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Abstract

In this paper we give solutions to several constrained polygon annulus placement problems for
offset and scaled polygons, providing new efficient primitive operations for computational metrology
and dimensional tolerancing. Given a convex poly@oand a planar point sét, the goal is to find the
thinnest annulus region @t containingS. Depending on the application, there are several ways this
problem can be constrained. In the variants that we address the size of the polygon defining the inner
(respectively, outer) boundary of the annulus is fixed, and the annulus is minimized by minimizing
(respectively, maximizing) the outer (respectively, inner) boundary. We also provide solutions to a
related known problem: finding the smallest homothetic copy of a polygon containing a set of points.
For all of these problems, we solve for the cases where smallest and largest are defined by either the
offsetting or scaling of a polygon. We also provide some experimental results from implementations
of several competing approaches to a primitive operation important to all the above variants: finding
the intersection of copies of a convex polygon.
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1. Introduction

The research areas of computational metrology and dimensional tolerancing are fo-
cused on developing repertories of basic tests, such as for “roundness”, “flathess”, and
angle conformity, so as to build a systematic collection of efficient methods for determin-
ing if manufactured parts conform to their design specificati@3s33]. After a part is
manufactured, its surface is sampled by a device known as a coordinate measuring ma-
chine (CMM) and these sampled points are then tested against various design constraints
to see if this part is conforming or not. The collection of tests that can be done simply and
efficiently is therefore a limiting factor on the richness and sophistication of the constraints
that designers can specify with confidence that their designs will be faithfully tested. Effi-
cient methods for several computational-metrology primitives have been presented in the
algorithms and computational-geometry literatures (see, [¢.8,10,12,14-16,24,25,27,
30-32,34]. This paper provides methods for testing how well a set of points matches the
boundary of a convex polygon.

1.1. Offset polygons and their properties

Computing optimal placements of annulus regions is a fundamental aspect of many
computational metrology tests for quality control in manufacturing. For example, the width
of the thinnest circular annulus containing a set of points is the measure used for testing
“roundness” by the American National Standards Institute [(5égpp. 40—-42]and by the
International Standards Organization. The usual goal is to find, for a certain type of annulus
region, a placement of the annulus that contains a given set or subset of points. Optimality
of the placement can be measured eithembigimizingthe size of the annulus region
necessary to contain all (or a certain number) of the points, anéyimizingthe number
of points contained in a fixed-size annulus. In addition to the tolerancing applications, these
problems also arise in pattern matching and robot localiz§ti8h Thus we are interested
in extending the collection of simple and efficient tolerancing tests to include new kinds of
minimum or maximum annulus placement constraints.

One set of such problems studied recently by Barequet et [&] involves the optimal
placement opolygonalannulus regions. These authors noted that the polygonal annulus
can be defined as the difference region betweenswabedconcentric copies or twoffset
copies of a convex polygo®. The scaled polygons correspond to the convex distance
functions (also called Minkowski functiona[20, p. 15), which are extensions of the
notion of scaling circles (in the Euclidean case) to convex polygons. There have been
several papers (e.d13,23,26) which explore the Voronoi diagram based on these distance
functions.

Let us define formally the offset of a convex polygon. A convex poly@ois the in-
tersection of a collection of closed halfplangs;}, each defined by an edge &f The
offset polygon is the intersection ¢#; (¢)}, where H; (¢) is the halfplane parallel téf;
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with bounding line translated by distaneePositive (respectively, negative) valuessof
stand for translating the edges outward (respectively, inward) from the polygon. It is well
known that the offset operation moves the polygon vertices alongntédial axisof the
polygon, so that an edge “disappears” when two polygon vertices meet on a medial-axis
vertex. (This happens only when the polygon is offset inward.) We denote throughout the
paper the medial axis of a polygaghby MA(P).

This offset operation was studied by Aichholzer et[a]4] in the context of a novel
polygon skeleton, called thstraight skeletonThey discussed the straight skeleton for
both convex and simple polygons. For convex polygons the straight skeleton is just the
well-known medial axis. For nonconvex simple polygons, however, the straight skeleton
and the medial axis are different. In this paper we deal with convex polygons only, and we
will refer to the offset skeleton as the polygon medial axis.

Barequet et al[6] also studied the polygon-offset operation in a different context: that
of a new distance function and its related Voronoi diagram. They give efficient algorithms
for computing compact representations of the nearest- and furthest-neighbor diagrams.
Polygon offsets were also used in the solution to various annulus placement pr@Bjems
In many applications, including those dealing with manufacturing processes, defining dis-
tance in terms of an offset from a polygon (either inward or outward) is more natural than
scaling. This preference for offsetting is motivated by the fact that the absolute error of a
production tool (milling head, laser beam, etc.) is independent of the location of the pro-
duced feature relative to some artificial reference point (the origin). Thus, a tool is more
likely to allow (and expect) local errors bounded by some tolerance, rather than scaled
errors relative to some (arbitrary) center. For this reason, a study of the polygon-offset op-
eration, of the related distance function and its Voronoi diagram, and of annulus-placement
problems for offset polygons, are particularly interesting. Theoretical aspects of this dis-
tance function and Voronoi diagram were studied@h and were used in that paper as
well as in[5] in solutions to the offset versions of several problems involving one or the
other definitions of optimization given above.

1.2. Related results

In [5] several annulus placement problems are solved based on offset polygons. Most
of the problems involved optimizing the placement by fixih¢the width of the annulus
region) and maximizing the number of points contained. Algorithms are given for convex
and for simple polygons, and for translation only, as well as for a general placement with
translation and rotation allowed. In that paper the authors also solve some related decision
problems including an on-line variant. It is suggested that this approach to annulus place-
ment may provide a robust solution to various problems that arise in robot localization,
with the presence of “noisy data” that need not be contained in the best placement.

As was noted earlier, a related optimization problem is fixing the minimum number of
points to be contained (sometimes the entire set) and minimizing the size of the annulus
needed to contain those points. One approach to minimizing the annulus is to apply a
constraint that either the inner or outer boundary of the annulus is of fixed size. Fixing the
size of the inner or outer boundary of an annulus is itself an important aspect of quality
control. Consider, for example, manufacturing a part (like a cylinder) that must fit inside
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a corresponding manufactured sleeve. For the part that must fit inside the sleeve, the outer
boundary defining the annulus has an absolute maximum which is fixed. For the sleeve
itself, however, it is the inner boundary that is crucial and must be fixed.

For the case where the annulus boundary is circular, it is sho8 ithat when the
inner or outer circle is of fixed size, the placement problem can be solved more efficiently
than for the general annulus minimization problem. Likewise, we seek a placement of a
polygonalannulus region that contains all points, but we follow the same idea of fixing
one boundary of the annulus and minimizing the width (or tolerance) of the region by
offsetting or scaling the other boundary. In particular, we extend the approd&h tf
polygonal annulus regions, and also present some new approaches.

1.3. Problem statements

Throughout this paper we will have a s&tof n points and a convex polygon whose
complexity ism. We will omit the definitions ofn andn wherever they are clearly under-
stood from the context.

In this paper we explore a new set of convex-polygon annulus placement problems
where one of the two annulus boundaries (inner or outer) is fixed. (By a “placement” we
mean atranslationof the annulus, where no rotation is allowed.) We solve problems for
polygonal annulus regions defined for both the polygon-offset and the regular convex poly-
gon scaling distance function. In particular, we give algorithms for the following problems:

Problem 1. Given a convex polygorP and a set of points, find the largest possible
polygon P*—an inner offset (or a scaled version) Bf—and a placement of the annulus
defined byP and P*, such that all the points i are covered by the annulus.

Problem 2. Given a convex polygorP and a set of points, find the smallest possible
polygon P*—an outer offset (or a scaled version) Bf—and a placement of the annulus
defined byP and P*, such that all the points ifi are covered by the annulus.

Fig. 1(a)shows a sample polygoR (solid) and an outer offset of it (dashed). For ref-
erence, MAP) (the medial axis ofP) is also shown in light linedrig. 1(b)shows a set
of points S. Fig. 1(c)shows a solution t&roblem 2for the givenP andS. That is, we
see an annulus region containing all the point§ poivhose fixed inner boundary R and
whose outer boundary is the smallest possible offsdt efich thatS can be contained in
the annulus.

The following problem can be viewed as a special caseroblem 2 when the inner
polygon (the polygon defining the inner boundary of the annulus) is null, or as a variant of
the famous “smallest enclosing circle” problem for convex polygons:

Problem 3. Given a convex polygorP and a set of points, find the smallest offset
(respectively, scaled) translation Bfcontaining all the points ii§.

A substep of several approaches to the above problems is the following:
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Fig. 1. An optimal offset annulus and a placement for covering a set of points. (a) Polygon and its medial axis.
(b) Points. (c) Covering annulus.

Problem 4. Given a convex polygo® and a sef of n translations, compute the intersec-
tion of then translated copies af.

1.4. Overview of results

We first present some approache®toblem 4 which is an important geometric prim-
itive in several of our algorithms. We then provide subquadratic-time algorithnirdr-
lems 1 and 2vhich are nontrivial extensions of ideas found& from circular annuli to
polygonal annuli. In particular, we give general solutions that solve both the scaled and off-
set versions of the problems. Our algorithmRyoblem Irequires Q(n +m) log (n + m))
time for scaling, and Q:(logn + log® m) + m(logn + logm)) time for offsetting, where
n is the number of points in the sétandm is the complexity of the polygo®. Our
first algorithm forProblem 2requires @Qnm(logn + logm)) time (for either scaling or
offsetting).

We then present two algorithms f@roblem 3 finding the smallest enclosing poly-
gon. One approach requires(f£dogm + m) expected time for scaled polygons and
O(nlog? m + m) expected time for offsetting, and is an extension to convex polygons of
the well-known randomized incremental algorithm for finding the smallest enclosing cir-
cle[36]. The second method is a new approach based on the medial axis of a polygon and
on our solution td’roblem 4 and can be implemented to run either itn@g#% + m) time
or in O(nm) time (both in the worst case), whekeis the complexity of the convex hull
of S. We then extend our solution Rroblem 4to provide a different solution tBroblem 2
which is simpler than our first algorithm and requires onlyp@gn (logn + logm) + m)
time—an order of magnitude improvement wherandn are comparable.

The paper is organized as follows. 8ection 2we provide some preliminary obser-
vations and properties of offset polygons.Section 3we present several approaches to
computing the intersection and union of several copies of the same convex polygon. In
Sections 4 and %e fix either the inner or outer boundary of the annulus, and minimize its
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width. In Section Bve investigate further the problem of minimizing the polygon enclosing
a given set of points. I8ection Awe describe an alternative algorithm for minimizing the
annulus with a fixed inner boundary. We endSection 8with some concluding remarks.

2. Preliminary observations

In this section we present both some terminology and some additional properties of
the polygon-offset distance function. We first define what we mean fip@mentof a
polygon. Throughout the paper we assume that each polygon has a fixed reference point.
For scaled polygons it is natural to assume the center of scaling is contained in the polygon.
For offset polygons the natural reference is the offsetting center: the point to which the
inner polygon collapses when the polygon is offset inward. (This point is the center of the
medial axis of the polygof6].) In other words, this point is the center of the largest circle
contained in the polygon. In degenerate cases the offset center can be a segment, so we
arbitrarily select a point in it as the center. (The median of the segment is an appropriate
choice.) By translating a copy of the polygéhto some point;, we mean the translation
of P that maps its center (reference pointytdSimilarly, when we speak of theflection
of P, we mean the rotation @ by 7 around its center point. The translation of a reflection
of P to a pointg translates the polygon so that the center of the reflected copy is mapped
tog.

We now make some observations about the polygon-offset operation, and the related
distance function and Voronoi diagrams. These observations are analogous to well-known
facts about other distance functions, in particular the Euclidean distance function. We in-
clude them here, however, because it is not obvious that these properties that hold true
for Euclidean distance also hold for offset distance. One reason it is not obvious is that
the polygon-offset distance function is not a me{6¢. In fact, like the more common
Minkowski functions (scaled polygon distance), it is not even symmetric. It is proven
in [6] that the polygon-offset distance function does not satisfy the triangle inequality,
and in fact, for collinear points it satisfies a reverse inequality. Also, whereas the Voronoi
regions for the Minkowski functions are always star-shaped, there exist point sets for which
the Voronoi diagram based on the polygon-offset distance function have non-star-shaped
regions.Fig. 2 shows such an example: a quadrilateral (shown with its medial axis) de-
fines a convex-offset distance function; the Voronoi cell of one point of a 3-point set is
non-star-shaped.

Some of our algorithms make use of Voronoi diagrams based on the scaled (Minkowski)
or offset distance functions. In both cases bisectorof two pointsp, ¢ is (in the nonde-
generate case) the polyline that contains all points equidistant frandg.® That is, it is
the set of points such thatd(p, x) = d(q, x). Note that we could also define it symmet-
rically as the set of points such that/(x, p) = d(x, q), which matches the first definition
when we reflect the underlying polygon. Since neither distance function is symmetric, these

5 Thisis a single connected polygonal curve with two rays at its ends, separating the plane into two connected
regions, each containing one of the two points.
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Fig. 2. A non-star-shaped Voronoi cell of a point (for the offset distance function).

two definitions result in different bisectors. However, all of the following observations and
lemmas hold regardless of which definition is used.

Observation 1 (Scale and offset)The bisector between two poingsand ¢ has ame-

dian segments that contain all points that are equidistant fropnand ¢ and such that

this distance is the minimum of all points on the bisector. In both directions along the bi-
sector away frony, distances fronp and ¢ to points on the bisector are monotonically
nondecreasing.

This can be seen by examining the pair of smallest offset (or scaled) touching copies of
the polygonP placed at the pointg andg. Since the polygons are convex, the intersection
is a segment or a single point. As the polygons further grow outward, the median (point
or segment) is completely contained in the intersection of any larger copies. Note that the
median of a bisector op andg is analogous to the midpoint of the segmeigt in the
Euclidean distance function. In case the defining polygon does not have parallel edges, the
median is always a single point.

We may use the same idea to show the following:

Observation 2 (Scale and offset)Given a pointp, a line ¢, and a pointg on ¢, there
exists a direction along from g such thatd (x, p) > d(q, p) for all pointsx on ¢ in that
direction.

Note that this is true fod(p, x) > d(p, q) as well as ford(x, p) > d(q, p), but the
directions might be different!

2.1. Feasible regions of placement

We now present more observations and lemmas that will be used in our algorithms.
In particular, following the approach 8], we aim to bound the region in which the
fixed-size polygon (that is, its center) can be placed.Froblem 1we seek the possible
placements of the fixed-size outer polygon that contain all the points, aRddblem 2wve
seek the possible placements of the fixed-size inner polygon, that do not properly contain



8 G. Barequet et al. / Journal of Discrete Algorithms 3 (2005) 1-26

any of the points. We denote these regions as the sets of “feasible placements.” The fol-
lowing observations are well-known and have been used in several algorithms for different
polygon-placement problenfis].

Observation 3. Given a polygonP and two pointsp and ¢, a translation of P to p
containsg if and only if a translation of the reflection @f to ¢ containsp.

This observation follows from simple vector arithmetic and leads to the following gen-
eralizations:

Observation 4. A translation of a polygorP to a pointg contains all the points of a sét
if and only if the intersection of the copies of the reflection a? translated to the points
of S containsg.

Observation 5. A translation of a polygorP to a pointg is empty of points from a sét
i.e., properly contains none of the pointssfif and only ifg is not properly contained in
the union ofz copies of the reflection a? translated to the points of.

Based orObservation 4we define deasible regiorfor placements of the annulus re-
gion in Problem 1 The feasible region of placements is given by the intersectiom of
reflected copies of translated to each of the points$h This feasible region, according
to Observation 4contains all possible placements where the fixed outer polygon contains
all the points inS. The goal then becomes to find the largest inner polygon (scaled or off-
set) that can be placed inside this region without containing any poisitlbthe feasible
region of the outer polygon is already empty, then there is no solution at all. A solution to
Problem 4thus provides us with the feasible region.

There is an analogous idea feroblem 2where we are interested in finding a placement
of the inner polygon such that it does not contain any poirf.dased orObservation 5
we define a differenteasible regiorfor placements of the annulus regionRnoblem 2
The feasible region of placements is given by the complement of the uniomeffected
copies of P translated to each of the points $h plus the boundary edges of the region.
This feasible region consists of all possible placements where the fixed inner polygon does
not properly contain any of the points $1 The goal then becomes to find the smallest
outer polygon (scaled or offset) that can be placed inside this region while containing all
points ins.

3. Computing intersections and unions of n copies of a convex m-gon

In this section we describe several alternative approaches to sévaigdem 4 com-
puting the intersection of translated copies of a convex polygon. Since we present six
competing approaches to the same problem, we provide an experimental comparison be-
tween five of these approaches. (Although it is asymptotically fast, the Voronoi-diagram
approach is impractical and was not included in the experiment.) We also discuss com-
puting and representing the unionmfcopies of a convex polygon, both in explicit and
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compact forms. As mentioned above, solutions to these two subproblems are important
primitives in many polygon placement algorithms.

3.1. Intersections

Itis shown in[7] how the prune-and-search technique of Kirkpatrick and Snog¢g2ik
can be used for efficiently finding the intersection points of two translated copies of a con-
vex polygon. We now describe several ways to compute all the vertices of the polygon
that is the intersection of translations of some input polygon with vertices. These al-
gorithms use well-known techniques but are included here for completeness as we have
not previously seen them applied to this problem. There are several other competing ap-
proaches as well which we do not outline here. The resulting running times of the following
approaches are @m), O(nlogh + m) (whereh is the complexity of the convex hull of
the point set), or @:(logn + logm) 4+ m). The third approach is always asymptotically
inferior to the second approach. We have implemented five versions of these algorithms,
which we describe il\ppendix A

3.1.1. Brute force 1

A “brute force” approach is to start with two copies of the polygon, and compute their
intersection using any of several algorithms for intersecting convex polygons in time which
is linear in the total number of vertices. Each of the remaimirg2 polygons can then be
iteratively intersected with the polygon resulting from the previous stepPLet ., P, be
our set ofn polygon translations. This algorithm is represented as follows:

(1) P*:=Py;
(2) fori:=2,...,ndo P*:= P*N P;

The important observation is that after each step the resulting intersection is still a convex
polygon with at mosin edges, each of which is parallel to an edge of the original polygon.
Thus each step requires(®) time for a total of Qnm). This brute force approach is

not only simple, but is linear im, and thus is asymptotically efficient whenis small.

Note that the same running time can be obtained by repeatedly pairing the polygons and
merging.

3.1.2. Brute force 2

A second brute force approach relies on a simple observation. Eacl;edglee output
polygon P* is determined by a single translated polygon from the input set—in particular,
by that polygon which is extremal in the direction orthogonad;tand toward the opposite
side of the polygon frona;. The algorithm iterates through theedges ofP, and for each
edgee; determines in @) time which of then input polygons might contribute an edge
¢; to the output by finding extremal points 1 We iteratively construcP*, adding one
edge at a time and eliminating edges that are cut off. Note that the addition of a single new
edge may eliminate more than one edge. If edges are added in rotational order, then the
cost of adding the edgeg is O(1 + ¢;), wherec; is the number of earlier edges removed
by e; (possiblyc; = 0). Since the total number of edges is at masthe sum of the;'s is
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alsom. In some sense, this second approach reverses the roles of the inner and outer loops
from the previous algorithm. The running time of this approach is alemQ.

3.1.3. Using the convex hull
We can modify both approaches if we make use of the following lemma, and more
importantly the corollary.

Lemma 6. A convex polygon contains all points in a seif and only if it contains all
vertices of the convex hull ¢f

Coroallary 7. The intersection of translated copies of a polygoh placed at each of
points from a sef is the same as the intersection/ofranslated copies oP placed at the
h vertices of the convex hull 6f

Corollary 7tells us that we can eliminate non-hull points in a preprocessing step. De-
pending on the relationship betweénthe complexity of the convex hull of) andm,
the speed-up in the latter computation may pay for the preprocessing cost of computing
the convex hull. We compute the convex hull ©fn O(nlogh) time [11,21] Applying
the first brute force approach only to thehull points, we get a total running time of
O logh + hm) which is an improvement ifi = w (logh) andh = o(n).

The second brute force approach can be improved even further. Given the convex hull
of a set of points, we can compute in rotational order the extremal points in directions
orthogonal to each of the edges ofP in O(m + k) time by using the “rotating-calipers”
method[35]. The output polygonP* is still constructed one edge at a time. As in the
previous method, the overall number of eliminated edges.i$he overall running time,
including computing the convex hull &, is thus Grlogh + m).

3.1.4. A furthest-neighbor Voronoi diagram approach

A final approach makes use of the furthest-neighbor Voronoi diagram to compute the
intersection of the: polygons. First we compute a compact representation of the furthest-
neighbor Voronoi diagram of thepoints. For convex distance this is done by the algorithm
of [26] in O(n(logn + logm) 4+ m) time. For polygon-offset distance this could be d{fle
slightly slower in Qn(logn + log® m) +m) time, but as we mention below we can use the
first diagram for both distance functions.

Now, we follow the first step (out of three steps) of Lemma 2.116f p. 124] which
constructs the intersection efcongruent circles in @) time. Specifically, irf16] the au-
thors find the portion of the intersection of the circles in each cell of the furthest-neighbor
Voronoi diagram. They do that by a simple walking (on the diagram) method. All we need
to observe is that they amortize the number of jumps between cells of the diagram, and
obtain (for the circles case) an(®) time bound due to the complexity of the diagram. For
both our distance functions we do this irifdogm) time: from the compact representation
of the diagram we need to explicitly compute only the portions that belong to the intersec-
tion. This happens @) times, and for each we spendI@ym) time. The complexity
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of the accumulated output is(@logm). In total we have @:(logn + logm) + m)- and
O(n(logn +10g? m) +m)-time algorithms for the scaling and offsetting distance functions,
respectively.

Since we are interested in the intersection of copies obtiwgnal polygon, to which
the unit scale or offsétidentify, it does not matter which distance function is used. So
we may prefer to choose the respective Voronoi diagram of the scaling function, which
provides a slightly faster algorithm. The Voronoi diagram approach may also be modified
with the precomputation of the convex hull. However, the result is asymptotically slower
than the second brute force approach when the convex hull is used.

3.2. Unions

A representation of the union aftranslated copies of a polygon is also needed, as its
complement defines another feasibility region.

Since translated copies of the same convex polygon together define a set of pseudo-
disks, the union of: translated copies of a convex-gon has complexity Gum), where
“complexity” refers to the total number of edges (and vertices) possible on its boundary
(Kedem et al[19]). The union can be computed in(n (logn + logm)) time by using a
plane-sweep approach.

However, the complexity of the union is only(® in terms of the number of polygonal
arcs (portions of the original polygaR) and intersection points, and thus it may be stored
more compactly using an implicit representation. Consider the boundary of a convex poly-
gonP = (ep, e1,...,en—1) as being defined by a setaafedges listed in counterclockwise
order. We can represent any continuous portion of the bounda?yesf(p, i, ¢, j), where
p is the starting endpoint of the polygonal “ar@j, is the edge containing, ¢ is the
terminating endpoint of the polygonal “arc”, aag is the edge containing. If we con-
sistently represent maximal continuous portions of copies of a convex polggarthis
way, then the bound df.9] regarding pseudo-disks implies that suatoanpact represen-
tation of the union ofn translated copies of a convex-gon can be stored in @ + m)
space.

Moreover, by a simple divide-and-conquer algorithm, we can construct such a compact
representation in much less time than that required for the explicit representation. After
preprocessing in O(m) time (to be able to do intersection tests between translated copies
of the convex polygon), we have(ldogn) steps in which we unite two intermediate unions
Ui, Uz bounded by @) polygonal arcs maintained in sorted order. Frid@] we know
thatUs1, Uz intersect Qn) times. We invoke a plane-sweep procedure in the merge step of
Uy andUs. Each time we compare two polygonal arcs it take€b@mn) time to determine
if they intersect in zero, one, or two points. Thus, the merge takesl@n + logm))
time, and the entire procedure require@®gn (logn + logm) + m) time.

6 We use the term “unit offset” instead of “zero offset”, since we normalize the offset operation so that the
0-offset makes the polygon shrink to its center, and the 1-offset leaves it unchanged.
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4. Minimizing the annulusfor afixed outer polygon
4.1. The underlying theorem

We now address the problem of minimizing an annulus region by fixing the outer
polygon and maximizing the inner polygoRrpoblem ). We solve this problem for both
scaled and offset polygons. In the following theorem and corollary, upon which our algo-
rithm is based, the Voronoi diagram is for the appropriate distance function: either scaled
(Minkowski) or offset polygon.

Theorem 8. Given a convex feasible region of possible translations of a polygyathere
exists a largestscaled or offs§tempty polygorf properly containing no points iff) that
is centered on one of the following points

1. On a vertex of the nearest-neighbor Voronoi diagrany pf
2. On an intersection of an edge of this diagram with the boundary of the feasible region
3. At a vertex on the boundary of the feasible region.

Proof. Assume for contradiction that the minimum polygon annulus region is placed in
the feasible region (ensuring that all the points are contained in the outer polygon), but
not in any of the three possibilities listed in the stated theorem. That is, assume that the
center of the polygon is placed either inside a Voronoi region or at a point on a Voronoi
edge (that is not a Voronoi vertex), but not on the boundary of the feasible region. We
show that the inner polygon could then be enlarged, thus shrinking the size of the annu-
lus region and contradicting the assumption. Suppose the polygon is placed at a point
inside a Voronoi region of a point € S and not on the boundary of the feasible region.
This implies thalg is the nearest neighbor af and the definition of our distance func-
tion further implies that the maximum inner polygon defining the annulus regiory has
and no other point ir§ on its boundary. It is thus possible to maven some direction
farther away fromg without x becoming closer to any other point ithan it is tog.
In particular, place an offset (scaled) copy ®fat x sized to be tangent t@; moving x
in the direction orthogonal to the edge Bftangent tog and away fromy increases the
distance fromx to its nearest neighbay, and in doing so increases the size of the max-
imum polygon placed at containing no points ir§, giving us a contradiction. Suppose
next that the point is inside a Voronoi region, but on the boundary of the feasible region.
If it is on a vertex of the polygon defining the feasible region, we are in case 3. If it is
on an edge of the feasible region, then®igservation 2ve can again move in some
direction farther from its nearest neighbpe S, and as in the previous case, we have a
contradiction.

Suppose, finally, that the best placemeid on an edge of the nearest-neighbor Voronoi
diagram. Recall that an edge of the Voronoi diagram between the cellsantlg is part
of the bisector betweep andg defined by the appropriate distance function. Blyser-
vation 1there is a median point or segment that is equidistant fpoamdg and contains
the closest points tp andg of all such equidistant points. If the median is a point, then
there is some direction thatcan move along the bisector away from that median point,
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that will increase its distance to its nearest neighbors, and thus increase the size of the
largest possible polygon not containing any points. The only thing that would prevent the
movement ofx along this bisector is it also sits on the boundary of the feasible region,

in which we are in case 2 and the theorem holds. In the degenerate case, when the me-
dian is a segment and not a unique point, arid on this segment, we can movealong

this median segment such that its distance to its nearest neighb$doies not increase.

We continue either until we reach the end of the median segment and the distance be-
gins to increase (which is a contradiction) or until we reach a Voronoi vertex and we are
in case 1, or until we reach a boundary of the feasible region, in which case we are in
case 2. O

Hence, we are able to characterize what constrains the inner annulus boundary in this
optimization problem:

Corollary 9. The optimal placement of the annulus region, when its outer boundary is
fixed, has at least three contact points between thé s&td the inner or outer boundary

of the annulus region, at least one of which is in contact with the inner boundaey
maximized inner polyggn

4.2. The algorithm

The algorithm for solvingProblem 1is based orrheorem 8 First we construct the
feasible region. This is done by computing the intersectiom odnvex polygons of com-
plexity m, which we do in Qnum) or O(nlogh + m) time (seeSection 3.1 Next we
construct the nearest-neighbor Voronoi diagran§ afith respect to the polygoR and the
appropriate (scale or offset) distance function. Compact representations can be computed
in O(n(logn + logm) 4+ m) time (for the scaling case) or in@(logn + log? m) + m) time
(for the offsetting case). Finally, we check a discrete set of at mdstronoi vertices, 2
intersections between Voronoi edges and the convex feasibility region (the farthest from
the medians of the edges), amdvertices of the feasible region, to find which allows the
maximal polygon.

For a Voronoi vertex we can test containment in the feasibility region(lngan) time.

For a Voronoi edge we can find intersections with the feasibility regioniagaz) time. To

find the maximal inner polygon, we just need to know the distance to the nearest neighbor
in S. For Voronoi vertices and edges, this is known. For vertices of the feasibility region
we can do point location in the compact Voronoi diagram ito@n + logm) time, and
computing the actual distance requires additiondb@n) time. The total running time

for checking the @: + m) possible locations is therefore(®ogm + m(logn + logm))

time.

Theorem 10. The minimum polygon annulus with a fixed outer polygon can be computed
in O((m +n) log (m + n)) time(for scaling or in O(n(logn +10g? m) +m(logn +logm))
time (for offsetting.
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5. Minimizing the annulusfor afixed inner polygon
5.1. The underlying theorem

In this section we address the problem of minimizing an annulus region by fixing the
inner polygon and minimizing the outer polygoRréblem 2. As in the previous sec-
tions, the algorithms work both for the scaled and offset polygons. In what follows, the
furthest-neighbor Voronoi diagram is for the appropriate distance function, either scaled
(Minkowski) or offset polygon. As befores is the input point set, but now is the fixed
inner polygon.

Lemma 11. The feasible region is the complement of the union of the interiors of the
reflected copies aP placed at points of.

Proof. Follows fromObservation5 0O

Our first algorithm is a Voronoi-diagram approach, analogous to that of the previous
section. However, it has a different feasibility region as describeldemmma 11 Note
that this (polygonal) feasible region may have two different types of vertices. One type
(denoted aP-vertey is simply a vertex of a reflected copy of the polygon. The second
vertex type (denoted dnvertey is an intersection of two copies of the reflected polygon.
The following observation follows from the definitions.

Observation 12. An I-vertex is equidistant from two points $haccording to the polygon
distance function.

Note that if we move counterclockwise around the feasible region, every traversed
P-vertex is a left turn whereas I-vertices are right turns. In particular, from the point of
view of the feasible region, the angle around a P-vertex that belongs to the feasible region
is greater tham . This yields the next observation:

Observation 13. If ¢ is the edge of a feasible region adjacent to a P-vertex,faisdhe line
containing the edge, then it is possible to move some distarce 0 in both directions
along¢ from the P-vertex without leaving the feasible region.

Let U be the union of the: reflected copies oP placed at the points of. By Ob-
servation 12placing P at an I-vertex of the boundary @f results inP having at least
two points of S on its boundary. This means that an I-vertextbis on an edge or on a
vertex of the nearest-neighbor Voronoi diagransof-urthermore, since each edge of this
diagram corresponds to two pointsShand since the two copies of the reflected polygon
associated with those points intersect in at most two p¢ir8s each Voronoi edge can
be associated with at most two I-vertices. Since the Voronoi diagram (in its compact rep-
resentation) has @) edges (each of which may be a polyline of complexityn the full
representation) and @) vertices,U can have at most @) I-vertices. (This can also be
inferred from[19]. In contrastn polygons can certainly intersect&»2) points, but only
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O(n) of these points may be I-vertices of the boundary/ofThe rest are interior t&'.)
There may also be at most(@n) P-vertices. Therefore, the complexity of the bound-
ary of U is O(nm). The polygonU can be computed in @m(logn + logm)) time (see
Section 3.2

We summarize with the following:

Theorem 14. The unionU of n reflected copies of has O(n) I-vertices andO(nm)
P-vertices, and the complexity of its boundary @§nm). It can be computed in
O(mm(logn + logm)) time.

Given an edge of the furthest-neighbor Voronoi diagram 6f we refer to the two
points of S equidistant frome as thegeneratorsof e.

Theorem 15. The center of the smallest enclosing polygon is in the feasible region on one
of the following

1. A vertex of the furthest-neighbor Voronoi diagram

2. A point on an edge of the furthest-neighbor Voronoi diagram provided it is the median
of the bisector of its generatofseeObservatiorl);

3. The intersection point of an edgeof the furthest-neighbor Voronoi diagram and the
boundary of the feasible region that is closest to the median of the bisector of the
generators ok; or

4. An l-vertex of the feasible regidseeObservatior?).

Proof. Assume that the center of the minimum polygon annulus lies in the feasible region.
We will show that if the center is not in one of the four places listed in the theorem, then
the outer polygon can always be shrunk and thus contradicts our assumption. The center
lies in the feasible region and must lie either in the interior of a Voronoi cell, on an edge of
the furthest-neighbor Voronoi diagram, or on a vertex of this diagramliéfs on a vertex
of the diagram, we are in case 1.dfies on an I-vertex of the feasible region, we are in
case 4. Supposeis on an edge of the Voronoi diagram and in the interior of the feasible
region. If ¢ is on the median of the bisector of the generators,dhen we are in case 2.
Otherwise, moving toward the median reduces the size of the outer polygon, which is a
contradiction.

Suppose is on an edge of the Voronoi diagram and on an edge of the feasible region.
If ¢ is on the median of the bisector of the generatorg,dhen we are in case 2. If we
can mover toward the median while remaining in the feasible region, then we reduce the
size of the outer polygon, which is a contradiction. If we cannot mawsvard the median
while remaining in the feasible region, then we are in case 3. Suppose that thecderster
in the interior of the furthest-neighbor Voronoi cell of a pajrt S and in the interior of the
feasible region. This implies thatis on the boundary of the outer polygon. Furthermore,
no other point ofS lies on the boundary of the outer polygon; therefore, it is possible to
reduce the size of the outer polygon by movinpwardg, which is a contradiction.

Finally, suppose thatlies in the interior of the furthest-neighbor Voronoi cell of a point
g € S and is on the boundary of the feasible regiomn.i§ on an I-vertex, we are in case 4. If
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cis on an edge, then ybservation 2here is a direction along which we can mawehile
reducing the size of the outer polygon, thereby contradicting our assumption. Similarly, if
¢ is on a P-vertex, then b@bservation 13here is also a direction along which we can
movec while reducing the size of the outer polygon. This completes the praof.

Corollary 16. The optimal placement of the annulus region, when its inner boundary is
fixed, either has two contact points between the& setd the outer boundary of the annulus
region, or has three contact points with both boundaries of the region, at least one of which
is in contact with the outer boundagthe minimized outer polygdn

5.2. The algorithm

Theorem 15mplies a natural approach to computing the minimum polygon annulus.
First, compute all the possible locations for the center as listed in the theorem. Second, for
each location, compute the size of the annulus. Output the smallest of these annuli.

First, we need a way of deciding whether a poinis in the feasible region. To do
this we compute a compact representation of the furthest-neighbor Voronoi diagé&m of
based on a reflection of a convex polyg@nand the appropriate (scaled or offset) dis-
tance function. The computation of the Voronoi diagram require@g0gn + logm) + m)
time (for scaling) or @u(logn + log? m) + m) time (for offsetting). Alternatively, we can
compute explicit representation of the Voronoi diagram {n£logn + logm)) time. We
preprocess the diagram for planar point location. Once we know the closest pdint of
to x, we can determine whether it is in the feasible region or not. Each such query re-
quires Qlogn + logm) time. There are Q1) vertices in the furthest-neighbor Voronoi
diagram. Containment in the feasible region can be checkedrii@n + logm)) time:
there are @) medians in the furthest-neighbor Voronoi diagram, each can be verified in
O(logn + logm) time. There are () vertices on the boundary of the feasible region (see
Theorem 14 All of these vertices can be verified inl@logn + logm)) time.

To compute the intersection point of an edgsf the furthest-neighbor Voronoi diagram
and the boundary of the feasible region that is closest to the median of the bisector of
the generators of, we note that each edge of the diagram is a polygonal chain of at
mostm segments. If the median is anand is feasible, then no other candidatecois
smaller (distance-wise). Therefore, we need only consider the edges where the median is
not feasible. In this case, we direct the segments of the edge toward the median. For each
segment we need only the first intersection with the feasible region. This can be viewed as a
ray shooting query. For each directed segmenive seek its intersection point with that
is closest tas. Preprocessing/ for ray shooting queries is too costly. Instead, we perform
two plane sweeps to compute the intersections betweand the directed segments, one
for the segments directed to the left and one for the segments directed to the right. After
the first intersection for a given segment is found, we remove it from the event queue.
Therefore, each segment is processed at most twice, once when it is placed in the queue
and once for its first intersection. Since there arfe/) segments and the boundaryf
has Qnm) segments, each of the two sweeps takés:dlogn + logm)) time. All of the
candidates are generated and verified (nflogn + logm)) time. We conclude with the
following:
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Theorem 17. The minimum polygon annulus with a fixed inner polygon can be computed
in O(nm(logn + logm)) time.

6. Smallest enclosing polygon

In this section we solvé’roblem 3which is a special case d?roblem 2in which
the inner “radius” of the annulus is set to 0. Namely, we seek the translation of a min-
imum offset or scaled version of an input polygén so that it fully covers a given set
S of n points. The problem could be solved by searching the vertices and edges of the
furthest-neighbor Voronoi diagram of the respective polygon distance function. However
we provide two algorithms for this problem that are more efficient than computing the
entire furthest-neighbor Voronoi diagram.

6.1. Shrinking the feasible region

Our first approach makes use of the resultSeétion 3.1We present the algorithm and
then explain both its correctness and running time.

1. Compute an offset (or scaled) versionf{denoted as* = Op 5), for somes > 0
large enough so that there exists a placememt*ofontainings.

2. Compute the intersectiah of the n reflected copies oP* translated to the points of
S.

3. ShrinkJ (by reducings) until it becomes a single point Simultaneously shrink-
ing P* by the same amount and translating itctproduces the smallest containing
polygon.

The first step is straightforward. We find in() time the axis-parallel bounding-box
of S. Let C be the maximum of the height and width Bf Then the diameter of the set is
at mostC+/2. If we offset P outward byC+/2/2 in O(m) time we are guaranteed to have
an offset polygonP* that contains a circle of diametél/2 and thus is large enough to
contains.

By Observation 4it is guaranteed that the regign(computed in the second step), that
contains all placements a@t* that fully coversS, is nonempty. Furthermore, the regidn
is convex, with edges parallel to the original edge®df and thus the complexity of is
O(m).

The crucial observation is that by reducifidduring the third step), the above region
shrinks too until it becomes a single point defining the placement and size sintléest
copy of P that contains all the points d&. This observation yields the algorithm. In the
second step we compute the intersectibif the n reflections of P* (the region of all
placements oP* fully covering ), and in the third step we decreasentil J shrinks into
a point. More specifically, we use the medial axis center (or the equivalent scaling center)
of J to determine the point (or segment) to which the polygon shrinks.

A solution to the second step was describe@eattion 3.1 The intersection polygon
J is computed in @m) or O(nlogh + m) time. The third step depends on whether the
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polygon is offset or scaled. For the offset operation, the point to whiarinks is the
center of its medial axis. (This is easily seen when we model the effect of redtioimg:
the edges off are portions of edges df translated to the points ¢f.) This point can be
found in Qim) time by using the method of Aggarwal et §]. For scaled polygons we
need to slightly modify the method @2]. The method observes that the medial axis of a
convex polygon is actually the lower envelope of three-dimensional planes cutting through
the edges oP at fixed angles to the plare= 0 that containg”. For the scaling operation,
all we need to do is to adjust treopeof every plane. It is a function of three points:
the origin and the two endpoints of the respective edge. Namely, the slopes are no longer
fixed but are proportional to the “speeds” by which the edges move. We keep track of the
original copy of P to which each edge id belongs, so we can compute all these angles
and solve the problem again in®) time. The total time complexity of this algorithm is
thus dominated by the second step.

In summary:

Theorem 18. The smallest enclosin@caled or offsgtpolygon problem can be solved in
eitherO(nm) or O(nlogh + m) time.

6.2. Arandomized incremental approach

Problem 3can also be solved by a randomized incremental approach, which is a modi-
fied version of that described [8, 84.7]for finding the smallest enclosing circle. We start
with finding the smallest enclosing polygdh of three pointsyi, g2, g3 € S. We add point
g; attheith step (for 4< i < n). If g; is contained inP;_1, thenP; = P;_1. If not, we com-
pute P; with the knowledge that the poigt must be one of the constraining points (e.g.,
qi lies on the boundary of;). The reader is referred {0] for details. The analysis of the
expected running time is the same as for circles except for one detail: computing the small-
est (scaled or offset) polygon containing 3 points requirde@n) time (for scaling)22]
or O(log? m) time (for offsetting)[6], rather than @L) time.

Theorem 19. The smallest enclosing polygon problem can be solved in expected time
O(nlogm + m) (for scaling or O(n log® m + m) (for offsetting.

7. A new solution to Problem 2
7.1. The algorithm

We now take our technique fro®ection 6.1and show how it can be used to provide
a new solution td’roblem 2 The idea is to find some initidl large enough to guarantee
a containing annulus translation, and then to shrink it down as with our solution to the
smallest enclosing polygon problem, except we are now constrained within some feasibil-
ity region that defines where the inner polygon remains empty of points. As before, for
some large enough > 0, we compute the intersection of thereflected copies 00p s
translated to the points &f. We call this intersectioffs (omitting the dependency oA
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(a) (b)

Fig. 3. The union and intersection of reflections of a polygotmanslated to all points of a sét (a) P andOp 5.
(b) U andZs.

andS), or justZ when$ is clear from the context. We also compute the union ofrthe
reflected copies of translated to the points ¢f, which we denote by/.

Fig. 3(a)shows a sample polygah (solid) and an outer offse? p s (dashed)Fig. 3(b)
shows (as a shaded simple polygon with a solid boundary) the @higirseveral copies of
a reflection ofP, and also (as a lighter grey polygon with its medial axis) the intersection
7 of several reflected copies of the larger offset. (Note that the union polyg@Ennot
necessarily a single polygon, but may be a collection of polygons with holes.)

If ¢ is any point that is contained i but is not properly contained &, then a trans-
lation of the originalP and Op s to g gives a containing placement of the annulus region
for the setS. However it is not yet a solution tBroblem 2because is not minimized.
What we want to do is to shrink down to the smallest value such tHahas a nonempty
intersection with the boundary or exterior Gt

This leads to the following algorithm:

1. Compute an outer offs&p s of P for somes > O large enough so that there exists a
placement of the annulus region betwegemand O p s containings.

2. Compute the intersectidfy of then reflected copies 0D p s translated to the points
of §.

3. Compute the unioty of then reflected copies of translated to the points ¢f.

4. Finds*, the minimum value o6 such thatZs;« contains a point exterior to or on the
boundary ofU .

Before giving more precise details about the algorithm, we make a few further observa-
tions about steps 1 and 4. In the first step we need to compute a vajuarge enough
such thatZs is not empty, that is, a value that guarantees an annulus region large enough to
containS. (We can’t shrink the annulus down if it is not big enough to start with.) To this
end we note that there is a semi-circle of radiukat lies in the annulus region betwegn
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andOp s, and is centered in, for every vertexv of P. Letw be the width of some axis-
parallel bounding square that contains allSofThen, fors = w+/5/2 there is a semi-circle
centered at the leftmost vertex &f that lies in the annulus region betwe@nand Op s

and which is large enough to contain the bounding square ar§indow we consider the

final step. If we offsefZs inward by some amount, say, the resulting polygon is simply
Zs—a, the intersection polygon that would have resulted if the original outer offset had been
8 — o instead ofs. So in order to compute the minimal outer off§&t we really need only
compute the value af that determines how far inward the polygdncan be offset.

This leads to a further observation. Equivalently to offsetfingward until it no longer
contains a point that is not properly contained/irwe could compute MA&Z) and consider
offsetting Z outward from its center until it contacts the first point that is not properly
contained inU. (This approach is similar to that taken$ection 6.1) Thus we have:

Lemma 20. Let the center of MA(Z) be insideU. Consider an expanding offset &f
that begins at and grows outward. Then there is some pairthat is a first point on the
boundary ofUU hit by this expanding offset, andis either a reflex vertex df or is on the
intersection oMA (Z) and the boundary of/.

Proof. We prove the claim by contradiction. Letbe a first point on the boundary of

that is hit by the expanding offset @. Suppose that is neither a reflex vertex o/,

nor a point on MAZ). It follows thatx falls on some edge; of the expanding but not

on a vertex ofZ (since the vertices df move outward along MAT)). Suppose: is on a

vertex of U. By our assumption, it is not a reflex vertex, and so it is a convex vertex with

respect to the interior o/. Thus at least one edge of adjacent tax is interior toZ at

the moment the expandinrg contactsy, but this would mean that intersected that edge

before intersecting, which is a contradiction of our assumption thds an initial contact.
Suppose instead, then, thais on an edge,, of U, but is not a vertex of/. If ¢, is not

parallel toe;, then one direction along, is closer to the inside df and therefore; will

intersect, before it reaches, which is a contradiction. However, df ande, are parallel,

then the initial point of contact is a segment one of whose endpoints is either a vertex of

¢; (and thus on MATZ) which is a contradiction) or is a convex vertex @f, which we

assumed was not the casen

We now present a more detailed version of step 4 of the last algorithm, enhancing the
details of the final step:

4. (a) Compute MAT), and letc be its center.
(b) Determine whether is properly contained i&/. If it is not, then we are done. We
let o be the amount by which we offs&tinward until it degenerates to the point
Then ours — « is the width of the smallest annulus, ané the translation of the
annulus bounded by andOp 5_, that containss.

7 V/5/2 is the radius of a circle circumscribing a unit square, where the center of the circle is located at the
midpoint of one of the edges of the square.
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(c) If ¢ is properly contained i/, then we compute (usingemma 20 the smallest
inner offsetw of Z that contains a point not properly contained ity . Our optimal
annulus region i$ — « and its containing translation is given by

7.2. Analysis

Step 1 requires @ + m) time: O(n) time is required to compute a bounding square
of § and Qm) time to offsetP by this much. In step 2 we compute the intersection of
copies of a convex polygon in@logn + m) time (or in Qnlogh + m) time, whereh is
the size of the convex hull o).

In step 3 the union ofi copies of a convex polygon has complexityx@) and an
explicit version of it can be computed in(@n (logn + logm)) time (Section 3.2 We can
compute MATZ) (in step 4) in Gm) time by using the technique {].

The last two parts of step 4 are the most complex. We can perform the point-location
query ofc in O(logn + logm) time. We then use ray-shooting for each of theedges
of MA (Z) to determine where they interselGt Conversely, we test each of thereflex
vertices ofU to determine in which region of M&) it falls and then compute the offset
at which the edge sweeps through it.

In the next section we provide one further enhancement of the algorithm and summarize
its running time.

7.3. Using a compact representation of the union

The running time of the algorithm can be reduced by almost a linear factor (in the case
whenm andn are both large) by using a compact representatioli:ahe union of the:
copies of the reflection of. Note thatU has complexity Qim), but only Qn) of those
vertices are reflex vertices representing the intersections of the boundaries of two reflected
copies ofP, since the copies aP form a family ofn pseudo-disk§19]. Furthermore, all
the reflex vertices of/ are of these r) intersection-type vertices. The rest of the vertices
are from some copy of the reflection Bf

We want to compute a representationlbthat explicitly stores only these intersection
vertices. As noted isection 3.2the portions ofU in between these intersection vertices
are just parts of chains of a copy of a reflectionfofand are stored implicitly with two
points that specify what portion of a chain of which copy. This compact struétiirean
be computed in O:logn(logn + logm) + m) time by using a divide-and-conquer strategy
(Section 3.2 The reflex vertices needed in step 4(c) (semma 20 are explicitly stored
in U*. Itis only slightly more complex to compute the intersection of (@Awith U. We
perform a Qlogn)-time ray-shooting query obi* to determine which portion of a polygon
the ray from MAZ) passes through, and then a secoribb@n)-time ray-shooting query
on that particular portion of a polygon. (Note that these are not nested steps, since we don'’t
need to perform the second ray-shooting query until we know which regiéh afe are
searching.)

Thus, we have shown the following:
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Theorem 21. Given a convexz-gon P and a setS of n points in the plane, we can deter-
mine the translation for the minimum outer offsetfothat contains all the points o in
O logn(logn + logm) + m) time.

As in Section 6.1 this technique applies to scaled as well as offset annuli, but with
scaled polygons we replace the medial axis with the modified axis (as explained there)
based on each edge moving at a different speed.

8. Conclusion and open problems

In this paper we give efficient algorithms f&roblems 1 and,Xinding the smallest
constrained annulus containing a Setf n points, where the annulus is defined by a convex
m-gon P and the offset operation, and either the outer or inner boundary of the annulus is
fixed. These algorithms are simpler than previous approaches and asymptotically faster.

We conclude by mentioning a few open problems:

Problem 5. Set a theoretical lower bound on the asymptotic running time required to solve
Problem 2

Problem 6. Give efficient solutions for the annulus placement problems when the annulus
is defined by a simple polygon (not necessarily convex).

Problem 7. Give efficient solutions foProblem 2for polyhedra in 3-space.
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Appendix A. Experimental results

As an experimental project, we implemented five of the six algorithms proposed in
Section 3.1 Brute Force 1 (BF1), Brute Force 2 (BF2), Brute Force 1 with convex-hull
preprocessing (BF1-CH), Brute Force 2 using convex hulls and rotating calipers to find
extremal points (BF2-CH-RC), and Brute Force 2 using binary search to find extremal
points (BF2-CH-BS). The algorithms were implemented in Java and tested on numerous
types of polygons and point sets.

First, we implemented two procedures for computing the intersection of two arbitrary
convex polygons (used in some of the methods). Our first procedure computes the inter-
section by merging the list of halfplanes defining the convex polygons into a single sorted



G. Barequet et al. / Journal of Discrete Algorithms 3 (2005) 1-26 23

500 T T T T T T

—
BF2 ——
BF1-CH --x-—
BF2-CH-RC -+ %---
BF2-CH-BS @&
450

400

350

N %)
o =3
o =3

Time (milliseconds)

N
=1
I=3

150

100

50 f

L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Points

@ (b)

Fig. A.1. A graphical representation of the dataable A.1(b) (a) The polygon. (b) Plot of running times.

list, and then using a Graham-Yao scan-like approach for computing the convex hull as
the intersection of all those halfplanes. This approach required 190 lines of Java code.
We also integrated O’Rourke’s code for computing the convexth@lRourke’s software
consisted of 260 lines of Java code and initial tests showed that it was slightly faster for
arbitrary convex polygons, but it crashed with polygons that had parallel edges, which is
always the case for our intersections since we intersect translated copies of the same poly-
gon. For computing the convex hull we implemented a recursive versi@aiofk Hul | .°
Finally, the implementations of the BF1, BF2, BF1-CH, BF2-CH-RC, and BF2-CH-BS
methods required 12, 15, 26, 45, and 23 lines of JAVA code, respectively. The first two
counts do not include calls to the pairwise-intersection procedure; the last three counts
exclude the code for computing the convex hull.

We used three types of polygons: (1.a) regutagons with 3< m < 12; (1.b) random
m-gons, for 3< m < 12, where all vertices were on a circle; and (1.c) convex polygons
taken from MRI contour dat¥ Here the most complex polygon contained 38 vertices. In

8 This code is a Java implementation of the algorithm present§Bin It was taken from the author's web
site http://cs.smith.edu/~orourke/books/CompGeom/CompGeom.html

9 The expected running time of our implementation of this algorithm wasl@n) instead of possibly
O(nlogh), wheren is the number of points anfdis the number of hull points. Therefore, the convex-hull imple-
mentations can be made even better for large values of
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Performance of the five polygon-intersection algorithms (times are in milliseconds)

(a) Aregular 12-gon (type 1.a) with points inside it (type 2.a)

# of points 100 200 300 400 500 600 700 800 900 1,000
BF1 30 46 72 89 101 122 144 166 196 215
BF2 2 3 4 5 6 8 9 11 12 13
BF1-CH 5 5 6 6 6 7 8 8 9 9
BF2-CH-RC 1 1 1 2 2 2 2 3 3 3
BF2-CH-BS 1 1 1 1 2 2 3 3 3 3
# of points 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
BF1 422 568 755 905 1,034 1,267 2,357 3,052 3,427
BF2 25 38 52 66 79 91 103 116 129
BF1-CH 12 17 21 25 28 32 40 45 50
BF2-CH-RC 7 10 13 15 18 22 25 28 32
BF2-CH-RC 6 10 13 16 19 22 25 28 31
(b) A random 7-gon (type 1.b) with points around it (type 2.b)
# of points 100 200 300 400 500 600 700 800 900 1,000
BF1 18 36 59 79 99 124 148 166 186 205
BF2 1 2 3 4 4 5 6 7 7 9
BF1-CH 5 6 7 8 9 11 11 12 12 13
BF2-CH-RC 1 1 2 2 3 3 4 4 5 5
BF2-CH-BS 1 1 2 2 3 3 3 4 4 5
# of points 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
BF1 417 623 829 1,032 1,240 1,380 1,564 1,746 1,951
BF2 16 25 34 42 51 56 64 71 79
BF1-CH 20 27 32 38 43 46 51 57 63
BF2-CH-RC 10 15 19 25 30 34 40 44 50
BF2-CH-BS 9 15 20 24 29 31 36 42 54
(c) A 38-gon (type 1.c) with points around it (type 2.b)
# of points 100 200 300 400 500 600 700 800 900 1,000
BF1 52 116 184 231 288 348 410 472 535 587
BF2 4 9 15 18 23 28 33 38 42 a7
BF1-CH 21 35 48 52 57 64 68 73 78 80
BF2-CH-RC 1 2 3 4 5 5 6 7 8 9
BF2-CH-BS 1 2 3 4 4 5 6 7 8 9
# of points 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
BF1 1,186 1,725 2,252 2,826 3,389 4,430 5,125 5,751 6,377
BF2 92 137 182 234 284 332 381 428 477
BF1-CH 109 124 137 153 167 192 206 219 241
BF2-CH-RC 18 28 37 46 56 64 71 80 105
BF2-CH-BS 20 28 35 44 56 62 71 83 93
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addition, we generated point sets (locations of the copies of the polygon) in two ways: (2.a)
points spread in the polygon interior with a uniform distribution; and (2.b) points located in
ane-neighborhood of the boundary of a reflected copy &t ithe points were first spaced
equally along the polygon, then each point was offset independently from the polygon with
a uniform distribution in the rangie-¢, ¢]. Naturally, the number of copies of the polygon
was identical to the number of points. In all our experiments the intersection efthgies
of a polygon was guaranteed to be nonempty. All the running times are averages over 100
trials, each on a different random point set. All competing algorithms were tested on the
same sets of points. The size of the point sets ranged from 100 to 10,000.

The software was run on a 864 MHz Pentium IIl Dell computer with 256 KB cache
memory and 248 MB of RAMTable A.1shows the results of running the five methods
on three different polygons with numerous point sets. A plot of the dafalae A.1(c)is
shown inFig. A.1 The size of the 38-gon was about 26@50 units. For the experiments
with this polygon the value of was 10 units. The graph of the BF1 method was omitted
because it was completely out of the scale of the other graphs. (That is, the BF1 method
was much slower than all the others.) As was demonstrated in these experiment (as well as
in many others), the two leading methods were BF2-CH-RC and BF2-CH-BS.
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