J+[U “(‘y)l J (by induction hypothesis)

The case when the children of v are full at stage s — 1 is similar (except that one divides
by 2 or 1 instead of 4). Actually, it is simpler, since in this case the children of v were
full in stage s —1; hence, the step using the induction hypothesis can be replaced by
a simple algebraic substitution step. 0

In the next lemma we show that the way in which the U,(v)’s grow is “well
behaved.”

LemMA 2.2. Let [a, b] be an interval with a, b € (—0, U'(v),). If [a, b] intersects
k+1 items in (—oo, Ui(v),), then it intersects at most 8k+8 items in U (v) for all
k=1 and s=1.

Proof. The proof is by induction on s. The claim is initially true (for s=1).
Actually, for any stage s, if U(v) is empty, then U, ,(v) contains at most three items,
hence, U (v) contains at most ten elements, by the previous lemma. Also, if U(v)
contains one item, then U,_,(v) contains at most seven items, hence, U (v) contains
at most 18 items, by the previous lemma. At most 15 of these items can be between
any two adjacent items in (—oo, U(v), o), since the item in U(v) was the fourth item
in U;_,(v) by definition.

Inductive step (assume true for stage s). Let [a, b] be an interval with a, b
both in the list (—oo, U,,(v),), and suppose [a, b] intersects k+1 items in
(=0, Uiyi(v),0). The lemma is immediately true if v was full stage s, since the
smallest sample we take is a four-sample. So, next, suppose that either the children
of v are not full or have just become full in stage s. Let g be the number of items
in (=00, Uy(v),) intersected by [a, b]. Recall that U,(v) =
U'(lchild (v))U Ul(rchild (v)). Let [a,, b;] (respectively, [a,, b,]) be the smallest
interval containing [a, b] such that a,, b, € (—oo, U'(lchild (v)),) (respectively,
a,, b,e (—oo, Ul (rchild (v)), ©)). Suppose the interval [a,, b,] intersects h+1 items in
the list (—oo, U (lchild (v)),©) and [a,,b,] intersects j-+1 items in
(=00, U/ (rchild (v)),). Note that h+j=g By the induction hypothesis, [a,, b;]
intersects at most 8 +8 items in U,(lchild (v)), and hence at most (8h+8)/4=2h+2
items in U}, ,(Ichild (v)). Likewise, [a,, b,] intersects at most 2j+2 items in
U’ (rchild (v)). The definition of U, ,(v) implies that g =4k+ 1. Therefore, since
U, 1(v) = Ul (Ichild (v))U Ui, (rchild (v)), [a, b] intersects at most (2h+2)+
(2j+2) items in Ug,,(v), where (2h+2)+(2j+2)=Q2h+2)+24k—h+1)+2)=
8k +8.

The proof for the case when the children of v were full in stage s —1 is similar.
Actually, it is simpler, since the induction steps can be replaced by algebraic substitution
steps in this case. 0

CoroOLLARY 2.3. The list (—oo, Ul(v),©) is a four-cover for U},(v), for
all s=0. 0

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 505

This corollary is used in showing that we can perform each stage of the merge
procedure in O(1) time. In addition to this corollary, we also need to maintain the
following rank information at the start of each stage s:

(1) For each item in U/(v): its rank in U/(sibling(v)).

(2) For each item in U/(v): its rank in U (v) (and hence, implicitly, its rank
in Uj(v)).

The lemma that follows shows that the above information is sufficient to allow us
to merge U/, (Ichild (v)) and U’ (rchild (v)) into the list U,,(v) in O(1) time using
| U1 (v)| processors.

LEMMA 2.4 (THE MERGE LEMMA) [13]. Suppose we are given sorted lists A,, Ay,
B!, B..,, C%, and C'_,, where the following (input) conditions are true:

(1) A;=BUC

(2) AL, is a subset of Ay,

(3) B is a c,-cover for B},

(4) Ci is a cy-cover for C'yy;

(5) B! is ranked in B.,;

(6) C is ranked in C'

(7) B! and C' are cross-ranked.

Then in O(1) time using |B}, |+ |C’.,| processors in the CREW PRAM model, we
can compute the following (output computations):

(1) the sorted list A,.,=B..,UC.,;

(2) the ranking of AL, in Ay

(3) the cross-ranking of B}, and C',. 0

We apply this lemma by setting A, = U,(v), Ay, = Ul(0), Ay = Upr(v), By =
Uli(x), Bl,,=U'.(x), Ci=Ui(y), and Ci = U} (y), where x=Ichild (v) and
y = rchild (v). Note that assigning the lists of Lemma 2.4 in this way satisfies input
conditions (1)-(4) from the definitions. The ranking information we maintain from
stage to stage satisfies input conditions (5)-(7). Thus, in each stage s, we can construct
the list U,.,(v) in O(1) time using | U, ,(v)| processors. Also, the new ranking informa-
tion (of output computations (2) and (3)) gives us the input conditions (5)-(7) for the
next stage. By Corollary 2.3 we have that the constants ¢, and ¢, (of input conditions
(3) and (4)) are both equal to four. Note that in stage s it is only necessary to store
the lists for s —1; we can discard any lists for stages previous to that.

The method for performing all these merges with a total of |T| processors is
basically to start out with O(1) virtual processors assigned to each leaf node, and each
time we pass k elements from a node v to the parent of v (to perform the merge at
the parent), we also pass O(k) virtual processors to perform the merge. When v’s
parent becomes full, then we no longer “store” any processors at v. (See [17] for
details.) There can be at most O(n) elements present in active nodes of T for any
stage s (where n is the number of leaves of T), since there are n elements present on
the full level, at most n/2 on the level above that, n/8 on the level above that, and so
on. Thus, we can perform the entire generalized cascading procedure using O(n) virtual
processors, or n actual processors (by a simple simulation argument). This also implies
that we need only O(n) storage for this computation, in addition to that used for the
output, since once a node v becomes full we can consider the space used for U(v) to
be part of the output. Equivalently, if we are using the generalized merging procedure
in an algorithm that does not need a U(v) list once v’s parent becomes full, then we
can implement that algorithm in O(n) space by deallocating the space for a U(v) list
once it is no longer needed (this is in fact what we will be doing in § 6).

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

506 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

It will often be more convenient to relax the condition that there be at most one
item stored at each leaf. So, suppose there is an unsorted set A(v) (which may be
empty) stored at each leaf. In this case we can construct a tree T’ from T by replacing
each leaf v of T with a complete binary tree with |[A(v)| leaves, and associating each
item in A(v) with one of these leaves. T' would now satisfy the conditions of the
method outlined above. We incorporate this observation in the following theorem,
which summarizes the discussion of this section.

THEOREM 2.5. Suppose we are given a binary tree T such that there is an unsorted
set A(v) (which may be empty) stored at each leaf. Then we can compute, for each node
ve T, the list U(v), which is the union of all items stored at descendents of v, sorted in
an array. This computation can be implemented in O(height(T)+log (max, |A(v)])) time
using a total of n+ N processors in the CREW PRAM computational model, where n is
the number of leaves of T and N is the total number of items stored in T.

Proof. The complexity bounds follow from the fact that the tree T’ described
above would have height at most O(height(T)+log (max, |A(v)|)) and |T| is
O(|T|+ N). a

The above method comprises one of the main building blocks of the algorithms
presented in this paper. We present another important building block in the following
section.

3. Fractional cascading in parallel. Given a directed graph G =(V, E), such that
every node v contains a sorted list C(v), the fractional cascading problem is to construct
an O(n) space data structure that, given a walk (v,, v, -+, v,,) in G and an arbitrary
element x, enables a single processor to locate x quickly in each C(v;), where n=
|V|+|E|+Y,.v|C(v)]. Fractional cascading problems arise naturally from a number
of computational geometry problems. As a simple example of a fractional cascading
problem, suppose we have five different English dictionaries and would like to build
a data structure that would allow us to look up a word w in all the dictionaries.
Chazelle and Guibas [12] give an elegant O(n) time sequential method for constructing
a fractional cascading data structure from any graph G, as described above, achieving
a search time of O(log n+ m log d(G)), where d(G) is the maximum degree of any
node in G. However, their approach does not appear to be “parallelizable.”

In this section we show how to construct a data structure achieving the same
performance as that of Chazelle and Guibas in O(log n) time using [n/log n] pro-
cessors. Our method begins with a preprocessing step similar to one used by Chazelle
and Guibas where we “expand” each node of G into two binary trees—one for its
in-edges and one for its out-edges—so that each node in our graph has in-degree and
out-degree at most 2. We then perform a cascading merge procedure in stages on this
graph. Each catalogue C(v) is “fed into” the node v in samples that double in size
with each stage and these lists are in turn sampled and merged along the edges of G.
Lists continue to be sampled and “pushed” across the edges of G (even in cycles) for
a logarithmic number of stages, at which time we stop the computation and add some
links between elements in adjacent lists. We conclude this section by showing that this
gives us a fractional cascading data structure, and that the computation can be
implemented in O(log n) time and O(n) space using [n/log n] processors.

We show below how to perform the computations in O(log n) time and O(n)
space using n processors. We will show later how to get the number of processors
down to [n/log n] by a careful application of Brent’s theorem [11].

Define In(v, G) (respectively, Out(v, G)) to be the set of all nodes w in V such
that (w, v) e E (respectively, (v, w) € E). The degree of a vertex v, denoted d(v), is

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 507

defined as d(v)=max {|In(v, G)|, |Out(v, G)|}. The degree of G, denoted d(G), is
defined as d(G) =max,.v {d(v)}. A sequence (v, v,, " * *, Uy,) of vertices is a walk if
(v;, v;4q1)€ E forall ie{1,2, - m—1}.

As mentioned above, we begm the constructlon by preprocessmg the directed
graph G to convert it into a directed graph G= (V E) such that d (G)< 2 and such
that an edge (v, w) in G corresponds to a path in G of length at most O(log d(G)).
Specifically, for each node v e V we construct two complete binary trees T, and To".
Each leaf in T'" (respectively, T2") corresponds to an edge coming into v (respectively,
going out of v). So there are |In(v, G)| leaves in T' and |Out(v, G)| leaves in T3".
(See Fig. 2.) We call T'" the fan-in tree for v and T." the fan-out tree for v. An edge
e=(v,w) in G corresponds to a node e in G such that e is a leaf of the fan-out tree
for v and e is also a leaf of the fan-in tree for w. The edges in T'" are all directed up
towards the root of T\, and the edges in T2" are all directed down towards the leaves
of T2". For each ve V we create a new node v’ and add a directed edge from v’ to
v, a directed edge from the root of T} to v’, and an edge from v’ to the root of T,
We call v’ the gateway for v. (See Fig. 2). Note that d(G) 2. We assume that for
each node v we have access to the nodes in In(v, G) as well as those in Out(v G)
We structure fan-out trees so that a processor needing to go from v to w in G with
(v, w) € E, can correctly determine the path down T2" to the leaf corresponding to
(v, w). More specifically, the leaves of each fan-out tree are ordered so that they are
listed from left to right by increasing destination name, i.e., if the leaf in TJ" for
e= (v, u) is to the left of the leaf for f= (v, w), then u <w. (The leaves of T need
not be sorted, since all edges are directed towards the root of that tree.) If we are not
given the Out(v, G) sets in sorted order, then we must perform a sort as a part of the
T construction, which can be done in O(log d(G)) time using n processors using
Cole’s merge sorting algorithm [13]. We also store in each internal node z of T3" the
leaf node u that has the smallest name of all the descendants of z.

OC
d

() (d)
F1G. 2. Converting G into a bounded degree graph 6. Anodevin G (a) corresponds into a node v adjacent

to its gateway v', which is connected to the fan-in tree and the fan-out tree for v (b). An edge e in G (c) is
converted into a node in G which corresponds to a leaf node of two trees (d).

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

508 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

The above preprocessing step is similar to a preprocessing step used in the
sequential fractional cascading algorithm of Chazelle and Guibas [12]. This is where
the resemblance to the sequential algorithm ends, however.

The goal for the rest of the computation is to construct a special sorted list B(v),
which we call the bridge list, for every node v e V. We shall define these bridge lists
so that B(v)=C(v) if visin V;if visin V but not in V, then for every (v, w) e E’, if
a single processor knows the position of a search item x in B(v), it can find the position
of x in B(w) in O(1) time.

The construction of the B(v)’s proceeds in stages. Let B;(v) denote the bridge
list stored at node ve V at the end of stage s. Initially, By(v) = for all v in V.
Intuitively, the per-stage computation is designed so that if v came from the original
graph G (i.e., ve V), then v will be “feeding” B,(v) with samples of the catalogue
C(v) that double in size with each stage. These samples are then cascaded back into
the gateway v’ for v and from there back through the fan-in tree for v. We will also
be merging any samples “passed back” from the fan-out tree for v with B,(v’), and
cascading these values back through the fan-in tree for v as well. We iterate the
per-stage computation for [log N | stages, where N is the size of the largest catalogue
in G. We will show that after we have completed the last stage, and updated some
ranking pointers, G will be a fractional cascading data structure for G. The details
follow.

Recall that By(v) = forall ve V. For stage s =0, we define B, ,(v) and By, ,(v)
as follows:

B (v)_{SAMP4(BS(v)) ifve V-V,
SR L SAMP,,, (C(v)) if veV,
Bl (w)UBliy(wy) if Out(v, G)={w,, wa},
B, (v)={ By (w) if Out(v, G)= {W},
%) if Out(v, G) =0,

where ¢(s)=2M%N1"% and N is the size of the largest catalogue. The per-stage
computation, then, is as follows.

Per-stage computation (v, s+1). Using the above definitions, construct B,,(v)
for all ve V in parallel (using | B,,,(v)| processors for each v).

The function c(s) is defined so that if v € V, then as the computation proceeds
the list B, ,(v) will be empty for a while. Then at some stage s+ 1, it will consist of
a single element of C(v) (the (2/"#™N17%)th element), in stage s+2 at most three
elements (evenly sampled), in stage s+3 at most five elements, in stage s+4 at most
nine elements, and so on. This continues until the final stage (stage [log N]), when
B! (v) = C(v). Intuitively, the c(s) function is a mechanism for synchronizing the
processes of “feeding” the C(v) lists into the nodes of G so that all the processes
complete at the same time. We show below that each stage can be performed in O(1)
time, resulting in a running time of the cascading computations that is O(log N) (plus
the time it takes time to compute the value of N, namely, O(log n)). The following
important lemma is similar to Lemma 2.1 in that it guarantees that the bridge lists do
not grow ‘“too much” from one stage to another.

LeEmMMA 3.1. For any stage s =0 and any node ve T, | B,.,(v)| = 2| B,(v)| +4.

Proof. The proof is by induction on s.

Basis (s =0). The claim is clearly true for s =0.

Induction step (s>0). Assume the claim is true for stage s —1. If ve V, then the
claim follows immediately from the definition of ¢(s), since in this case B,.,(v) and

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 509

B,(v) are both samples of C(v) with B,.,(v) being twice as fine as B,(v), i.e.,
|By+1(0)| =2|B(v)|+1.
Consider the case when ve V — V, and Out(v, G) {w;, w,}. We know in this case
B,.,(v)= B} (w;)U B, ,(w,). Thus, we have the following:

|Byi1(v)| = [IBSE‘WI)IJ + llBSE‘WZ)lJ (from definitions)
= lleS‘1(4wl)l+4J + [2|Bs_l(4wz)| +4J (by induction hypothesis)
- |Bs~l(w1) |Bs—1(w2)|
=z([! J+[, J)+4
=2|B,(v)|+4.

For the case when ve V-V and Out(v, G) contains only one node, w, the argument
is similar and, in fact, simpler. We simply repeat the above argument, replacing w,
with w and eliminating those terms that contain w,. 0

In the next lemma we show that the way in which the B(v)’s grow is “well
behaved,” much as we did in Lemma 2.2.

LeEmMMA 3.2. Let [a, b] be an interval with a, b € (—0, Bj(v), o). If [a, b] intersects
k+1 items in (—o0, Bi(v),), then it intersects at most 8k+8 items in B,(v) for all
k=1 ands=1.

Proof. The proof is structurally the same as that of Lemma 2.2, since that lemma
was based on a merge definition similar to that for B,.,(v). 0

COROLLARY 3.3. The list (—o0, Bi(v),) is a four-cover for B, ,(v), for s =0.

CoRroOLLARY 3.4. The list (=0, B(v),) is a 16-cover for B,(w), for s=0 and
(v, w)e E.

The first of these two corollaries implies that we can satisfy all the c-cover input
conditions for the Merge Lemma (Lemma 2.4) for performing the merge operations
for the computation at stage s in O(1) time using n, processors, where n, =Y. _¢ | B,(v)|.
We use the second corollary to show that when the computation is completed we will
have a fractional cascading data structure (after adding the appropriate rank pointers).
We maintain the following rank information at the start of each stage s.

(1) For each item in B/(v): its rank in B “(w) if In(v, G)ﬂ In(w, G) is nonempty,
i.e., if there is a vertex u such that (u, v) e E and (u,w)e E.

(2) For each item in B}(v): its rank in B,(v) (and thus, implicitly, its rank in
Bi1(v)).

By having this rank information available at the start of each stage s, we satisfy
all the ranking input conditions of the Merge Lemma. Thus, we can perform each
stage in O(1) time using n, processors. Moreover, the output computations of the
Merge Lemma allow us to maintain all the necessary rank information into the next
stage. Note that in stage s it is only necessary to store the lists for s —1; we can discard
any lists for stages previous to that, as in the generalized cascading merge.

Recall that we perform the computation for [log N stages, where N is the size
of the largest catalogue. When the computation completes, we take B(v) = B,(v) for
all ve V and for each (v, w)e E we rank B(v) in B(w). We can perform this ranking
step by the following method. Assign a processor to each element b in B(v) for all
ve Vin parallel. The processor for b can find the rank of b in each B{(w) such that
w e Out(v, G) in O(1) time because B,(v) contains Bj(w) as a proper subset (B.(w)
was one of the lists merged to make B,(v)). This processor can then determine the

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

510 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

rank of b in B(w) = B,(w) for each we Out(v, G) in O(1) time by using the ranking
information we maintained (from B,(w) to B,(w)) for stage s (rank condition (2)
above).

Given a walk W= (v, -+, v,), and an arbitrary element x, the query that asks
for locating x in every C(v;,) is called the multilocation of x in (v,, - - - , v,,). To perform
a multilocation of x in a walk (vl, . v,,,) we extend the walk W in G to its
corresponding walk W= (Dy, -, 0p)in G and perform the corresponding multiloca-
tion in G, similar to the method glven by Chazelle and Guibas [12] for performing
multilocations in their data structure. The multilocation begins with the location of x
in B(9,) = B(v}), the gateway bridge list for v,, by binary search. For each other vertex
in this walk we can locate the position of x in B(%;) given its position in B(%,_,) in
O(1) time. The method is to follow the pointer from x’s predecessor in B(d;_,) to the
predecessor of that element in B(%;) and then locate x in B(%;) by a linear search from
that position (which will require at most 15 comparisons by Corollary 3.4). In addition,
if 0; corresponds to a gateway v’, then we can locate x in C(v) in O(1) time given its
position in B(v') by a similar argument. (See Fig. 3.) Since each edge in the walk W
corresponds to a path in W of length at most O(log d(G)), this implies that we can
perform the multilocation of x in (v, ,v,) in O(log|B(v})|+m log d(G)) time.
In other words, G is a fractional cascadmg data structure. We show that G uses O(n)
space in the following lemma.

in G:
O’___C_L-——PO\C%O
U1 vz U3

A multilocation in ¢ (in G):

B(v}) B(ey) B(v}) B(ez) B(v})

binary — —
search

i,

_—
L]

C(vs)
C(v1)

C(vz)

F1G. 3. Multilocating an element x in (v, v,, v3).

LemMA 3.5. Let n, denote the amount of space that is added to G because of the
presence of a particular catalogue C(v), ve V. Then n,=2|C(v)|.

Proof. Recall that while constructing the bridge lists in G we copy one-fourth of
the elements in each bridge list to at most two of its neighbors. Thus, we have the

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 511

following:
n, =[C ()| +2[|C()|/4] +2°[|C(0)|/ 4] +2°[|C(v)|/ 4] +- - -
=2|C(v)|.

(This is obviously an overestimate, but it is good enough for the purposes of the
analysis.) 0

COROLLARY 3.6. The total amount of space used by the fractional cascading data
structure is O(n), where n=|V|+|E|+Y ., |C(v)|.

Proof. The total amount of space used by the fractional cascading data
structure is O(|V|+|E|+Y,.¢|B(v)]). Since all the bridge lists start out empty,
Lo |B(0))=L,cy no- The previous lemma implies that %, n,= Yoy 2|C (V).
Therefore, since |V|+|E| is O(|V|+|E|) by the definition of G, the total amount of

space used by the fractional cascading data structure is O(n). 0

Note that the upper bound on the space of the fractional cascading data structure
holds even if G contains cycles. This corollary, then, implies that we can construct a
fractional cascading data structure G from any catalogue graph G in O(log n) time
and O(n) space using n processors, even if G contains cycles. We have not shown,
however, how to assign these n processors to their respective jobs.

The method for performing the processor allocation is as follows. Initially, we
a551gn 2|C(v)| virtual processors to each node ve V and no processors to each node
ve V— V. This requires at most 2n virtual processors; hence, can be easily simulated
with n actual processors. Each time we pass k elements from a node v to a node w
(in performing the merge at node w) we also pass along (exactly) k virtual processors
to go with them. When we say that we are passing a virtual processor from some node
v to some node w, all we are actually changing is the node to which that processor is
assigned. Since, by Lemma 3.5, n, =2|C(v)|, we know that there are enough virtual
processors assigned to v € V to do this. To see that this also suffices for ve V-V note
that at the beginning of stage s node v has |B,_,(v)| elements (and processors). We
“give away” at most 2||B,_,(v)|/4] elements (and processors) from B,_,(v) in stage
s and receive |B,(v)| elements (and processors). Consequently, there are enough
processors to perform the merge to construct B,(v) and repeat the give-away procedure
for the next stage. In addition, since we pass a processor for each item we pass to
another node, each processor p; can maintain not only which node it is assigned but
p: can also maintain m,, the number of other processors that are assigned to that node,
as well as maintaining a unique integer identification for itself in the range [1, m,].
Thus, we have the following lemma.

LeEmMMA 3.7. Given any catalogue graph G, we can construct a fractional cascading
data structure for G in O(log n) time and O(n) space using n processors in the CREW
PRAM model. O

Thus, we can solve the fractional cascading problem in O(log n) time using n
processors. For the applications we study in this paper, however, we can do even
better. The following lemma enumerates two important situations where the method
just described can be improved.

LeEMMA 3.8. Given any catalogue graph G, if d(G) is O(1) or if we are given
Out(v, G) in sorted order for each v e V, then the total number of operations performed
by the fractional cascading algorithm is O(n).

Proof. If d(G) is O(l) or we are given Out(v, G) in sorted order, then the
construction of the graph é (without any bridge lists) requires only O(n) operations,
since we do not have to perform any sorting. Let us account for the total work performed

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

512 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

by computing the total number of other operations that are performed because of the
fact that the catalogue for each node v contains |C(v)| elements (we will only charge
vertices in V). Let s, be the first stage that B,(v’) becomes nonempty. In this stage
B,(v') receives one element of C(v) from v, and hence we charge one operation in
stage s, for the node v. In stage s,+1 we will then perform at most 3 operations, at
most 7 in stage s,+2, at most 15 in stage s, + 3, and so on. As soon as B,(v’) contains
at least four elements from v (as early as stage s, +2), then we will perform one more
operation, passing one element to the fan-in tree for v. In the next stage, s,+3, we
will perform at most two additional operations, then at most four additional operations
in stage s,+4, and so on. This pattern will “ripple” back through the fan-in tree for
v and on through the graph G for as long as the computation proceeds. Specifically,
the number of operations charged to a node v € V is, at most, the sum of the following
k, = [log,|C(v)|] rows:

13 7 15 31 63 127 - -- |C(v)|
2%1 2x3 2x7 2%15 2x31 --- 2||C(v)|/4]
22%1 2°%3 22x7 .- 2%||C(v)|/4%)

2'{*1

where the number in row i and column j corresponds to the maximum number of
operations performed in stage s,+j—1 at nodes at distance i from v because of the
fact that the catalogue at node v contains |C(v)| elements. (This is actually an
overestimate, since not all nodes in G have out-degree 2). Summing the number of
operations for each row, and then summing the rows, we get that the number of
operations charged to ve V is at most 2(|C(v)|+2||C(v)|/4] +2°||C(v)|/4°] +- - -+
2%), which is at most 4/C(v)|. Thus, the total number of operations performed by the
fractional cascading algorithm is O(n). 0

This lemma immediately suggests that we may be able to apply Brent’s theorem
to the fractional cascading algorithm so that it runs in O(log n) time using [n/log n]
processors.

THEOREM 3.9 ([11]). Any synchronous parallel algorithm taking time T that consists
of a total of N operations can be simulated by P processors in O(| N/P]+ T) time.

Proof of Brent’s theorem. Let N; be the number of operations performed at step
i in the parallel algorithm. The P processors can simulate step i of the algorithm in
O([N,/P1]) time. Thus, the total running time is O(| N/P|+T):

T T
Y [N/PI= ¥ (IN/P|+1)=|N/P|+T. o
i=1 i=1

There are two qualifications we must make to Brent’s theorem before we can apply
it in the PRAM model, however. The first is that we must be able to compute N; at
the beginning of step i in O(] N;/ P]) time using P processors. And, second, we must
know how to assign each processor to its job. Thus, in order to apply Brent’s theorem
to our problem of doing fractional cascading, we must deal with these processor
allocation problems.

Let I'={p;, ps, -, pm} be the set of virtual processors used in the fractional
cascading algorithm (with m=2n), and let I'={p}, p5, - -, Plaji0g n1} b€ the set of
processors we will be using to simulate the fractional cascading algorithm. Assuming
that d(G) is constant or we are given the list of vertices in Out(v, G) in sorted order,
we can compute the graph G and the initial assignment of processors from I', so that

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 513

we assign 2|C(v)| virtual processors to each node ve V, in O(log n) time using the
processors in I by a parallel prefix computation. (Recall that the problem of computing
all prefix sums ¢ =Zf=l a; of a sequence of integers (a,, a,,* -+, a,) can be done in
O(log n) time using [n/log n] processors [21], [22].) Let v(p;) denote the vertex in
G to which pi €T is assigned. Recall that we will be “passing” the processor p; around
G during the computation, so the value of v(p;) can change from one stage to the
next. Once a processor p; becomes active, it stays active for the remainder of the
computation. So, the only thing left to show is how to compute the number of processors
active in stage s, and to assign the processors in I to their respective tasks of simulating
the processors in I'. We do this by sorting the set of processors in I by the stage in
which they become active. It is easy to compute the stage in which a processor p;
becomes active in O(1) time, because this depends only on the initial value of v(p;)
and the size of C(v(p;)) relative to N (the size of the largest catalogue). We can sort
the processors in I' by the stage in which they become active in O(log n) time using
the [n/log n] processors in I, by using an algorithm from Reif [23] (since the stage
numbers fall in the range [1, [log N]]). Thus, by performing a parallel prefix computa-
tion on this ordered list of processors, we can determine the number of processors
active in each stage s, and also know how to assign the processors in I so that they
optimally simulate the activities of the processors in I' during stage s. We thus have
established the following theorem.

THEOREM 3.10. Given a catalogue graph G =(V, E), such that d(G) is O(1) or
given each Out(v, G) set in sorted order, we can build a fractional cascading data structure
for G in O(log n) time and O(n) space using [n/log n] processors in the CREW PRAM
model, where n=|V|+|E|+Y. _, |C(v)|. This bound is optimal. O

4. The plane-sweep tree data structure. In this section we define a data structure,
which we call the plane-sweep tree, and show how to use it and the fractional cascading
procedure of the previous section to solve the trapezoidal decomposition problem and
the planar-point location problem in O(log n) time using n processors. Since the
construction of this data structure is quite involved, we merely define the data structure
now, and show how to construct it in these same bounds in § 5.

Let S={s, 55, -, s, be a set of nonintersecting line segments in the plane, and
let X(S)=(a;,a,, -, a,,) be the (nondecreasing) sorted list of the x-coordinates
of the endpoints of the segments in S. To simplify the exposition, we assume that no
two endpoints in S have the same x-coordinate, i.e., a; < a; ;. Let X' = (x,, X5, " * *, Xmm)
be some subsequence of X (S) and let T be the complete binary tree whose m+1
leaves, in left to right order, correspond to the intervals (—0, x,], [x1, x,1, [x2, X131,
<o [Xme1s Xm], [Xm, +00), respectively. Associated with each internal node ve T is
the interval I, which is the union of the intervals associated with the descendants of
v. Let II,, denote the vertical strip I, X (=0, +00). We say a segment s; covers a node
ve T if it spans 11, but not II ,,...,). No segment covers more than two nodes of any
level of T; hence, every segment covers at most O(log m) nodes of T. For each node
ve T we let Cover(v) denote the set of all segments in S that cover v.

The idea of using a tree data structure such as this to parallelize plane-sweeping
is due to Aggarwal et al. [1] and is itself based on the “segment tree” of Bentley and
Wood [8]. The data structure of Aggarwal et al. consists of the tree T described above
with X'= X(S) (i.e., it has 2n+1 leaves). Aggarwal et al. store the list Cover(v) at
each node v sorted by the “above” relation for line segments. They construct these
lists by first collecting the segments in each Cover(v) and then sorting all the Cover(v)’s
in parallel, an operation that requires ®(log” n) time using n processors [13], since

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

514 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

there are a total @(n log n) items to sort. Once these lists are constructed the data
structure can then be used to solve various problems by performing certain searches
on the nodes of T. These searches are of the following nature: given a set of O(n)
input points, for each point p locate the segment in Cover(v) that is directly above
(or below) p, for all v € T such that p € I1,. Notice that for the leaf-to-root walk starting
with the leaf v such that p € I1,, this search can be solved by the multilocation of p in
that walk. Aggarwal et al. [1] perform all O(n) multilocations in O(log® n) time using
n processors by assigning a processor to each point p and doing a binary search for
p in all the Cover(v) lists such that p e Il, (there are O(log n) such lists for each p).

Although based on the structure of Aggarwal et al., the plane-sweep tree differs
from it in some important ways. One such difference is that the plane-sweep tree allows
us to perform O(n) multilocations in O(log n) time using n processors, after a
preprocessing step that takes O(log n) time using n processors. Also, instead of taking
X' to be the entire X (S) list, we define X' to be the list consisting of every [log nth
element of X (S),i.e., X'=SAMP ., (X(S)). Thus, each vertical strip II, associated
with a leaf of T in our construction contains O(log n) segment endpoints. Like Aggarwal
et al., we also store each Cover(v) list sorted by the “above” relation. In addition, for
every node v of T we define the set End(v) as follows:

End(v) ={s;|s; € S, has an endpoint in II,, and does not span II,}.

Although End(v) is defined for each node of T we only construct a copy of End(v)
if v is a leaf node. We do not store the elements of any End(v) in any particular order.
This is due to the fact that End(v) contains O(log n) segments for any leaf node;
hence a single processor can search the entire list in O(log n) time.

Note that all the segments in the Cover(v)’s of any root-to-leaf path in T are
comparable by the “above” relation. Thus, if we direct all the edges in T so that each
edge goes from a child to its parent, then the elements stored in any directed walk in
T are all comparable by the “above” relationship. Therefore, we can apply the fractional
cascading technique of the previous section to T (with each Cover(v) playing the role
of the catalogue C(v)). Since T has bounded degree and has O(n log n) space, we
can, by Theorem 3.10, construct a fractional cascading data structure T for T in
O(log n) time and O(n log n) space using n processors. This data structure allows us
to perform the multilocation of any point p (in a leaf-to-root walk) in O(log n) time
(O(log n) for the binary search at the leaf, and an additional O(1) for each internal
node on the path to the root). We also store the set End(v) in each leaf v of T. The
plane-sweep tree data structure, then, consists of the tree T constructed from T by
fractional cascading, where T is defined with X' = SAMP,, .1 (X(S)), has Cover(v)
stored in sorted order for every node v e T, and the set End(v) stored (unsorted) for
each leaf node ve T (see Fig. 4).

In § 5 we show how to construct this data structure efficiently in parallel. Since
the construction is rather involved, before giving the details of the construction, we
give two applications of this data structure. We begin with the trapezoidal decomposi-
tion problem.

4.1. The trapezoidal decomposition problem. Let S={s,,s,, -, s,} be a set of
nonintersecting line segments in the plane. For any endpoint p of a segment in S a
trapezoidal segment for p is a segment of S that is directly above or below p such that
the vertical line segment from p to this edge is not intersected by any other segment
in S. The trapezoidal decomposition problem is to find the trapezoidal segment(s) for
each endpoint of the segments in S. Even in the parallel setting, this problem is often

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 515

(6,11) (3)

{5,2,3} {10,11,7,6}
VRN O U |
r"“/——‘l 1
1 : : 8
T [} : 7

i

L
]
T3
]

F1G. 4. A portion of a plane-sweep tree. The segments are numbered in this example by embedding the
“above’ relation of § 2 in the total order 1,2, - - - | 11. For simplicity we denote the list Cover(v) by parentheses
and the set End(v) by set braces.

used as a building block to solve other problems, such as polygon triangulation [1],
[19], [28] or shortest paths in a polygon [16].

THEOREM 4.1. A trapezoidal decomposition of a set S of n nonintersecting segments
in the plane can be constructed in O(log n) time using n processors in the CREW PRAM
model, and this is optimal.

Proof. Construct the plane-sweep tree data structure T for S. Theorem 5.2 (to be
given later, in § 5) shows that this structure can be constructed in O(log n) time using
n processors. And we already know that T can be made into a fractional cascading
data structure T in these same bounds. We assign a single processor to every segment
endpoint (there are 2n such points). Let us concentrate on computing the trapezoidal
segment below a single segment endpoint p. Let (v, - - -, root(T)) be the leaf-to-root
path in T that starts with the leaf v such that p €Il,. We first search through End(v)
to see if there are any segments in this set that are below p, and take the one that is
closest to p (recall that End(v) contains O(log n) segments). We then perform the
multilocation of p in the leaf-to-root walk starting at v, giving us for each w such that
pell, the segment in Cover(w) directly below p. We choose among these [log n]
segments the segment that is closest to p. Comparing this segment to the one (possibly)
found in End(v), we get the segment in S, if there is one, that is directly below p.
Since the length of the walk from v to root(T) is at most [log n], by the method
outlined at the end of § 3 [12], this computation can be done in O(log n) time using
n processors. Since the two-dimensional maxima problem can be reduced to trapezoidal
decomposition in O(1) time using n processors [17], and the two-dimensional maxima
problem has a sequential lower bound of Q(n log n) in the algebraic computation tree
model [7], [20], we cannot do better than O(log n) time using n processors. 0

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

516 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

Solving the trapezoidal decomposition problem efficiently in parallel has proven
to be an important step in triangulating a polygon efficiently in parallel [1], [2], [5],
[17], [28]. In fact, Theorem 4.1 is used in the algorithms of Goodrich [19] and Yap
[28] to achieve an O(log n) time solution to polygon triangulation using only n
processors. We next point out that the plane-sweep tree can also be used to solve the
planar point location problem.

4.2. The planar point location problem. The planar point location problem is the
following: Given a planar subdivision S consisting of n edges, construct a data structure
that, once constructed, enables one processor to determine for a query point p the
face in S containing p. This problem has applications in several other parallel computa-
tional geometry problems, such as Voronoi diagram construction.

THEOREM 4.2. Given a planar subdivision S consisting of n edges, we can construct
a data structure that can be used to determine for any query point p the face in S containing
p in O(log n) serial time. This construction takes O(log n) time using n processors in the
CREW PRAM model.

Proof. The solution to this problem is to build the plane-sweep tree data structure
for S (with fractional cascading) and associate with each edge s; the name of the face
above s;. As already mentioned, Theorem 5.2 (to be given later, in § 5) shows that the
tree T can be constructed in O(log n) time using n processors. Also recall that T can
be made a fractional cascading data structure T in these bounds. Let a query point p
be given. A planar point location query for p can be solved in O(log n) serial time by
performing a multilocation like that used in the proof of Theorem 4.1 to find the
segment in S directly below p. After we have determined the segment s; in S that is
directly below p, we then can read off the face of S containing p by looking up which
face is directly above s;. g

Incidentally, Theorem 4.2 immediately implies that the running time of the Voronoi
diagram algorithm of Aggarwal et al. [1] can be improved from O(log® n) to O(log> n),
still using only n processors. (We have recently learned that in the final version of
their paper [2], they reduce the time bound of their algorithm to O(log” n) using a
substantially different technique.)

The results of §§ 4.1 and 4.2 are conditional: they hold if we can construct the
plane-sweep tree data structure efficiently in parallel. We next show how to construct
the plane-sweep tree in O(log n) time using only n processors.

5. Cascading with line segment partial orders. In this section we show how to
modify the cascading divide-and-conquer technique of § 2 to solve some geometric
problems in which the elements being merged belong to the partial order defined by
a set of nonintersecting line segments. Recall that in this partial order a segment s, is
“above” a segment s, if there is a vertical line that intersects both segments, and its
intersection with s, is above its intersection with s,. We apply this technique to the
problems of constructing the plane-sweep tree data structure and of detecting if any
two of n segments in the plane intersect.

We now give a brief overview of the problems encountered and our solutions to
them. The essential computation is as follows: we have a binary tree with lists stored
in its leaves, and we wish to combine them in pairs (up the tree) to construct lists at
internal nodes. The main difficulty is that the list stored at some node v is not defined
as a simple merge of the lists stored at the children of v. Instead, its definition involves
deleting elements from lists stored at children nodes before performing a merge. These
deletions are quite troublesome, because if we try to perform these deletions while
cascading, then the rank information will become corrupted, and the cascade will fail.

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 517

On the other hand, if we try to postpone the deletions to some postprocessing step,
then there will be nondeleted elements that are not comparable to others at the same
node; hence, there will be instances when processors try to compare two elements that
are not comparable, and the cascade will fail. The main idea of our method for getting
around these problems is to embed partial orders in total orders “on the fly” while
we are cascading up the tree. That is, we change the identity of segments as they are
being passed up the tree, so that the segments in any list are always linearly ordered.
To be able to do this, however, we must do some preprocessing that involves simul-
taneously performing a number of cascading merges in parallel. We complete the
computation by performing a purging postprocessing step to remove the segments that
“changed identity” (as an alternative to being deleted).

For the intersection detection problem, we need to dovetail the detection of
intersections with the cascading. That is, we cascade the results of intersection checks
along with the segments being passed up the tree. The complication here is that if we
should ever detect an intersection on the way up the tree we cannot stop and answer
“yes” as this would require O(log n) time (to “fan-in” all the possible answers). Thus
we are forced to proceed with the merging until we reach the root, even though in the
case of an intersection the segments being merged no longer even belong to a partial
order. We show that in this case we can replace the segment with a special place holder
symbol so that the cascades can proceed. After the cascading merge completes we
perform some postprocessing to then check if any intersections are present.

The next two subsections give the details.

5.1. Plane-sweep tree construction. In this subsection we describe how to construct
the Cover(v) lists for each node v in the plane-sweep tree 7. We begin by making a
few definitions and observations. We let left (I1,) (respectively, right (II,)) denote the
left (right) vertical boundary line for I1,. We define the dominator node of a segment
s;, denoted dom(s;), to be the deepest node v (i.e., farthest from the root) in T such
that s; is completely contained in II,. That is, the dominator of s; is the node v such
that s; does not intersect left (I1,) or right (II,), but s; does intersect the vertical
boundary separating 1,4y and I1,44(,). In addition, we define the following sets
for each node ve T:

L(v) ={s;|s; € End(v) and s; N left (II,) # &},

R(v)={s;|s; € End(v) and s; Nright (I1,) # &},
I(v, d)={s;|s;€ L(v) and d = depth(dom(s;))},
r(v, d) ={s;|s;e R(v) and d = depth(dom(s;))}.

Note that I(v, d) and r(v, d) are only defined for 0=d < depth(v). Any time we
construct one of these sets it will be ordered by the “above” relation, so for the
remainder of this section we represent these sets as sorted lists. In the following lemma
we make some observations concerning the relationships between the various lists
defined above.

LeEMMA 5.1. Let v be a node in T with left child x and right child y. Then we have
the following (see Fig. 5):

1) l(v,d)=Ux,d)UIl(y,d) ford<depth(v),

2) r(v,d)=r(x,d)Ur(y,d) ford<depth(v),
3) L(v)=Ulv,0)Ul(v,1)U- - -Ul(v, depth(v)—1),
(4) R(w)=r(v,0)Ur(v,1)U---Ur(v, depth(v)—1),
(5) L(v)=L(x)U(L(y)—I(y, depth(v))),

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

518 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

v v
in l(z,d) /\ All in some ©
2y I(v, d) for \\i\

!
|
in I(y,d) | E d< depth(v) —————

|]

a b
(=) in L(y) — l(y, depth(v)) ®

in L(z) v v

1
) in I(y, depth(v))
also in I(y, depth(v)) and not in Cover(z)
(c) (d)
F1G.5. Theplane-sweep tree equations.(a) l(v, d) =1(x, d) U 1(y, d); (b) L(v) = I(v, 0) U I(v, depth(v) —1);
(¢) L(v) = L(x) U (L(y) = I(y, depth(v))); (d) Cover(x)=L(y)—1(y, depth(v)).
(6) R(v)=(R(x)—r(x, depth(v)))U R(y),
(7) Cover(x)=L(y)—I(y, depth(v)),
(8) Cover(y)= R(x)—r(x, depth(v)).

Proof. The proof follows from the definitions. o

Lemma 5.1 essentially states that the lists [, r, L, R, and Cover for the nodes on
a particular level of T can be defined in terms of lists for nodes on the next lower
level of T. We could use this lemma and the parallel merge technique of Valiant [26],
as implemented by Borodin and Hopcroft [10], to construct a sorted copy of each
Cover(v) list in O(log n log log n) time using n processors, improving on the previous
bound of O(log” n) time using the same number of processors, due to Aggarwal et al.
[1]. We can do even better, however, by exploiting the structure of the L and R lists.
We describe how to do this below, in order to achieve a running time of O(log n) still
using n processors. Before going into the details of the plane-sweep tree construction,
we give a brief overview of the algorithm.

HiGH-LEVEL DESCRIPTION OF PLANE-SWEEP TREE CONSTRUCTION.

The construction consists of the following four steps:

Step 1. Construct I(v, d) and r(v, d) for every ve T. To implement this step, we
perform [log n] generalized cascading merges in parallel (one for each d) based on
(1) and (2) of Lemma 5.1 (starting with the leaf nodes of T). We implement this step
in O(log n) time using n processors in total for all the merges.

Step 2. Let d, = depth(parent(v)). Compute for each segment in I(v, d,) (respec-
tively, r(v, d,)) its predecessor segment in L(v) — (v, d,) (respectively, R(v) —r(v, d,))
based on (3) and (4). We do this, for each v € T, by making d, copies of I(v, d,) and
r(v, d,), and merging I(v, d,) (respectively, r(v, d,)) with all the I(v, d) (respectively,
r(v, d)) such that d <d,. Note: we perform this step without actually constructing
L(v) or R(v).

Step 3. Construct L(v) and R(v) for every ve T. To implement this step we
perform a generalized cascading merge procedure based on (5) and (6) and the
information computed in Step 2 (starting with the leaf nodes of T). We never actually
perform the set difference operations of (5) and (6), however. Instead, at the point in
the merge that a segment in, say, I(v, d,), should be deleted we ‘““change the identity”

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 519

of that segment to its predecessor in L(v) ~ (v, d,) (which we know from Step 2). That
is, from this point on in the cascading merge this segment is indistinguishable from
its predecessor in L(v) — (v, d,). We show below that (i) the cascading merge will not
be corrupted by doing this, (ii) the lists never contain too many duplicate entries (that
would require us to use more than n processors), and (iii) after the merge completes,
we can construct L(v) and R(v) for each node by removing duplicate segments in
O(log n) time using n processors.

Step 4. Construct Cover(v) for every v € T using (7) and (8) and the lists construc-
ted in Step 3. The implementation of this step amounts to compressing each L(v)
(respectively, R(v)) so as to delete all the segments in I(v, d,) (respectively, r(v, d,)),
and then copying the list of segments so computed to the sibling node in T.

EnD ofF HiGH-LEVEL DESCRIPTION.

We now describe how to perform each of these high-level steps.

5.2. Step 1: Constructing I(v, d) and r(v, d). We construct the I(v, d) and r(v, d)
lists as follows. We make [log n] copies of T, and let T(d) denote tree number d.
Note that by our definition of T the space needed to store the ‘“‘skeleton” of each
T(d) is O(n/log n). This of course results in a total of O(n) space for all the T(d)’s.
For each node v of T(d) such that depth(v)> d we wish to construct the lists I(v, d)
and r(v, d), as given by (1) and (2) of Lemma 5.1. This implies that if we store I(v, d)
(respectively, r(v, d)) in every leaf node v of T(d), then for any node ve T(d), I(v, d)
is precisely the sorted merge of the lists stored in the descendants of v. We start with
the elements belonging to I(v, d) (respectively, r(v, d)) stored (unsorted) in a list A(v)
for each leaf v in T(d), and construct each (v, d) and r(v, d) by the generalized
cascading merge technique of Theorem 2.5 (using the A(v)’s as in the theorem). Note:
since I(v, d) and r(v, d) are only defined for d < depth(v), we only proceed up any
tree T(d) as far as nodes at depth d + 1, terminating the cascading merge at that point.
We allocate | n/log n]+ N, processors to each tree T(d), where N, denotes the number
of segments stored initially in the leaves of T(d). Thus, since Y°%"! N, = n, we have
shown how to construct all the /(v, d) and r(v, d) lists in O(log n) time and O(n log n)
space using n processors.

5.3. Step 2: Computing predecessors. In Step 2 we wish to compute for each
segment in the list (v, d,) (respectively, r(v, d,)) its predecessor segment in L(v)—
I(v, d,) (respectively, R(v)—r(v, d,)), where d,= depth(parent(v)). Without loss of
generality, we restrict our attention to the segments in /(v, d,) (the treatment for the
segments in r(v,d,) is similar). Recall that (3) and (4) state that L(v)=
(v, 0)Ul(v,1)U---Ul(v,d,) and that R(v)=r(v,0)Ur(v, YU -Ur(v,d,). We
make d, copies of I(v, d,) and, using the merging procedure of Shiloach and Vishkin
[25] or that of Bilardi and Nicolau [9], we merge a copy of I(v, d,) with each of
I(v,0),-+-,l(v,d,—1). This takes O(logn) time wusing [|L(v)|/logn]+
[d,|l(v, d,)|/log n] processors for each v e T. Since (i) there are O(n/log n) nodes in
each T(d); (ii) each segment appears exactly once in some I(v, d,); and (iii))., .+ | L(v)|
is O(n log n), we can implement all these merges in parallel using n processors. Once
we have completed all the merges, we assign a single processor to each segment s; and
compare the predecessors of s; in I(v,0), - - -, (v, d,— 1) so as to find the predecessor
of s; in L(v)—1I(v,d,) (=1(v,0)U---Ul(v,d,—1)). This amounts to O(log n) addi-
tional work for each s;; thus Step 2 can be implemented in O(log n) time using n
processors.

5.4. Step 3: Constructing L(v) and R(v). In this step we perform another cascading
merge on T this time to construct L(v) and R(v) for each ve T based on (5) and (6)

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

520 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

of Lemma 5.1. Initially, we have L(v) and R(v) constructed only for the leaves. We
then merge these lists up the tree based on (5) and (6) as in Theorem 2.5. The
computation for this step differs from the cascading merge of Step 2, however, in that
we need to be performing set-difference operations as well as list merges as we are
cascading up the tree. Unfortunately, it is not clear how to perform these difference
operations on-line any faster than O(log n) time per level, which would result in a
running time thatis O(log’ n). We get around this problem by never actually performing
the difference operations. That is, we do not actually delete segments from any lists.
Instead, we change the identity of a segment s; in say, I(y, d,), to its predecessor in
L(y)—1(y, d,) when we are performing the merge as node v, where y = rchild (v) (see
Fig. 6). We do this instead of simply marking s, as “‘deleted” in L(v), because segments
in I(y, d,) may not be comparable to segments in L(x) (the list with which we wish
to merge L(y)—1(y, d,)). Simply marking a segment as being “deleted” could thus
result in a processor attempting to compare two incomparable segments.

U(z) = (—o0,—00,—00,—00,—00,—00,—00, —00)
Uw) = (1,1,1,1,1,2,7,7)

Uu) = (1,3,3,3,5,7, 8)

U(v) = (1,3,4,6,7,8)

F1G. 6. Segment identity changing during the cascading merge. We illustrate the way segment names
change identity to that of their predecessor as we are performing the cascading merge. In this case we are
constructing the L(v)’s. We denote the predecessor of each segment by a dotted arrow.

Clearly, the fact that we change the identity of a segment in I(y,d,) to its
predecessorin L(y) — I(y, d,) means that there will be multiple copies of some segments.
This will not corrupt the cascading merge, however, because one of the properties of
the “above” relation for segments is that all duplicate copies of a segment will be
contiguous. Moreover, they will remain contiguous as the cascading merge proceeds
up the tree. In addition, even though we will have multiple copies of segments in lists
as they are merging up the tree, we can still implement this step with a total of n
processors, because there will never be more items present in any L(v) than the total
number of items stored in the (leaf) descendants of v. At the end of this step we assign
[|L(v)|/log n] processors to each v and compress out the duplicate entries in L(v) in
O(log n) time. Thus, we can construct L(v) and R(v) (compressed and sorted) for
each ve T in O(log n) time using n processors.

5.5. Step 4: Constructing Cover(v). In this step we construct Cover(v) for every
vin T, based on (7) and (8) of Lemma 5.1. We implement this step by first compressing
each L(v) (respectively, R(v)) so as to delete all the segments in I(v, d,) (respectively,

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 521

r(v, d,)), and then by copying the list of segments so computed to the sibling of v in
T. This can all be done in O(log n) time using n processors.

Thus, summarizing the entire previous section, we have the following theorem.

THEOREM 5.2. Given a set S of nonintersecting line segments in the plane, we can
construct the plane-sweep tree T for S in O(log n) time using n processors in the CREW
PRAM model, and this is optimal.

Proof. We have already established the correctness and complexity bounds. To
see that our construction is optimal, note that the plane-sweep tree requires Q(n log n)
space. 0

In the previous sections we assumed that segments did not intersect. Indeed, T
is defined only if they do not intersect. We show in the next section that we can detect
an intersection, if there is one, by constructing T while simultaneously checking for
intersections.

5.6. The segment intersection detection problem. The problem we solve in this
section is the following: given a set S of n line segments in the plane, determine if
any two segments in S intersect. We begin by stating the conditions that we use to test
for an intersection.

LEMMA 5.3 [1]. The segments in S are nonintersecting if and only if we have the
following for the plane-sweep tree T of S:

(1) For every ve T all the segments in Cover(v) intersect left (I1,) in the same order
as they intersect right (IL,).

(2) For every ve T no segment in End(v) intersects any segment in Cover(v). 0

Aggarwal et al. [1] used this lemma and their data structure to solve the intersection
detection problem in O(log® n) time using n processors. Their method consisted of
constructing the Cover(v) lists independently of one another, basing comparisons on
segment intersections with left (I1,), and then testing for condition (1) by checking if
each list Cover(v) would be in the same order if they based comparisons on segment
intersections with right (I1,). If no intersection was detected by this step, then they
tested for condition (2) by performing O(n) multilocations of segment endpoints. This
entire process took O(log” n) time using n processors.

We use this lemma by testing for condition (1) while we are constructing the
plane-sweep tree for S (instead of waiting until after it has been built) and in so doing
we achieve an O(log n) time bound for this test (since our construction takes only
O(log n) time). We test condition (2) in the same fashion as Aggarwal et al., that is,
by doing O(n) multilocations after the plane-sweep tree has been built. Since with our
data structure the multiplications can all be performed in O(log n) time, the entire
intersection-detection process takes O(log n) time using n processors.

Since we do not construct the Cover(v) lists independently of one another, but
instead construct them by performing several cascading merges, we must be very careful
in how we base segment comparisons, and in how we test for condition (1). For if two
segments intersect, then determining which segment is above the other depends on the
vertical line upon which we base the comparison.

We consider each step of the construction in turn, beginning with Step 1. Recall
that in Step 1 we construct all the I(v, d) and (v, d) lists for each v € T. In the following
lemma we show that if we base segment comparisons on appropriate vertical lines,
Step 1 can be performed just as before.

LeEmMMA 5.4. Let ve T and 0=d <depth(v) be given, and let s, and s, be two
segments such that s, € l(w,d) and s,€l(z, d) (or s,er(w,d) and s,e r(z, d)), where
w, z € Desc(v). Then dom(s,) = dom(s,).

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

522 M.]. ATALLAH, R. COLE, AND M. T. GOODRICH

Proof. Let ve T and 0=d = [log n] be given. Recall that I(v, d) (respectively,
r(v, d)) is defined to be the list of all segments in L(v) (R(v)) that have a dominator
node at depth d in T. Note that the dominator node for any segment s; in I(w, d),
r(w,d), I(z,d), or r(z,d), where w, ze Desc(v), must be an ancestor of v, since
d <depth(v) and, by definition, s; € End(v) and s; € End(dom(s;)). There is only one
node that is an ancestor of v and is at depth d in T. 0

Thus, we can perform the merges based on (1) and (2) of Lemma 5.1 (e.g.,
I(v,d)=1(x,d)UI(y, d)) by basing all segment comparisons on the intersection of the
segments with the vertical boundary separating the two children of their dominator
node. That is, if s, and s, are two segments to be compared in Step 1, then we say
that s, is ““above” s, if and only if the intersection of s, with L is above the intersection
of s, with L, where L is the vertical boundary line separating the two children of
dom(s,) (=dom(s,)).

In Step 2 we computed for each segment in [(v, d,) (respectively, r(v, d,)) its
predecessor segment in L(v)—I(v,d,) (respectively, R(v)—r(v,d,)), where d,=
depth(parent(v)). Recall that we did this by merging [(v,d,) with each of
I(v,0), -, I(v,d,—1). A similar computation was done for r(v, d,); without loss of
generality, we concentrate on the computation involving (v, d,). Also recall that all
the segments in I(v,0), - - -, I(v, d,) belong to L(v); hence they intersect left (11,). After
Step 1 finishes, each list I(v, d) will be sorted based on segment intersections with the
vertical boundary line separating the two children of the ancestor of v at depth d (the
dominator of all the segments in /(v, d)). In O(log n) time we can check if this order
is preserved in each of (v, 0), - - -, I(v, d,) if we base segment intersections on left (I1,),
instead. If the order changed in any [(v, d), then we have detected an intersection,
and we are done. Otherwise, we proceed with Step 2 just as before, basing comparisons
on segment intersections with left (11,).

In Step 3 we performed a cascading merge up the tree T, constructing L(v) and
R(v) for every node v e T. Recall that this cascading merge was based on (5) and (6)
of Lemma 5.1 (e.g., L(v)= L(x)U (L(y)—I(y, depth(v)))). Let us concentrate on the
testing procedure for the L(v)’s, since the method for the R(v)’s is similar. Initially,
let us start with each L(v) constructed at the leaves of T sorted by segment intersections
with left (IT,). Thus, before we perform the merge based on the equation L(v) = L(x)U
(L(y)—I(y, depth(v))), we must first check to see if the segments in the sample of
L(y)—1I(y, depth(v)) (to be merged with the sample of L(x)) have the same order
independent of whether comparisons are based on segment intersections with left (I1,)
or left (I1,)). Unfortunately, to do this completely would require O(log n) time at every
level of the tree, resulting in an O(log® n) time algorithm. So, instead of broadcasting
at each level whether an intersection has occurred or not, we cascade that information
up along with the merges. More precisely, before doing the merge at a node v, we test
if every consecutive pair of items in the sample of L(y)—I(y, depth(v)) would remain
in the same order independent of whether comparisons were based on segment
intersections with left (II,) or with left (I,). If we detect that an intersection has
occurred, then we will have two elements that are out of order. If this should occur,
we replace both items by the distinguished symbol $. Then, as the merges continue up
the tree, any time we compare an item with $, we replace that item with $ and proceed
just as before. This keeps the merging process consistent, and after the cascading merge
completes we can then in O(log n) time test if any of the items in any L(v) or R(v)
contain a $ symbol, by assigning [|L(v)|/log n] processors to each ve T.

In Step 4 we constructed Cover(v) for each v e T. Recall that we did this by simply
performing compressing and copying operations on lists constructed in Step 3. Thus,

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 523

assuming that no intersection was detected in Step 3, we can perform Step 4 just as
before. After Step 4 completes we can assign [|Cover (v)|/log n] processors to each
ve T and test condition (1) directly in O(log n) time, checking if the items in Cover(v)
would be in the same order independent of whether comparisons were based on
left (I1,) or on right (I1,).

If we have not discovered an intersection after Step 4, then the only computation
left is to perform fractional cascading on the plane-sweep tree T, constructing a
fractional cascading data structure T. In directing all the edges in T to the root, and
performing the fractional cascadm/g preprocessing on T to construct T we associate
a vertical strip with each node in T. Since T is a tree then T is also a tree (recall the
preprocessing step of the fractional cascading algorithm). For each node v in Tifov
is also in T, then we take II, for v in T to be the same as II, for v in T. Then, for
any v that is in T but not in T (i.e., v is a gateway or a node in a fan-in or fan-out
tree), we take II, to be the union of all the vertical strips that are descendents of v.
Every time we perform the per-stage merge computation we compare adjacent entries
in each bridge list B(v) to see if they would be in the same order independent of
whether we base comparisons on segment intersections with left (11,) or right (IT,). If
we detect that two adjacent segments intersect, then we replace both with the special
symbol $. Then, as before, any time we compare a segment with $ we replace that
segment by $. Finally, when we complete the computation for Step 5, we assign
[IB(v)|/log n] processors to each node v and check if there are any $ symbols present
in any B(v) list.

If there are no intersections detected during the fractional cascading, then we
perform O(n) multilocations of all the segment endpoints as in [1] to test condition
(2). Let p be an endpoint of some segment s;. We perform the multilocation of p in
the plane-sweep tree for S, and check if s; intersects the segment directly above p or
the segment directly below p in each Cover(v) list such that p € I1,. This test is sufficient,
since if s; intersects any segment in Cover(v), it must intersect the segment directly
above p in Cover(v) or the segment directly below p in Cover(v). Thus, by performing
a multilocation for p, we can test for condition (2) in O(log n) time using n processors.
We summarize this discussion in the following theorem.

THEOREM 5.5. Given a set of n line segments in the plane, we can detect if any two
intersect in O(log n) time using n processors in the CREW PRAM model.]

So far in this paper we have restricted ourselves to applications involving line
segments. In the next section we show how to apply the cascading divide-and-conquer
technique to other geometric problems as well.

6. Cascading with labeling functions. In this section we show how to solve
several different geometric problems by combining the merging procedure of § 2 with
divide-and-conquer strategies based on merging lists with labels defined on their
elements. For most of these problems our divide-and-conquer approach gives an
efficient sequential alternative to the known sequential algorithms (which use the
plane-sweeping paradigm) and gives rise to efficient parallel algorithms as well. We
begin with the three-dimensional maxima problem.

6.1. The three-dimensional maxima problem. Let V={p,,p,, -, p,} be a set of
points in M. For simplicity, we assume that no two input points have the same x
(respectively, y, z) coordinate. We denote the X, y, and z coordinates of a point p by
x(p), y(p), and z(p), respectively. We say that a point p; one-dominates another point
p; if x(p;) > (p;), two-dominates p; if x(p;) > x(p;) and y(p;) > y(p;), and three-dominates

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

524 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

p; if x(p;)>x(p;), y(p;)>y(p;), and z(p;)>z(p;). A point p,e V is said to be a
maximum if it is not three-dominated by any other point in V. The three-dimensional
maxima problem, then, is to compute the set, M, of maxima in V. We show how to
solve the three-dimensional maxima problem efficiently in parallel in the following
algorithm.

Our method is based on cascading a divide-and-conquer strategy in which the
subproblem merging step involves the computation of two labeling functions for each
point. The labels we use are motivated by the optimal sequential plane-sweeping
algorithm of Kung, Luccio, and Preparata [20]. Specifically, for each point p; we
compute the maximum z-coordinate from among all points that one-dominate p; and
use that label to also compute the maximum z-coordinate from among all points that
two-dominate p;. We can then test if p; is a maximum point by comparing z(p;) to
this latter label. The details follow.

Without loss of generality, we assume the input points are given sorted by increasing
y-coordinates, i.e., y(p;) < y(pi+,), since if they are not given in this order we can sort
them in O(log n) time using n processors [13]. Let T be a complete binary tree with
leaf nodes v,, v,, - - +, v, (in this order). In each leaf node v; we store the list B(v;) =
(=00, p;), where —0 is a special symbol such that x(—00) <x(p;) and y(—00) <y(p;)
for all points p; in V. Initializing T in this way can be done in O(log n) time using n
processors. We then perform a generalized cascading merge from the leaves of T as
in Theorem 2.5, basing comparisons on increasing x-coordinates of the points (not
their y-coordinates). Using the notation of § 2, we let U(v) denote the sorted array of
the points stored in the descendants of ve T sorted by increasing x-coordinates. For
each point p; in U(v) we store two labels: zod (p;, v) and ztd (p;, v), where zod(p;, v)
is the largest z-coordinate of the points in U(v) that one-dominate p;, and ztd (p;, v)
is the largest z-coordinate of the points in U(v) that two-dominate p;. Initially, zod
and ztd labels are only defined for the leaf nodes of T. That is, zod(p;, v;) = ztd (p;, v;) =
—o00 and zod(—o0, v;) = ztd (—00, v;) = z(p;) for all leaf nodes v; in T (where U(v;) =
(=00, p;)). In order to be more explicit in how we refer to various ranks, we let
pred (p;, v) denote the predecessor of p; in U(v) (which would be —oo if the x-
coordinates of the points in U(v) are all larger than x(p;)) (see Fig. 7). As we are
performing the cascading merge, we update the labels zod and ztd based on the
equations in the following lemma.

LeMMA 6.1. Let p; be an element of U(v) and let u = Ichild (v) and w = rchild (v).
Then we have the following:

_ (max {zod(p,, u), zod(pred (py, w), W)} if pic U(u),
©® zod(p,0)= {max {zod (pred (pi,), u), zod (p,)} if pie U(w),
max {th(pi’ u)a ZOd(pred (pia W), W)} l.fpl € U(u)a

(10) th(pi, U)= {th(P.', W) l:fp,-E U(W).

Proof. Consider (9). If p;e U(u), then every point that one-dominates p;’s pred-
ecessor in U(w) also one-dominates p;, since p;’s predecessor in U(w) is the point
with largest x-coordinate less than x(p;) (or —co if every point in U(w) has larger
x-coordinate than p;). Thus zod(p;,v) is the maximum of zod(p;,u) and
zod (pred (p;, w), w) in this case. The case when p; € U(w) is similar. Next, consider
(10). We know that every point in U(w) has y-coordinate greater than every point in
U(u), by our construction of T. Therefore, if p; € U(u), then every point in U(w) that
one-dominates p;’s predecessor in U(w) must two-dominate p;. Thus, ztd(p;, v) is the

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 525

F1G.7. The combining step for three-dimensional maxima. Points to the right of the dotted line one-dominate
p; (respectively, p;), and points enclosed in the dashed lines two-dominate p;(p;).

maximum of ztd (p;, u) and zod (pred (p;, w), w). On the other hand, if p;€ U(w) then
no point in U(u) can two-dominate p;; thus, ztd(p;, v) = ztd (p;, w). 0

We use these equations during the cascading merge to maintain the labels for
each point. By Lemma 6.1, when v becomes full (and we have U(u), U(w), and
U(u)U U(w) available), we can determine the labels for all the points in U(v) in
O(1) additional time using |U(v)| processors. Thus, the running time of the cascading
merge algorithm, even with these additional label computations, is still O(log n) using
n processors. Moreover, after v’s parent becomes full we no longer need U(v), and
can deallocate the space it occupies, resulting in an O(n) space algorithm, as outlined
in § 2. After we complete the merge, and have computed U(root(T)), along with all
the labels for the points in U(root(T)), note that a point p; € U(root(T)) is a maximum
if and only if ztd (p;, root(T)) = z(p;) (there is no point that two-dominates p; and has
z-coordinate greater than z(p;)). Thus, after completing the cascading merge we can
construct the set of maxima by compressing all the maximum points into one contiguous
list using a simple parallel prefix computation. We summarize in the following theorem.

THEOREM 6.2. Given a set V of n points in R°, we can construct the set M of maxima
points in V in O(log n) time and O(n) space using n processors in the CREW PRAM
model, and this is optimal.

Proof. We have established the correctness and complexity bounds for parallel
three-dimensional maxima finding in the discussion above. Kung, Luccio, and Preparata
[20] have shown that this problem has an Q(n log n) sequential lower bound (in the
comparison model). Thus, we can do no better than O(log n) time using n proc-
€ssors. 0

It is worth noting that we can use roughly the same method as that above as the
basis step of a recursive procedure for solving the general k-dimensional maxima
problem. The resulting time and space complexities are given in the following theorem.
We state the theorem for k= 3 (since the two-dimensional maxima problem can easily
be solved in O(log n) time and O(n) space by a sorting step followed by a parallel
prefix step).

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

526 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

THEOREM 6.3. For k=3 the k-dimensional maxima problem can be solved in
O((log n)*~?) time using n processors in the CREW PRAM model.

Proof. The method is a straightforward parallelization of the algorithm by Kung,
Luccio, and Preparata [20], using a procedure very similar to that described above as
the basis for the recursion. We leave the details to the reader. 0

Next, we address the two-set dominance counting problem. We also show how
the multiple range-counting problem and the rectilinear segment intersection counting
problem can be reduced to two-set dominance problems efficiently in parallel.

6.2. The two-set dominance counting problem. In the two-set dominance counting
problem we are given aset A={q,,q,,* ", qmtand aset B={r, r,, -+ -, 1} of points
in the plane, and wish to know for each point r; in B the number of points in A that
are two-dominated by r,. For simplicity, we assume that the points have distinct x
(respectively, y) coordinates. Our approach to this problem is similar to that of the
previous subsection, in that we will be performing a cascading merge procedure while
maintaining two labeling functions for each point. In this case the labels maintain for
each point p;,(from A or B) how many points of A are one-dominated by p; and also
how many points of A are two-dominated by p;. As in the previous solution, the first
label is used to maintain the second. The details follow.

Let Y={pi,p2, ", Piim} be the union of A and B with the points listed by
increasing y-coordinate, i.e., y(p;) <y(pi+1). We can construct Y in O(log n) time
using n processors [13], where n = [+ m. Our method for solving the two-set dominance
counting problem is similar to the method used in the previous subsection. As before,
we let T be a complete binary tree with leaf nodes v, v,, - - -, v,, in this order, and
in each leaf node v; we store the list U(v;) = (—00, p;) (—0 still being a special symbol
such that x(—o0) <x(p;) and y(—0) < y(p;) for all points p; in Y). We then perform
a generalized cascading merge from the leaves of T as in Theorem 2.5, basing com-
parisons on increasing x-coordinates of the points (not their y-coordinates). We let
U(v) denote the sorted array of the points stored in the descendants of ve T sorted
by increasing x-coordinate. For each point p; in U(v) we store two labels: nod(p;, v)
and ntd(p;, v). The label nod(p;, v) is the number of points in U(v) that are in A and
are one-dominated by p;, and the label ntd (p;, v) is the number of points in U(v) that
are in A and are two-dominated by p;. Initially, the nod and ntd labels are only defined
for the leaf nodes of T. That is, nod(p;, v;) = nod (—c0, v;) = ntd (p;, v;) = ntd(—©, v;) =
0. For each p;e Y we define the function x(p;) as follows: xa(p;) =1 if p;e A, and
xa(pi) =0 otherwise. (We also use pred (p;, v) to denote the predecessor of p in U(v).
As we are performing the cascading merge, we update the labels nod and ntd based
on the equations in the following lemma (see Fig. 8).

LEMMA 6.4. Let p; be an element of U(v) and let u = Ichild (v) and w = rchild (v).
Then we have the following:

nod(p;, u)+ nod(pred (p;, w), w)+ xa(pred (p;, w)) if pie U(u),

(11) nod(p:, ”)z{nod<pred<p,~, w), u)+nod(p,, w)+ xa(pred (p,) if pie U(w),

ntd(p;, u) if pe U(u),

(12) nid(p;, v) = {nod<pred (poy 1),)+ nid pyy W)+ xa(pred (piy w)) if pre U(w).

Proof. Consider (11). For any point p; € U (u) the number of points one-dominated
by p; is equal to the number of points in U(u) that are in A and one-dominated by

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 527

° o
° o
w pi
_____ < o
o % o pred(p;,w) o
[}
v 1
. ° ° °
o
o d .
v oo predlny)

o
e

F1G. 8. The combining step for dominance counting. Points to the left of the dotted line are one-dominated
by p; (respectively, p;), and points enclosed in dashed lines are two-dominated by p; (p;).

Di, plus the number of points in U(w) that are in A and one-dominated by pred(p;, w),
plus one if pred (p;, w) is in A (since the predecessor of p; is one-dominated by p;).
Thus, we have the equation for the case when p; € U(u). The case when p;€ U(w) is
similar. Next, consider (12). By our construction, every point in U(u) has y-coordinate
less than the y-coordinate of every point in U(w). So if p;e U(u), then the number
of points in U(v) that are in A and are two-dominated by p; is precisely ntd(p;, u),
since p; cannot two-dominate any points in U(w). If p,e U(w), on the other hand,
then the number of points in U(v) that are in A and two-dominated by p; is the number
of points in U(u) that are in A and one-dominated by pred (p;, u), plus the number
of points in U(w) that are in A and two-dominated by p;, plus one if pred (p;, u) is
in A. This is exactly (12) in this case. 0

By Lemma 6.4, when v becomes full (and we have U(u), U(w),and U(v) = U(u)U
U(w) available), we can determine the labels for all the points in U(v) in O(1)
additional time using | U(v)| processors. Thus, the running time of the cascading merge
algorithm, even with these additional label computations, is still O(log n) using n
processors. After we complete the merge, and have computed U(root (T)), along with
all the labels for the points in U(root (T)), then we are done. We summarize in the
following theorem.

THEOREM 6.5. Given a set A of | points in the plane and a set B of m points in the
plane, we can compute for each point p in B the number of points in A two-dominated by
p in O(log n) time and O(n) space using n processors in the CREW PRAM model, where
n =1+ m, and this is optimal.

Proof. The correctness and complexity bounds should be apparent from the
discussion above. To prove the lower bound note that the two-dimensional maxima
problem can be reduced to dominance counting in O(1) time using n processors (see
[17]). Since the maxima problem has an Q(n log n) lower bound [20] in the comparison
model, we conclude that we can do no better than O(log n) time using n processors
in the CREW PRAM model. il

There are a number of other problems that can be reduced to two-set dominance
counting. We mention two here, the first being the multiple range-counting problem:

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

528 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

given a set V of I points in the plane and a set R of m isothetic rectangles (ranges)
the multiple range-counting problem is to compute the number of points interior to
each rectangle.

COROLLARY 6.6. Given a set V of | points in the plane and a set R of m isothetic
rectangles, we can solve the multiple range-counting problem for V and R in O(log n)
time and O(n) space using n processors, where n =1+ m.

Proof. Let d(p) be the number of points in V two-dominated by a point p.
Edelsbrunner and Overmars [15] have shown that counting the number of points
interior to a rectangle can be reduced to dominance counting. That is, given a rectangle
r=(pi, P2, P3, Ps) (Where vertices are listed in counterclockwise order starting with
the upper right-hand corner), the number of points in V interior to ris d(p,) —d(p,) +
d(p;)—d(ps). Therefore, it suffices to solve the two-set dominance counting
problem. 0

Another problem that reduces to two-set dominance counting is rectilinear segment
intersection counting: given a set S of n rectilinear line segments in the plane, determine
for each segment the number of other segments in S that intersect it.

COROLLARY 6.7. Given a set S of n rectilinear line segments in the plane, we can
determine for each segment the number of other segments in S that intersect it in O(log n)
time and O(n) space using n processors in the CREW PRAM model.

Proof. Let U, (U,) be the set of left (right) endpoints of horizontal segments, and
let d,(p) (d,(p)) denote the number of points in U, (U,) two-dominated by p. For
any vertical segment s, with upper endpoint p and lower endpoint g, the number of
horizontal segments that intersect s is d;(p)—d,(q)+d>(q) —d.(p). This is because
d,(p)—d,(q) (respectively, d,(p)—d,(q)) counts the number of horizontal segments
with a left (right) endpoint to the left of s and y-coordinate in the interval [y(q), y(p)].
Thus, d,(p)—d,(q)—(d>(p) —d,(q)) counts the number of horizontal segments with
left endpoint to the left of s, right endpoint to the right of s, and y-coordinate in the
interval [y(q), y(p)] (i.e., the set of horizontal segments that intersect s). 0

 The final problem we address at is visibility from a point.

6.3. The visibility from a point problem. Given a set of line segments S=
{s1, 55, +,s,} in the plane that do not intersect, except possibly at endpoints, and a
point p, the visibility from a point problem is to determine the part of the plane that
is visible from p assuming every s; is opaque. Intuitively, we can think of the point p
as a specular light source, the segments as walls, and the problem to determine all the
parts of the plane that are illuminated. We can use the cascading divide-and-conquer
technique to solve this problem in O(log n) time and O(n) space using n processors.
Without loss of generality, we assume that the point p is at negative infinity below all
the segments. The algorithm is essentially the same if p is a finite point, except that
the notion of segment endpoints being ordered by x-coordinate is replaced by the
notion that they are ordered radially around p. In other words, it suffices to compute
the lower envelope of the n segments to give a method for computing the visibility
from a point. For simplicity of expression, we also assume that the x-coordinates of
the endpoints are distinct.

In the previous two subsections the set of objects consisted of points, but in the
visibility problem we are dealing with line segments. The method is slightly different
in this case. In this case, we store the segments in the leaves of a binary tree and
perform a cascading merge of the x-coordinates of intervals of the x-axis determined
by segment endpoints. We maintain a single label for each interval which represents
the segment which is visible from —oc0 on that interval. The details follow.

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 529

Let T be a complete binary tree with leaf nodes v,, v,, - - -, v, ordered from left
to right. We associate the segment s; with the leaf v; and at v; store the list U(v;) =
(=0, p1, p»), where p, and p, are the two endpoints of s;, with x(p;) <x(p,), and —c
is defined such that x(—o0) < x(p) and y(—00) < y(p) for all points p. We then perform
a generalized cascading merge from the leaves of T as in Theorm 2.5, basing com-
parisons on increasing x-coordinates of the points. For each internal node v we let
U(v) denote an array of the points stored in the descendants of ve T sorted by
increasing x-coordinates. For each point p, in U(v) we store a label vis(p;, v) which
stores the segment with endpoints in U(v) that is visible in the interval
(x(p;), x(succ(p;, v))), where succ(p;, v) denotes the successor of p; in U(v) (based
on x-coordinates). Initially, the vis labels are only defined for the leaf nodes of T.
That is, if U(v)= (-, p,, p,), where s; = p, p,, then vis(—00) =+00, vis(p;) =s;, and
vis(p,) = +00. We use pred (p;, v) to denote the predecessor of p; in U(v). As we are
performing the cascading merge, we update the vis labels based on the equation in
the following lemma (see Fig. 9).

LEMMA 6.8. Let p; be an element of U(v) and let u = Ichild (v) and w = rchild (v).
Then we have the following (if two segments s; and s; are comparable by the ‘“above”

Before merge: U(u) and U(w)

P1 P2 P3 P4 Ps Pe Pr P8 Po Pio Pi1 Piz P13 (P14)

U(u) [T]3T6]7[8[II] U(w) [2[4]5]9]1013]
pred(p;,w) [0]2]5[5[5[10[10] pred(p;,u)|[1[3]3][8[8]12]

After merge: U(v)

P1 P2 p3 P4 Ps Ppe pP7 P8 Do Pp1o P11 P12 P13 (P14)
FI1G. 9. An example of visibility merging. The dashed segments correspond to the visible region for X (u)
and the solid segments correspond to the visible region for X (w). For simplicity, we store the pointers pred (p;, u)

and pred (p;, w) in arrays and denote each point p; by its index i. Note that points are never removed, even if
the same segment defines the visible region for many consecutive intervals (e.g., p; through p,).

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

530 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH
relation, then we let min {s,, s;} denote the lower of the two):

.)= {min {vis(pi, u), vis(pred (p;, w), w)} if pie U(u),
vis(pi, v min {vis(pred (p;, u), u), vis(p;, w)} if pie U(w).

Proof. If we restrict our attention to the segments with an endpoint in U(n),
then for any point p;e U(u) the segment visible (from —oc0) on the interval
(x(p:), x(succ(p;, v))) is the minimum of the segment visible on the interval (x(p;),
x(succ(p;, u))) and the segment that is visible on the interval (x(pred (p;, w)),
x(succ(pred (p;, w), w))). This is because the interval (x(p;), x(succ(p;, v))) is exactly
the intersection of the interval (x(p;), x(succ(p;, u))) and the interval (x(pred (p;, w)),
x(succ(pred (p;, w), w))), and there is no segment in U(v) with an endpoint interior
to the interval (x(p;), x(succ(p;, v))). Thus, vis(p;, v) is equal to minimum of vis(p;, u)
and vis(pred (p;, w), w). The case when p; € U(v) is similar. 0

By Lemma 6.8, after merging the lists U(u) and U(w), we can determine the
labels for all the points in U(v) in O(1) additional time using |U(v)| processors. Thus,
the running time of this generalized cascading merge algorithm is still O(log n) using
n processors. After we complete the merge and have computed U(root(T)), along
with all the vis labels for the points in U(root(T)), then we can compress out duplicate
entries in the list (vis(p,, root(T)), vis(p,, root(T)), - -, vis(pan, root(T))) using a
parallel prefix computation to construct a compact representation of the visible portion
of the plane. We summarize in the following theorem.

THEOREM 6.9. Given a set S of n nonintersecting segments in the plane, we can find
the lower envelope of S in O(log n) time and O(n) space using n processors in the CREW
PRAM model, and this is optimal.

Proof. The correctness and complexity bounds follow from the discussion above.
Since we require that the points in the description of the lower envelope be given by
increasing x-coordinates, we can reduce sorting to this problem, and thus can do no
better than O(log n) time using n processors. g

7. EREW PRAM implementations. In this section we briefly note that the same
techniques as employed by Cole in [13] to implement his merging procedure in the
EREW PRAM model (no simultaneous reads) can be applied to our algorithms for
generalized merging, fractional cascading, constructing the plane-sweep tree, three-
dimensional maxima, two-set dominance counting, and visibility from a point, resulting
in EREW PRAM algorithms for these problems. Apparently, we cannot apply his
techniques to our algorithms for trapezoidal decomposition and segment intersection
detection, however, since our algorithms for these problems explicitly use concurrent
reads (in the multilocation steps).

Applying his techniques to our algorithms results in EREW PRAM algorithms
with the same asymptotic bounds as the ones presented in this paper, except that the
space bounds for the problems addressed in § 6 all become O(n log n). The reason
that his techniques increase the space complexity of these problems is because of our
use of labeling functions. Specifically, it is not clear how to perform the merges on-line
and still update the labels in O(1) time after a node becomes full. This is because a
label whose value changes on level I may have to be broadcasted to many elements
in level /-1 to update their labels, which would require (log n) time in this model
if there were O(n) such elements.

We can get around the problem arising from the labeling functions, however. For
the three-dimensional maxima problem and the two-set dominance counting problem,

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CASCADING DIVIDE-AND-CONQUER 531

we separate the computation of the U(v) lists and computation of the labeling functions
into two separate steps, rather than “dovetailing” the two computations as before.
Each of the labeling functions we used for these two problems can be redefined so as
to be EREW-computable. Specifically, the label for an element p in U(v), on level [,
can be expressed in terms of a label pref(p, v) and a label up(p, v), where pref(p, v)
can be computed by performing a parallel prefix computation [21], [22] in U(v) and
up(p,v) can be defined in terms of pref(pred (p, lchild (v)), Ichild (v)),
pref (pred (p, rchild (v)), rchild (v)), and the up label p had on level I+1 (say, in
U(rchild (v)) if pe U(rchild (v))). In particular, for the three-dimensional maxima
problem pref (p, v) = zod (p, v) and up(p, v) = ztd (p, v), and for the two-set dominance
counting problem pref(p, v)=nod(p, v) and up(p, v)=ntd (p, v). We can compute
all the pref(p, v) labels in O(log n) time using n processors by assigning [|U(v)|/log n]
processors to each node v [21]. We can then broadcast each pref(p, v) label to the
successor of v in sibling(v), which takes O(log n) time using n processors by assigning
[|U(v)|/log n] processors to each node v. Finally, we can compute all the up(p, v)
labels in O(log n) additional time by assigning a single processor to each point p and
tracing the path in the tree from the leaf node that contains p up to the root. This is
an EREW operation because computing all the up(p, v) labels only depends upon
accessing memory locations associated with the point p.

The EREW solution to the visibility from a point problem requires O(n log n)
space for a different reason, namely, because we can solve it by constructing the
plane-sweep tree for the segments (we need not have the Cover(v)’s in sorted order,
however), computing the lowest segment in each Cover(v), and then performing a
top-down parallel min-finding computation to find the segment visible on each interval
(pi, pi+1)- Since these are all straightforward computations, given the discussion presen-
ted earlier in this paper, we leave the details to the reader.

8. Conclusion. In this paper we gave several general techniques for solving prob-
lems efficiently using parallel divide-and-conquer. Our techniques are based on non-
trivial generalizations of the merge-sorting approach of Cole [13]. It is interesting to
note that Cole’s algorithm improved the previous results by a constant factor, whereas
our algorithms improve the previous results asymptotically.

Two of our techniques involved methods for performing fractional cascading and
a generalized version of the merge-sorting problem optimally in parallel. Our method
for doing fractional cascading runs in O(log n) time using [n/log n| processors, and,
if implemented as a sequential algorithm, results in a sequential alternative to the
method of Chazelle and Guibas [12] for fractional cascading.

We also showed how to apply the generalized merging procedure and fractional
cascading to efficiently solve several problems by “cascading” the divide-and-conquer
paradigm. For three of the problems—trapezoidal decomposition, planar point loca-
tion, and segment intersection detection—the method involved merging in the line
segment partial order, and required considerable care to avoid situations in which the
algorithm would halt because it attempted to compare two incomparable segments.
All three of these algorithms ran in O(log n) time using n processors, which is optimal
for all but the point location problem. In addition, since our algorithm for doing planar
point location results in a query time of O(log n), our result immediately implies an
O(log’ n) time, n processor solution to the problem of constructing the Voronoi diagram
of n planar points, using the algorithm of Aggarwal et al. [1].

We showed how to apply the cascading divide-and-conquer technique to problems
that can be solved by merging with labeling functions. We used this approach to solve

Downloaded 01/13/15 to 128.195.64.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

532 M. J. ATALLAH, R. COLE, AND M. T. GOODRICH

the three-dimensional maxima problem, the two-set dominance counting problem, the
rectilinear segment intersection counting problem, and the visibility from a point
problem. Our algorithms for these problems all ran in O(log n) time using n processors,
which is optimal.

REFERENCES

[1] A. AGGARWAL, B. CHAZELLE, L. GuiBas, C. C)’DUNLA]NG, AND C. YAP, Parallel computational
geometry, Proc. 26th IEEE Symposium on Foundations of Computer Science, 1985, pp. 468-477.

[2] , Parallel computational geometry, Algorithmica, 3 (1988), pp. 293-328.

[3] M. J. ATtALLAH, R. COLE, AND M. T. GOODRICH, Cascading divide-and-conquer: A technique for
designing parallel algorithms, Proc. 28th IEEE Symposium on Foundations of Computer Science,
1987, pp. 151-160.

[4] M. J. ATALLAH AND M. T. GOODRICH, Efficient parallel solutions to some geometric problems, J.
Parallel and Distributed Computing, 3 (1986), pp. 492-507.

[5] , Efficient plane sweeping in parallel, Proc. 2nd ACM Symposium on Computational Geometry,
1986, pp. 216-225.
[6] , Parallel algorithms for some functions of two convex polygons, Algorithmica, 3 (1988), pp. 535-548.

[7] M. BEN-OR, Lower bounds for algebraic computation trees, Proc. 15th ACM Symposium on Theory of
Computing, 1983, pp. 80-86.
[8] J. L. BENTLEY AND D. WoOD, An optimal worst case algorithm for reporting intersections of rectangles,
1IEEE Trans. Comput., C-29 (1980), pp. 571-576.
[9] G. BIiLARDI AND A. NICOLAU, Adaptive bitonic sorting: An optimal parallel algorithm for shared
memory machines, TR 86-769, Department of Computer Science, Cornell University, August 1986.
[10] A. BORODIN AND J. E. HOPCROFT, Routing, merging, and sorting on parallel models of computation,
J. Comput. System Sci., 30 (1985), pp. 130-145.
[11] R. P. BRENT, The parallel evaluation of general arithmetic expressions, J. ACM, 21 (1974), pp. 201-206.
[12] B. CHAZELLE AND L. J. GuUIBAS, Fractional cascading: 1. A data structuring technique, Algorithmica,
1 (1986), pp. 133-162.
[13] R. COLE, Parallel merge sort, Proc. 27th IEEE Symposium on Foundations of Computer Science, 1986,
pp- 511-516; SIAM J. Comput., 17 (1988), pp. 770-785.
[14] N. DADOUN AND D. KIRKPATRICK, Parallel processing for efficient subdivision search, Proc. 3rd ACM
Symposium on Computational Geometry, 1987, pp. 205-214.
[15] H. EDELSBRUNNER AND M. H. OVERMARS, On the equivalence of some rectangle problems, Inform.
Process. Lett., 14 (1982), pp. 124-127.
[16] H. ELGINDY AND M. T. GOODRICH, Parallel algorithms for shortest path problems in polygons, The
Visual Computer: Internat. J. Comput. Graphics, 3 (1988), pp. 371-378.
[17] M. T. GooDRICH, Efficient parallel techniques for computational geometry, Ph.D. thesis, Department
of Computer Science, Purdue University, W. Lafayette, IN, 1987.

[18] , Finding the convex hull of a sorted point set in parallel, Inform. Process. Lett., 26 (1987), pp.
173-179.
[19] , Triangulating a polygon in parallel, J. Algorithms, to appear.

[20] H. T. KuNg, F. Luccio, AND F. P. PREPARATA, On finding the maxima of a set of vectors, J. ACM,
22 (1975), pp. 469-476.

[21] C. P. KRUSKAL, L. RUDOLPH, AND M. SNIR, The Power of Parallel Prefix, Proc. 1985 IEEE Internat.
Conference on Parallel Processing, St. Charles, IL, 1985, pp. 180-185.

[22] R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. ACM (1980), pp. 831-838.

[23] J. H. REIF, An optimal parallel algorithm for integer sorting, Proc. 26th IEEE Symposium on Foundations
of Computer Science, 1985, pp. 496-504.

[24] J. H. REIF AND S. SEN, Optimal Randomized Parallel Algorithms for Computational Geometry, Proc.
1987 IEEE Internat. Conference on Parallel Processing, 1987, pp. 270-277.

[25] Y. SHILOACH AND U. VISHKIN, Finding the maximum merging, and sorting in a parallel computation
model, J. Algorithms, 2 (1981), pp. 88-102.

[26] L. VALIANT, Parallelism in comparison problems, SIAM J. Comput., 4 (1975), pp. 348-355.

[27] H. WAGENER, Optimally parallel algorithms for convex hull determination, manuscript, 1985.

[28] C. K. YAP, Parallel triangulation of a polygon in two calls to the trapezoidal map, Algorithmica, 3 (1988),
pp. 279-288.

