
Graphical Models 66 (2004) 245–260

www.elsevier.com/locate/gmod
Contour interpolation by straight skeletonsq

Gill Barequet,a,*,1 Michael T. Goodrich,b,2

Aya Levi-Steiner,c,1 and Dvir Steinerd

a Department of Computer Science, The Technion—Israel Institute of Technology, Haifa 32000, Israel
b Department of Information and Computer Science, University of California, Irvine, CA 92697, USA

c Department of Mathematics, The Technion—Israel Institute of Technology, Haifa 32000, Israel
d Department of Mechanical Engineering, The Technion—Israel Institute of Technology, Haifa 32000, Israel

Received 21 October 2003; received in revised form 3 March 2004; accepted 4 May 2004

Available online 7 June 2004
Abstract

In this paper we present an efficient method for interpolating a piecewise-linear surface be-

tween two parallel slices, each consisting of an arbitrary number of (possibly nested) polygons

that define ‘material’ and ‘non-material’ regions. This problem has applications to medical im-

aging, geographic information systems, etc. Our method is fully automatic and is guaranteed

to produce non-self-intersecting surfaces in all cases regardless of the number of contours in

each slice, their complexity and geometry, and the depth of their hierarchy of nesting. The

method is based on computing cells in the overlay of the slices that form the symmetric differ-

ence between them. Then, the straight skeletons of the selected cells guide the triangulation of

each face of the skeletons. Finally, the resulting triangles are lifted up in space to form an in-

terpolating surface. We provide some experimental results on various complex examples to

show the good and robust performance of our algorithm.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Piecewise-linear interpolation; Surface reconstruction
qA preliminary version of this paper appeared in [5].
* Corresponding author. Fax: +972-4-8295538.

E-mail addresses: barequet@cs.technion.ac.il (G. Barequet), goodrich@ics.uci.edu (M.T. Goodrich),

ayas@tx.technion.ac.il (A. Levi-Steiner), ovir@tx.technion.ac.il (D. Steiner).
1 Work on this paper by the first and third authors has been supported in part by Israel’s Ministry of

Science Infrastructure Grant 01-01-01509 and through a donation from IBM Shared University Research

program to the Technion in 2003.
2 Work by the second author has been supported by ARO MURI Grant DAAH04-96-1-0013 and by

NSF Grants CCR-9732300, PHY-9980044, and CCR-0098068.

1524-0703/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.gmod.2004.05.001

mail to: barequet@cs.technion.ac.il


246 G. Barequet et al. / Graphical Models 66 (2004) 245–260
1. Introduction

The reconstruction of a polyhedral surface from a sequence of parallel polygonal

slices has been an intriguing problem during the last 30 years. This problem arises

primarily in the fields of medical imaging, digitization of objects, and geographical
information systems. Data obtained by medical imaging apparata, range sensors,

or as elevation contours are interpolated in order to represent, reconstruct, and vi-

sualize human organs, CAD objects, or topographic terrains. It is assumed that a

preprocessing step has already extracted from the raw data (usually a sequence of

pixel images) the closed two-dimensional contours, which delimit the material re-

gions on each slice. The goal is to compute a surface that tiles between these contours

and forms a solid volume whose cross-sections at the given heights match the input

slices.
Various algorithms for two-dimensional based polyhedral surface reconstruction

have been suggested in the literature (e.g. [8,20–22,24–26,30–32]). Many of the early

algorithms fail in complex instances (such as multiple branching), leave gaps between

the contours, and/or generate unacceptable solutions (e.g., self-intersecting surfaces).

Some algorithms [14–16,27,29,33] reduce the more involved cases to the simple case

where each slice contains only one contour. There have been only a few attempts

[2,7,10–12,28] to handle the interpolation problem in full generality without limiting

the number of contours in the slices, their geometries, or their containment hierar-
chies.

A practical simplification assumed in almost all the previous works, as well as in

this paper, is that adjacent layers are independent. Thus, only a single pair of succes-

sive parallel slices are considered and interpolated at each instance, and the recon-

structed object is the concatenation of the interpolating models computed for all

the layers. To the best of our knowledge, the only work that avoided this assumption

is [6].

The algorithm suggested in the current paper makes no prior assumption about
the input. It operates on any kind and number of contours, and handles all branch-

ing situations and hierarchical structures. It is guaranteed to interpolate a valid sur-

face for any possible input, and is intuitive in the sense that it tends in practice to

minimize the surface area of the reconstruction. This is because it uses an offset dis-

tance function to locally decide which contour features to bind.

In a nutshell, the algorithm analyzes the overlay of a pair of slices in order to iden-

tify sets of contour portions (bounding a subset of the set of cells of the arrangement

of contours) which are to be bound together. Then, the straight skeleton (a linearized
version of the medial axis [1]) of each one of these cells is computed and used to

guide a Steiner triangulation of each face of the skeletalized cells. Finally, the topol-

ogy of the skeleton is used again for lifting the triangulation up to three dimensions.

The union of the lifted-up triangulations of all the chosen cells is the output surface.

We emphasize that the algorithm is fully automatic without any tuning parameters,

which are a major disadvantage of some previously suggested algorithms.

Our algorithm is somewhat similar to that of Oliva et al. [28]. This latter algo-

rithm also computes the symmetric difference of the slices as ours does, and com-



G. Barequet et al. / Graphical Models 66 (2004) 245–260 247
putes straight skeletons of some cells of the arrangement of contours of the two

slices. The differences between the two approaches are in the other steps of the algo-

rithms:

(1) Oliva et al. classify the active cells differently than we do;

(2) We apply a different triangulation scheme, which avoids overhanging construc-
tions that may be created by the algorithm of Oliva et al. (partial remedies were

later proposed by Felkel and Obdr�z�alek [19]); and

(3) We apply a different method for assigning heights for intermediate vertices: while

Oliva et al. use Euclidean distance, we use offset distance.

The paper is organized as follows. In Section 2 we give an overview of the algo-

rithm. Section 3 describes the data-acquisition phase, Section 4 describes the analysis

of the overlay of two slices, and Section 5 describes the computation of a surface

patch out of the straight skeleton of one cell of the slices’ overlay. In Section 6 we
analyze the complexity of the algorithm, and in Section 7 we present some experi-

mental results. We end in Section 8 with some concluding remarks.
2. Overview of the algorithm

Our proposed algorithm consists of the following steps:

(1) Data acquisition. Orient all the contours in each slice in consistent directions. If
the input does not include this information, compute the contour nesting hierar-

chy in each slice, and use it to obtain the desired orientations.

(2) Analyzing the contour overlay. Compute the overlay of the two slices. For each

cell in the arrangement of polygons, attach a tag that identifies whether the cell

lies in the material or the non-material regions of each slice. Discard all the cells

that either belong to the material or to the non-material regions in both slices.

(3) Surface interpolation. Compute the straight skeletons of all the remaining cells,

separately triangulate each region in the maps induced by the skeletons, and lift
the triangulations up to three dimensions.

The following three sections describe the algorithm steps in detail.
3. Data acquisition

The data consist of a sequence of slices, all in the same file. Each slice consists of a

hierarchy of contours. That is, each slice is a forest of closed simple polygons with
non-intersecting boundaries, where a parent polygon fully encloses all its children,

and no other contour is enclosed in the parent polygon and encloses one of its chil-

dren. Each slice is also marked by its height along the z axis; thus, every vertex is

specified by its three coordinates. In what follows we restrict our attention to a single

pair of successive slices, and describe the interpolation of a solid within the layer de-

limited by the slices.

Contours of the root level (not contained in any other contour) are assigned level

0, their holes are assigned level 1, etc. Thus, every even level consists of contours



248 G. Barequet et al. / Graphical Models 66 (2004) 245–260
whose interior, in a sufficiently small neighborhood of the contour, is the ‘‘material,’’

and every odd level consists of contours whose interior, sufficiently near them, is the

‘‘non-material.’’ We orient the contours consistently, for example, so that for each

contour, when viewed from above, the material lies to its right. Consequently, all

even-level contours are oriented in a clockwise direction, when viewed from above,
and all odd-level contours are oriented in a counterclockwise direction. If the con-

tainment hierarchy of the contours is omitted, we compute it ourselves. The con-

struction of the hierarchy and of the contour orientations is easily performed

using a standard line-sweep procedure in each slice (see [7]).

The internal representation of the contours that our system uses is the quad-edge

data structure described by Guibas and Stolfi [23]. This is done to efficiently maintain

the constructed polyhedral boundary of the interpolating solid object.
4. Analyzing the contour overlay

We compute a representation of the arrangement of the contours of the two slices,

obtained by projecting one slice onto the other (along the z direction). This can easily

be done by applying a second line-sweep procedure on the overlay of the two slices.

In fact, this step and the preceding ones (the computation of contour hierarchy and

orientation) can be performed simultaneously. As part of sweeping the plane, each
cell in the arrangement is given attributes that indicate whether it lies in the material

or non-material regions of each of the slices.

We then discard all the cells that belong either to the material or to the non-

material regions of both slices. Thus, we are left with only those cells that corre-

spond to material in one slice and non-material in the other. Denote these as the

active cells. Fig. 1 shows two slices, their overlay, and the active cells of the

overlay.

For the moment we will ignore the original polygon vertices and consider only the
vertices of the polygon arrangement (the intersection points of two polygons, one of

each slice). By ‘contour portion’ we mean a subpolygon whose endpoints are two

such vertices (intersections of the original polygons) and whose interior is free of

other vertices. The endpoints of the contour portions are seen in Fig. 1C.

Theorem 1. Each contour portion belongs to exactly one active cell.

Proof. Consider any contour portion AB, where A and B are vertices of the ar-
rangement of contours (intersection points of the contours of the two slices). Assume

without loss of generality that AB belongs to a contour of the first slice. Thus, it is

shared by two cells of the arrangement, exactly one of which is material in the first

slice. In the second slice, AB is fully contained in either the material or non-material

region. In either case, by definition, AB bounds exactly one active cell.

Since we will use the boundaries of only the active cells for interpolating a surface

between the two slices, we are now guaranteed that every contour portion will be



Fig. 1. Active cells in the overlay of two slices: (A) upper slice, (B) lower slice, (C) slices overlay, and (D)

active cells.

G. Barequet et al. / Graphical Models 66 (2004) 245–260 249
used exactly once as a boundary of that surface. Together with the original contours,

we will have a closed surface bounding a solid model.
5. Surface interpolation

5.1. Skeletons and triangulations

At this point we have already found the boundaries of the interpolated surface. Our

current goal is to construct a collection of pairwise-disjoint non-self-intersecting sur-
face patches with known boundaries (the active cells). This is easy to achieve by form-

ing a surface whose xy projection is simple, that is, every vertical line intersects the

surface in at most one point. For ease of exposition we first describe the computation

of the xy projection of the surface, and only then, its lifting up to three dimensions.

The xy projection of the interpolated surface is simply the union of all the active

cells in the arrangement of all the contours, as is shown in Fig. 1D. We explain in

detail how to create the triangulations of these cells (which after lifting up to three

dimensions will contain the facets of the meshed surface).
We begin by computing the straight skeletons of all the active cells. Obviously, by

construction, every face in the subdivision induced by the straight skeleton of a cell



Fig. 2. Active cells: their straight skeletons and triangulations.

250 G. Barequet et al. / Graphical Models 66 (2004) 245–260
contains exactly one original polygon edge, and the face is monotone with respect to

that edge [1, Lemma 3]. Then, among all possible triangulations of the face, we

choose a triangulation that is monotone with respect to the polygon edge (see [9,

pp. 55–58]).3 Fig. 2 shows two examples of an overlay of two contours (shown with
regular and thick lines), the straight skeletons of the active cells (shown with dashed

lines), and their respective triangulations (shown with dotted lines). We chose this

triangulation because it guides an intuitive reconstruction of a surface. However,

any other triangulation will do. The union of the triangulations of all the skeletal

faces of the active cells (guided by the respective skeletons) is the xy projection of

the sought triangulated surface.

5.2. Lifting up

We assume without loss of generality that the lower and upper slices are at heights

0 and 1, respectively. In order to perform our final step—that is, to lift the surface up

to three dimensions—all we have to do is to assign z coordinates to all the vertices of

the straight skeletons. The following theorem, which refers to active cells bounded by

portions of contours of both slices, will help us in doing so. The term ‘‘offset dis-

tance’’ stands here for the amount a polygon needs to be offset inward in order to

hit a point.

Theorem 2. Let H denote the vertices of the straight skeleton (of some active cell) that
are offset-equidistant from contours of both slices. Then the straight skeleton of the cell
is the union of:
(1) edge-disjoint trees whose roots are points in H and
(2) skeletal edges connecting pairs of points in H .
3 Although Lemma 3 of [1] guarantees that the face is monotone with respect to its defining edge, the

endpoints of the edge are not necessarily visible by all vertices of the face. (That is, both chords connecting

a vertex of the face to the two edge endpoints penetrate to the outside of the face.) Thus, we either

compromise the monotonicity of the triangulation (where this is unavoidable), or enforce it by introducing

Steiner points along the edge. The latter operation at most doubles the number of vertices of the face, so

asymptotically it does not affect the complexity of the algorithm.



Fig. 3. Trees in the skeleton, rooted at points (shown as black disks) equidistant from contours of the two

slices.

G. Barequet et al. / Graphical Models 66 (2004) 245–260 251
This claim is shown in Fig. 3. The portions of two contours which bound one cell

are shown in regular and thick lines. The straight skeleton of the interior of the cell is

divided into trees by vertices equidistant from the two contours. Two non-trivial

trees are highlighted. Segments connecting points in H , and the trivial trees (line seg-
ments) are shown with dashed lines.

Proof. The claim follows from the properties of the straight skeleton of a simple

polygon. The skeleton itself is a tree. Removing Q, the connected set of all edges

connecting skeleton vertices that are offset-equidistant from the polygon, cuts the

skeleton into edge-disjoint disconnected subtrees, and each such subtree touches Q at

a single vertex—the subtree’s root.

In assigning z coordinates to vertices we distinguish between three cases:

(1) Original polygon vertices. Here we naturally assign to the vertices the height of

their respective slice, that is, either 0 or 1.

(2) Internal vertices of the straight skeleton. Here we have three subcases:

(a) Skeleton vertices that are equidistant from points on contours of both slices.

We set the height of these vertices to 0.5.

(b) Skeleton vertices that are not equidistant from points on contours of the two

slices. According to Theorem 2, these are internal vertices of trees, the heights
of whose roots were already set to 0.5, and whose leaves are all at height either

0 or 1. Any monotone function can be used for setting the heights of the in-

ternal vertices of the trees. To reflect the relation to the straight skeleton, we

use the offset distance function (see [4]) from the contour, and normalize it so

that its value is 0 or 1 on the contour and 0.5 at the root of the tree. Fig. 4

shows a close-up of the skeleton tree at the bottom-right corner of Fig. 3.

The height of the vertices u, v, and w is 0 since they belong to the lower slice.



Fig. 4. Setting vertex heights according to their offsets.

252 G. Barequet et al. / Graphical Models 66 (2004) 245–260
The height of the root r is set to 0.5, whereas the heights of the internal tree

vertices s and t are set to 3
9
� 0:5 ¼ 1

6
and 5

9
� 0:5 ¼ 5

18
, respectively.4 This choice

of the z function fits our application due to the strong relation between the

offset of a shape and its straight skeleton.

(c) The special case of an active cell bounded completely by a contour of one

slice indicates the vanishing or appearing of a feature of the three-dimen-

sional object. Assume without loss of generality that the active cell is defined
by a contour of the lower slice. Then, all the leaves of the skeleton are already

assigned the height 0. We set the height of the skeleton vertex (or vertices)

offset-wise furthest from the contour to 1, and use, as in the previous case,

the skeleton to guide the setting of the intermediate heights. We believe that

setting the ‘‘vanishing height’’ to 1 is better than setting it to 0.5 (or to any

other intermediate value in the open interval ð0; 1Þ), since this gives a smooth

and continuous interpolation between the two slices, morphing a feature in

one slice to its absence in the other slice. The other case (active cell modeled
by a contour in the upper slice) is completely symmetric.

(3) Intersection points of pairs of contours, one of each slice. In fact, such a point is

actually three points whose xy projections match each other. Two of the points

lie on the original contours, and thus have their original heights (0 and 1). The

third point is a skeleton point which is set to height 0:5. Note that the two points

on the original contours are not necessarily vertices of the input polygons, but

only the intersection point of their xy projections. Fig. 5A shows the xy projec-

tion of two slices, with a contour-intersection point v. Fig. 5B shows the same
scene in a perspective view. The point v is actually the xy projection of three
4 The values 3=9 and 5=9 follow from the fact that the skeleton vertices s and t are located 3 and 5,

respectively, inward-offset units away from the polygon, while 9 units are needed to reach the root r.
Obviously we must take care that the height of isolated branches of the tree does not exceed 1. For

example, if the vertex t in Fig. 4 were twice as far as r (offset-wise) from the boundary of the lower slice,

which is possible since the contours are not necessarily convex, then its height would be more than 1. In

this case we apply a secondary scaling on every isolated subtree.



Fig. 5. Triangles sharing a contour-intersection point: (A) top view and (B) isometric view.

G. Barequet et al. / Graphical Models 66 (2004) 245–260 253
points v, v0, and v00 (at heights 0.5, 1, and 0, respectively). The two supposed tri-

angles in Fig. 5A that share the vertex u are actually quadrangles, as is seen in

Fig. 5B. Therefore, we triangulate them by adding two more diagonals. In addi-

tion, the skeleton edge that coincides with the skeleton vertex v (uv in the figure)
is deleted so as to form one triangle containing the edge v0v00 (Duv0v00 in the figure).

After assigning the z values (heights) to all the vertices of the skeletons, we lift the

collection of triangulated patches up to three dimensions. The result is the desired

interpolation.

5.3. Surface orientation

Orienting the triangles consistently is rather easy. We assume that by conven-
tion original material (resp., non-material) contours are oriented clockwise (resp.,

counterclockwise). First, we invert all the polygons of one of the slices, say, the

upper slice. It is easily seen that all the cells of the symmetric difference of the

slices are collected as directed polygons. Cells in the upper (resp., lower) slice

but not in the lower (resp., upper) slice appear counterclockwise (resp., clockwise).

Then, triangulating the skeletal cells is performed consistently with these orienta-

tions. Finally, we do not alter the orientations of the triangles when we lift them

up to three dimensions. This results in an oriented triangulated manifold, in
which all triangles are oriented clockwise when they are viewed from the outside

of the solid bounded by the union of the original polygons and the interpolating

surface.
6. Complexity analysis

We measure the complexity of the algorithm as a function of n, the total complex-
ity (number of vertices) of the two slices. We also denote by k the complexity of the

overlay of the two slices. In the worst case k can be as high as Hðn2Þ, but in most

practical cases it is OðnÞ.
Computing the contour nesting hierarchy in each slice and orienting the contours

in the correct directions takes Oðn log nÞ time. This is performed by invoking a simple

line-sweep procedure. If the input contours are guaranteed to be oriented well, we

can skip this step of the algorithm.



Fig. 6. A simple interpolation case: (A) contours and skeleton and (B) triangulated active cell.

254 G. Barequet et al. / Graphical Models 66 (2004) 245–260
Computing and analyzing the overlay of the two slices takes Oðn log nþ kÞ
time [3]. This already includes the selection of the active cells of the overlay.

Computing the straight skeletons of all the active cells can theoretically be done
in Oðk17=11þeÞ time, for every e > 0 [17],5 by using a sophisticated data structure

for ray-shooting queries, or even slightly better (in non-degenerate cases and on

the average) in Oðk3=2 log kÞ expected time [13]. However, we implemented the al-

gorithm of [18] whose running time is Oðk2Þ in the worst case, and in practice,

much less than that. (Our experiments suggest that this step is subquadratic in

n.) Triangulating the monotone subcells induced by the skeletons, as well as lift-

ing the triangulations up to three dimensions to form the interpolating surfaces,

take OðkÞ time.
To conclude, the entire algorithm runs in Oðk2Þ time. In the worst case this is

Hðn4Þ, but for most cases (in which the complexity of the slice overlay is linear in that

of the original slices) the running time of the algorithm is theoretically Oðn2Þ, and in

practice even less than that (around Oðn1:6Þ time in our experiments).

The space complexity of the algorithm is naturally Hðnþ kÞ, since the number of

internal skeleton vertices is linear in the number of vertices of the overlay of the poly-

gons. In the worst case this quantity is Hðn2Þ, but in practice it is proportional to n.
7. Experimental results

We implemented the entire algorithm in C++ on an HP Omnibook 6000 (a por-

table computer). The computer was equipped with a Pentium III 850MHz proces-

sor, 128megabytes of memory, and an ATI Rage M1 AGP Mach 64 graphics card

with 32megabytes of memory. The implementation, performed by the third and
5 In fact, the precise running time is Oðk1þe þ k8=11þer9=11þeÞ, where r is the number of reflex contour

vertices.



G. Barequet et al. / Graphical Models 66 (2004) 245–260 255
fourth authors, took about 2 months, and the software consisted of about 8500

non-comment lines of code. We experimented with the algorithm on several data

files obtained by medical scanners, and obtained very good results in practically

all cases.
Fig. 7. A complex branching example: (A) overlay of slices, (B) close-up of (a), (C) straight skeletons of

active cells, (D) close-up of (c), (E) triangulated skeletons, (F) close-up of (e), (G) a perspective view of the

interpolation, and (H) close-up of (g).



Fig. 8. A fully reconstructed pair of lungs: (A) wire-frame and (B) shaded.

256 G. Barequet et al. / Graphical Models 66 (2004) 245–260



G. Barequet et al. / Graphical Models 66 (2004) 245–260 257
Here are some specific examples of the performance of the algorithm:

Fig. 6A shows the overlay of two contours belonging to two successive slices (in

black and grey). Since the two contours are nested, the single active cell is the ring

bounded by the two contours. Its straight skeleton is shown with thick black lines.

Fig. 6B shows the triangulated ring.
Fig. 7A shows an overlay of two complex slices (one in black and the other in

grey) taken from a lungs data file. Note the almost-horizontal line that appears at

the bottom of the figure. This is the swept line at the last discrete event that it han-

dles. A close-up of the area in the middle of the overlay is seen in Fig. 7B. Fig. 7C

shows in thick black lines the straight skeletons of all the active cells in the arrange-

ments of contours of the two slices. Similarly, Fig. 7D is a close-up of Fig. 7C. Fig.

7E shows a top-down view of the triangulated skeletons. A close-up of their middle

area is shown in Fig. 7F. Figs. 7G and H show a perspective view and a close-up of
the surface interpolated between the two slices.
Table 1

Performance of the algorithm (empty entries are practically 0)

Slice

No.

Numbers of Time (s)

Contour

edges

Skeleton

edges

Surface

triangles

Line

sweep

Sym.

diff.

Skeleton Height

setting

Triang. Total

1 34 80 110 0.05 0.05

2 30 72 98 0.06 0.06

3 26 68 96 0.05 0.05

4 58 64 86 0.06 0.06

5 101 252 337 0.22 0.05 0.27

6 128 318 401 0.44 0.06 0.50

7 149 386 481 0.49 0.49

8 149 378 471 0.05 0.55 0.60

9 162 414 523 0.05 0.66 0.05 0.76

10 164 430 532 0.77 0.06 0.83

11 162 413 512 0.66 0.05 0.71

12 174 430 577 0.77 0.05 0.82

13 189 466 632 0.06 0.77 0.83

14 229 579 769 1.27 0.05 1.32

15 238 588 850 0.06 1.15 0.05 1.26

16 233 588 826 0.06 1.32 0.05 1.43

17 257 628 940 0.06 1.43 0.05 0.06 1.60

18 263 681 1,028 0.05 1.76 0.05 1.86

19 265 681 963 0.06 1.43 0.05 1.54

20 259 664 961 0.06 1.48 0.05 1.59

21 228 560 815 0.06 1.21 0.05 0.06 1.38

22 210 522 776 0.88 0.05 0.93

23 212 540 784 0.93 0.05 0.98

24 230 578 835 0.06 1.10 0.05 1.21

25 245 608 956 0.06 1.37 0.06 1.49

26 242 608 889 0.05 1.32 0.05 1.42

27 234 594 864 0.06 1.15 0.06 1.27

28 230 586 801 0.05 1.16 0.05 1.26

29 249 615 899 0.06 1.26 0.05 0.06 1.43

Total 5350 13,391 18,812 0.33 0.58 25.77 0.20 1.12 28.00



258 G. Barequet et al. / Graphical Models 66 (2004) 245–260
Figs. 8A and B show a wire-frame and a shaded display of the fully reconstructed

pair of lungs. These data contained 30 slices, thus we invoked our algorithm 29

times. Table 1 displays statistics of these experiments. The running times of some

stages were negligible and are thus omitted in the table. The experimental results

show clearly that the most time-consuming step was the computation of the straight
skeleton. In our implementation it indeed required time which was asymptotically

quadratic in the size of the input, while all the other steps required time linear in

the input size. This is clearly demonstrated in Fig. 9, which shows a few relations be-

tween running times and output size to complexities of the input. (The displayed
Fig. 9. (A–C) Skeleton creation time, number of skeleton edges, and number of output triangles, respec-

tively (in the lungs model), as functions of the number of input contour edges; (D) Number of output tri-

angles as a function of intermediate skeleton edges.

Fig. 10. A reconstructed pelvis.



G. Barequet et al. / Graphical Models 66 (2004) 245–260 259
functions were approximated by the curve-fitting tool of Microsoft Excel.) Overall,

every layer was interpolated on average in less than one second.

Fig. 10 shows a reconstruction of part of a human pelvis.
8. Conclusion

In this paper we have proposed an algorithm for solving the practical problem of

polyhedral interpolation between parallel polygonal slices, a problem that has many

applications in medical imaging.

Our solution is based on computing the symmetric difference of the two slices,

then computing the straight skeleton of each cell of the difference, triangulating each

face in the skeletal map, and finally lifting the triangles up to three dimensions to
heights guided by the skeletons.

We feel that our technique reconstructed the boundary of various organs in an

intuitively appealing manner. The results were more than adequate even in extreme

cases of tiling between two seemingly totally different slices. The use of straight skel-

etons may create undesired long peaks at the vicinity of sharp corners of the input

polygons. To remedy this we can use, instead of the straight skeleton, a linear ap-

proximation of the medial axis, or even the chordal axis, of the cells of the symmetric

difference. We leave this as future work.
Acknowledgments

We wish to thank Evgeny Yakersberg who pointed out the fact that it is not al-

ways possible to triangulate a face of the straight skeleton of a polygon such that all

triangles share the polygon’s edge that defines the skeletal face.
References

[1] O. Aichholzer, D. Alberts, F. Aurenhammer, B. G€artner, A novel type of skeleton for polygons, J.

Universal Comput. Sci. 1 (1995) 752–761.

[2] C.L. Bajaj, E.J. Coyle, K.N. Lin, Arbitrary topology shape reconstruction from planar cross sections,

Graph. Models Image Process. 58 (1996) 524–543.

[3] I.J. Balaban, An optimal algorithm for finding segment intersections, in: Proceedings of the 11th

Annual ACM Symposium on Computational Geometry, Vancouver, British Columbia, Canada,

1995, pp. 211–219.

[4] G. Barequet, M.T. Dickerson, M.T. Goodrich, Voronoi diagrams for polygon-offset distance

functions, Discrete Comput. Geom. 25 (2001) 271–291.

[5] G. Barequet, M.T. Goodrich, A. Levi-Steiner, D. Steiner, Straight-skeleton based contour

interpolation, in: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,

Baltimore, MD, 2003, pp. 119–127.

[6] G. Barequet, D. Shapiro, A. Tal, Multilevel sensitive reconstruction of polyhedral surfaces from

parallel slices, Visual Comput. 16 (2000) 116–133.

[7] G. Barequet, M. Sharir, Piecewise-linear interpolation between polygonal slices, Comput. Vision

Image Understanding 63 (1996) 251–272.



260 G. Barequet et al. / Graphical Models 66 (2004) 245–260
[8] S. Batnitzky, H.I. Price, P.N. Cook, L.T. Cook, S.J. Dwyer III, Three-dimensional computer

reconstruction from surface contours for head CT examinations, J. Comput. Assisted Tomography 5

(1981) 60–67.

[9] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational Geometry: Algorithms

and Applications, Springer-Verlag, Germany, 1997.

[10] J.D. Boissonnat, Shape reconstruction from planar cross sections, Comput. Vision Graph. Image

Process. 44 (1988) 1–29.

[11] J.D. Boissonnat, B. Geiger, Three dimensional reconstruction of complex shapes based on the

Delaunay triangulation, Technical Report 1697, Inria-Sophia Antipolis, 1992.

[12] S.W. Cheng, T.K. Dey, Improved construction of Delaunay based contour surfaces, in: Proceedings

of the 5th ACM Symposium on Solid Modeling and Applications, Ann Arbor, MI, 1999, pp. 322–323.

[13] S.-W. Cheng, A. Vigneron, Motorcycle graphs and straight skeletons, in: Proceedings of the 13th

ACM/SIAM Symposium on Discrete Algorithms, San Francisco, CA, 2002, pp. 156–165.

[14] Y.K. Choi, K.H. Park, A heuristic triangulation algorithm for multiple planar contours using an

extended double branching procedure, Visual Comput. 10 (1994) 372–387.

[15] H.N. Christiansen, T.W. Sederberg, Conversion of complex contour line definitions into polygonal

element mosaics, Comput. Graph. 13 (1978) 187–192.

[16] A.B. Ekoule, F.C. Peyrin, C.L. Odet, A triangulation algorithm from arbitrary shaped multiple

planar contours, ACM Trans. Graph. 10 (1991) 182–199.

[17] D. Eppstein, J. Erickson, Raising roofs, crashing cycles, and playing pool: applications of a data

structure for finding pairwise interactions, Discrete Comput. Geom. 22 (1999) 569–592.

[18] P. Felkel, �S. Obdr�z�alek, Straight skeleton computation, in: L. Szirmay-Kalos (Ed.), Spring

Conference on Computer Graphics, Budmerice, Slovakia, 1998, pp. 210–218.

[19] P. Felkel, �S. Obdr�z�alek, Improvement of Oliva’s algorithm for surface reconstruction from contours,

in: J. Zara (Ed.), Spring Conference on Computer Graphics, Budmerice, Slovakia, 1999, pp. 254–263.

[20] J.D. Fix, R.E. Ladner, Multiresolution banded refinement to accelerate surface reconstruction from

polygons, in: Proceedings of the 14th Annual ACM Symposium on Computational Geometry,

Minneapolis, MN, 1998, pp. 240–248.

[21] H. Fuchs, Z.M. Kedem, S.P. Uselton, Optimal surface reconstruction from planar contours,

Commun. ACM 20 (1977) 693–702.

[22] S. Ganapathy, T.G. Dennehy, A new general triangulation method for planar contours, ACM Trans.

Comput. Graph. 16 (1982) 69–75.

[23] L. Guibas, J. Stolfi, Primitives for the manipulation of general subdivisions and the computation of

Voronoi diagrams, ACM Trans. Graph. 4 (1985) 74–123.

[24] N. Kehtarnavaz, R.J.P. De Figueiredo, A framework for surface reconstruction from 3D contours,

Comput. Vision Graph. Image Process. 42 (1988) 32–47.

[25] N. Kehtarnavaz, L.R. Simar, R.J.P. De Figueiredo, A syntactic/semantic technique for surface

reconstruction fromcross-sectional contours,Comput.VisionGraph. ImageProcess. 42 (1988)399–409.

[26] E. Keppel, Approximating complex surfaces by triangulation of contour lines, IBM J. Res. Dev. 19

(1975) 2–11.

[27] D. Meyers, S. Skinner, K. Sloan, Surfaces from contours: the correspondence and branching

problems, Proc. Graph. Interface (1991) 246–254.

[28] J.-M. Oliva, M. Perrin, S. Coquillart, 3D reconstruction of complex polyhedral shapes from contours

using a simplified generalized Voronoi diagram, Comput. Graph. Forum 15 (1996) C397–408.

[29] M.Shantz,Surfacedefinition forbranchingcontour-definedobjects,Comput.Graph.15 (1981)242–270.

[30] K.R. Sloan, J. Painter, Pessimal guesses may be optimal: a counterintuitive search result, IEEE Trans.

Pattern Anal. Mach. Intell. 10 (1988) 949–955.

[31] Y.F. Wang, J.K. Aggarwal, Surface reconstruction and representation of 3-D scenes, Pattern Recogn.

19 (1986) 197–207.

[32] E. Welzl, B. Wolfers, Surface reconstruction between simple polygons via angle criteria, J. Symbolic

Comput. 17 (1994) 351–369.

[33] M.J. Zyda, A.R. Jones, P.G. Hogan, Surface construction from planar contours, Comput. Graph. 11

(1987) 393–408.


	Contour interpolation by straight skeletons
	Introduction
	Overview of the algorithm
	Data acquisition
	Analyzing the contour overlay
	Surface interpolation
	Skeletons and triangulations
	Lifting up
	Surface orientation

	Complexity analysis
	Experimental results
	Conclusion
	Acknowledgements
	References


