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Abstract

In this paper we give solutions to several constrained polygon annulus placement proble
offset and scaled polygons, providing new efficient primitive operations for computational metr
and dimensional tolerancing. Given a convex polygonP and a planar point setS, the goal is to find the
thinnest annulus region ofP containingS. Depending on the application, there are several ways
problem can be constrained. In the variants that we address the size of the polygon defining t
(respectively, outer) boundary of the annulus is fixed, and the annulus is minimized by minim
(respectively, maximizing) the outer (respectively, inner) boundary. We also provide solution
related known problem: finding the smallest homothetic copy of a polygon containing a set of p
For all of these problems, we solve for the cases where smallest and largest are defined by e
offsetting or scaling of a polygon. We also provide some experimental results from implemen
of several competing approaches to a primitive operation important to all the above variants:
the intersection ofn copies of a convex polygon.
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1. Introduction

The research areas of computational metrology and dimensional tolerancing a
cused on developing repertories of basic tests, such as for “roundness”, “flatness
angle conformity, so as to build a systematic collection of efficient methods for dete
ing if manufactured parts conform to their design specifications[29,33]. After a part is
manufactured, its surface is sampled by a device known as a coordinate measuri
chine (CMM) and these sampled points are then tested against various design con
to see if this part is conforming or not. The collection of tests that can be done simp
efficiently is therefore a limiting factor on the richness and sophistication of the const
that designers can specify with confidence that their designs will be faithfully tested
cient methods for several computational-metrology primitives have been presented
algorithms and computational-geometry literatures (see, e.g.,[1,8,10,12,14–16,24,25,27
30–32,34]). This paper provides methods for testing how well a set of points matche
boundary of a convex polygon.

1.1. Offset polygons and their properties

Computing optimal placements of annulus regions is a fundamental aspect of
computational metrology tests for quality control in manufacturing. For example, the
of the thinnest circular annulus containing a set of points is the measure used for
“roundness” by the American National Standards Institute (see[17, pp. 40–42]) and by the
International Standards Organization. The usual goal is to find, for a certain type of a
region, a placement of the annulus that contains a given set or subset of points. Opt
of the placement can be measured either byminimizing the size of the annulus regio
necessary to contain all (or a certain number) of the points, or bymaximizingthe number
of points contained in a fixed-size annulus. In addition to the tolerancing applications
problems also arise in pattern matching and robot localization[18]. Thus we are intereste
in extending the collection of simple and efficient tolerancing tests to include new kin
minimum or maximum annulus placement constraints.

One set of such problems studied recently by Barequet et al. in[5] involves the optima
placement ofpolygonalannulus regions. These authors noted that the polygonal an
can be defined as the difference region between twoscaledconcentric copies or twooffset
copies of a convex polygonP . The scaled polygons correspond to the convex dista
functions (also called Minkowski functionals[20, p. 15]), which are extensions of th
notion of scaling circles (in the Euclidean case) to convex polygons. There have
several papers (e.g.,[13,23,26]) which explore the Voronoi diagram based on these dista
functions.

Let us define formally the offset of a convex polygon. A convex polygonP is the in-
tersection of a collection of closed halfplanes{Hi}, each defined by an edge ofP . The
offset polygon is the intersection of{Hi(ε)}, whereHi(ε) is the halfplane parallel toHi
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with bounding line translated by distanceε. Positive (respectively, negative) values ofε
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stand for translating the edges outward (respectively, inward) from the polygon. It is
known that the offset operation moves the polygon vertices along themedial axisof the
polygon, so that an edge “disappears” when two polygon vertices meet on a medi
vertex. (This happens only when the polygon is offset inward.) We denote througho
paper the medial axis of a polygonP by MA(P ).

This offset operation was studied by Aichholzer et al.[3,4] in the context of a nove
polygon skeleton, called thestraight skeleton. They discussed the straight skeleton
both convex and simple polygons. For convex polygons the straight skeleton is ju
well-known medial axis. For nonconvex simple polygons, however, the straight ske
and the medial axis are different. In this paper we deal with convex polygons only, a
will refer to the offset skeleton as the polygon medial axis.

Barequet et al.[6] also studied the polygon-offset operation in a different context:
of a new distance function and its related Voronoi diagram. They give efficient algor
for computing compact representations of the nearest- and furthest-neighbor dia
Polygon offsets were also used in the solution to various annulus placement proble[5].
In many applications, including those dealing with manufacturing processes, definin
tance in terms of an offset from a polygon (either inward or outward) is more natura
scaling. This preference for offsetting is motivated by the fact that the absolute erro
production tool (milling head, laser beam, etc.) is independent of the location of the
duced feature relative to some artificial reference point (the origin). Thus, a tool is
likely to allow (and expect) local errors bounded by some tolerance, rather than
errors relative to some (arbitrary) center. For this reason, a study of the polygon-offs
eration, of the related distance function and its Voronoi diagram, and of annulus-plac
problems for offset polygons, are particularly interesting. Theoretical aspects of th
tance function and Voronoi diagram were studied in[6], and were used in that paper
well as in[5] in solutions to the offset versions of several problems involving one o
other definitions of optimization given above.

1.2. Related results

In [5] several annulus placement problems are solved based on offset polygons
of the problems involved optimizing the placement by fixingδ (the width of the annulus
region) and maximizing the number of points contained. Algorithms are given for co
and for simple polygons, and for translation only, as well as for a general placemen
translation and rotation allowed. In that paper the authors also solve some related d
problems including an on-line variant. It is suggested that this approach to annulus
ment may provide a robust solution to various problems that arise in robot localiz
with the presence of “noisy data” that need not be contained in the best placement.

As was noted earlier, a related optimization problem is fixing the minimum numb
points to be contained (sometimes the entire set) and minimizing the size of the a
needed to contain those points. One approach to minimizing the annulus is to a
constraint that either the inner or outer boundary of the annulus is of fixed size. Fixin
size of the inner or outer boundary of an annulus is itself an important aspect of q
control. Consider, for example, manufacturing a part (like a cylinder) that must fit in



4 G. Barequet et al. / Journal of Discrete Algorithms 3 (2005) 1–26

a corresponding manufactured sleeve. For the part that must fit inside the sleeve, the outer
sleeve
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boundary defining the annulus has an absolute maximum which is fixed. For the
itself, however, it is the inner boundary that is crucial and must be fixed.

For the case where the annulus boundary is circular, it is shown in[8] that when the
inner or outer circle is of fixed size, the placement problem can be solved more effic
than for the general annulus minimization problem. Likewise, we seek a placemen
polygonalannulus region that contains all points, but we follow the same idea of fi
one boundary of the annulus and minimizing the width (or tolerance) of the regio
offsetting or scaling the other boundary. In particular, we extend the approach of[8] to
polygonal annulus regions, and also present some new approaches.

1.3. Problem statements

Throughout this paper we will have a setS of n points and a convex polygon who
complexity ism. We will omit the definitions ofm andn wherever they are clearly unde
stood from the context.

In this paper we explore a new set of convex-polygon annulus placement pro
where one of the two annulus boundaries (inner or outer) is fixed. (By a “placemen
mean atranslationof the annulus, where no rotation is allowed.) We solve problems
polygonal annulus regions defined for both the polygon-offset and the regular convex
gon scaling distance function. In particular, we give algorithms for the following probl

Problem 1. Given a convex polygonP and a set of pointsS, find the largest possibl
polygonP ∗—an inner offset (or a scaled version) ofP —and a placement of the annul
defined byP andP ∗, such that all the points inS are covered by the annulus.

Problem 2. Given a convex polygonP and a set of pointsS, find the smallest possibl
polygonP ∗—an outer offset (or a scaled version) ofP —and a placement of the annul
defined byP andP ∗, such that all the points inS are covered by the annulus.

Fig. 1(a)shows a sample polygonP (solid) and an outer offset of it (dashed). For r
erence, MA(P ) (the medial axis ofP ) is also shown in light lines.Fig. 1(b)shows a se
of pointsS. Fig. 1(c)shows a solution toProblem 2for the givenP andS. That is, we
see an annulus region containing all the points ofS, whose fixed inner boundary isP and
whose outer boundary is the smallest possible offset ofP such thatS can be contained in
the annulus.

The following problem can be viewed as a special case ofProblem 2, when the inner
polygon (the polygon defining the inner boundary of the annulus) is null, or as a vari
the famous “smallest enclosing circle” problem for convex polygons:

Problem 3. Given a convex polygonP and a set of pointsS, find the smallest offse
(respectively, scaled) translation ofP containing all the points inS.

A substep of several approaches to the above problems is the following:
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Fig. 1. An optimal offset annulus and a placement for covering a set of points. (a) Polygon and its medi
(b) Points. (c) Covering annulus.

Problem 4. Given a convex polygonP and a setS of n translations, compute the interse
tion of then translated copies ofP .

1.4. Overview of results

We first present some approaches toProblem 4, which is an important geometric prim
itive in several of our algorithms. We then provide subquadratic-time algorithms forProb-
lems 1 and 2which are nontrivial extensions of ideas found in[8] from circular annuli to
polygonal annuli. In particular, we give general solutions that solve both the scaled an
set versions of the problems. Our algorithm forProblem 1requires O((n+m) log(n + m))

time for scaling, and O(n(logn + log2 m) + m(logn + logm)) time for offsetting, where
n is the number of points in the setS andm is the complexity of the polygonP . Our
first algorithm forProblem 2requires O(nm(logn + logm)) time (for either scaling o
offsetting).

We then present two algorithms forProblem 3, finding the smallest enclosing pol
gon. One approach requires O(n logm + m) expected time for scaled polygons a
O(n log2 m + m) expected time for offsetting, and is an extension to convex polygon
the well-known randomized incremental algorithm for finding the smallest enclosin
cle [36]. The second method is a new approach based on the medial axis of a polyg
on our solution toProblem 4, and can be implemented to run either in O(n logh + m) time
or in O(nm) time (both in the worst case), whereh is the complexity of the convex hu
of S. We then extend our solution toProblem 4to provide a different solution toProblem 2
which is simpler than our first algorithm and requires only O(n logn(logn + logm) + m)

time—an order of magnitude improvement whenm andn are comparable.
The paper is organized as follows. InSection 2we provide some preliminary obse

vations and properties of offset polygons. InSection 3we present several approaches
computing the intersection and union of several copies of the same convex polyg
Sections 4 and 5we fix either the inner or outer boundary of the annulus, and minimiz
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width. InSection 6we investigate further the problem of minimizing the polygon enclosing
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a given set of points. InSection 7we describe an alternative algorithm for minimizing t
annulus with a fixed inner boundary. We end inSection 8with some concluding remarks

2. Preliminary observations

In this section we present both some terminology and some additional proper
the polygon-offset distance function. We first define what we mean by aplacementof a
polygon. Throughout the paper we assume that each polygon has a fixed referenc
For scaled polygons it is natural to assume the center of scaling is contained in the po
For offset polygons the natural reference is the offsetting center: the point to whic
inner polygon collapses when the polygon is offset inward. (This point is the center
medial axis of the polygon[6].) In other words, this point is the center of the largest cir
contained in the polygon. In degenerate cases the offset center can be a segmen
arbitrarily select a point in it as the center. (The median of the segment is an appro
choice.) By translating a copy of the polygonP to some pointq, we mean the translatio
of P that maps its center (reference point) toq. Similarly, when we speak of thereflection
of P , we mean the rotation ofP by π around its center point. The translation of a reflect
of P to a pointq translates the polygon so that the center of the reflected copy is ma
to q.

We now make some observations about the polygon-offset operation, and the
distance function and Voronoi diagrams. These observations are analogous to well-
facts about other distance functions, in particular the Euclidean distance function. W
clude them here, however, because it is not obvious that these properties that ho
for Euclidean distance also hold for offset distance. One reason it is not obvious
the polygon-offset distance function is not a metric[6]. In fact, like the more commo
Minkowski functions (scaled polygon distance), it is not even symmetric. It is pr
in [6] that the polygon-offset distance function does not satisfy the triangle inequ
and in fact, for collinear points it satisfies a reverse inequality. Also, whereas the Vo
regions for the Minkowski functions are always star-shaped, there exist point sets for
the Voronoi diagram based on the polygon-offset distance function have non-star-s
regions.Fig. 2 shows such an example: a quadrilateral (shown with its medial axis
fines a convex-offset distance function; the Voronoi cell of one point of a 3-point s
non-star-shaped.

Some of our algorithms make use of Voronoi diagrams based on the scaled (Minko
or offset distance functions. In both cases thebisectorof two pointsp,q is (in the nonde-
generate case) the polyline that contains all points equidistant fromp andq.5 That is, it is
the set of pointsx such thatd(p,x) = d(q, x). Note that we could also define it symme
rically as the set of pointsx such thatd(x,p) = d(x, q), which matches the first definitio
when we reflect the underlying polygon. Since neither distance function is symmetric

5 This is a single connected polygonal curve with two rays at its ends, separating the plane into two co
regions, each containing one of the two points.
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Fig. 2. A non-star-shaped Voronoi cell of a point (for the offset distance function).

two definitions result in different bisectors. However, all of the following observations
lemmas hold regardless of which definition is used.

Observation 1 (Scale and offset).The bisector between two pointsp and q has ame-
dian segments that contain all points that are equidistant fromp and q and such that
this distance is the minimum of all points on the bisector. In both directions along th
sector away froms, distances fromp and q to points on the bisector are monotonica
nondecreasing.

This can be seen by examining the pair of smallest offset (or scaled) touching cop
the polygonP placed at the pointsp andq. Since the polygons are convex, the intersec
is a segment or a single point. As the polygons further grow outward, the median
or segment) is completely contained in the intersection of any larger copies. Note th
median of a bisector ofp andq is analogous to the midpoint of the segmentpq in the
Euclidean distance function. In case the defining polygon does not have parallel edg
median is always a single point.

We may use the same idea to show the following:

Observation 2 (Scale and offset).Given a pointp, a line �, and a pointq on �, there
exists a direction along� from q such thatd(x,p) � d(q,p) for all pointsx on � in that
direction.

Note that this is true ford(p,x) � d(p,q) as well as ford(x,p) � d(q,p), but the
directions might be different!

2.1. Feasible regions of placement

We now present more observations and lemmas that will be used in our algor
In particular, following the approach of[8], we aim to bound the region in which th
fixed-size polygon (that is, its center) can be placed. ForProblem 1we seek the possibl
placements of the fixed-size outer polygon that contain all the points, and forProblem 2we
seek the possible placements of the fixed-size inner polygon, that do not properly c
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any of the points. We denote these regions as the sets of “feasible placements.” The fol-
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lowing observations are well-known and have been used in several algorithms for di
polygon-placement problems[5].

Observation 3. Given a polygonP and two pointsp and q, a translation ofP to p

containsq if and only if a translation of the reflection ofP to q containsp.

This observation follows from simple vector arithmetic and leads to the following
eralizations:

Observation 4. A translation of a polygonP to a pointq contains all the points of a setS
if and only if the intersection of then copies of the reflection ofP translated to the points
of S containsq.

Observation 5. A translation of a polygonP to a pointq is empty of points from a setS,
i.e., properly contains none of the points ofS, if and only ifq is not properly contained in
the union ofn copies of the reflection ofP translated to the points ofS.

Based onObservation 4, we define afeasible regionfor placements of the annulus r
gion in Problem 1. The feasible region of placements is given by the intersectionn
reflected copies ofP translated to each of the points inS. This feasible region, accordin
to Observation 4, contains all possible placements where the fixed outer polygon con
all the points inS. The goal then becomes to find the largest inner polygon (scaled o
set) that can be placed inside this region without containing any point ofS. If the feasible
region of the outer polygon is already empty, then there is no solution at all. A solut
Problem 4thus provides us with the feasible region.

There is an analogous idea forProblem 2, where we are interested in finding a placem
of the inner polygon such that it does not contain any point ofS. Based onObservation 5,
we define a differentfeasible regionfor placements of the annulus region inProblem 2.
The feasible region of placements is given by the complement of the union ofn reflected
copies ofP translated to each of the points inS, plus the boundary edges of the regio
This feasible region consists of all possible placements where the fixed inner polygo
not properly contain any of the points inS. The goal then becomes to find the small
outer polygon (scaled or offset) that can be placed inside this region while containi
points inS.

3. Computing intersections and unions of n copies of a convex m-gon

In this section we describe several alternative approaches to solvingProblem 4, com-
puting the intersection ofn translated copies of a convex polygon. Since we presen
competing approaches to the same problem, we provide an experimental compari
tween five of these approaches. (Although it is asymptotically fast, the Voronoi-dia
approach is impractical and was not included in the experiment.) We also discuss
puting and representing the union ofn copies of a convex polygon, both in explicit a
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compact forms. As mentioned above, solutions to these two subproblems are important
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primitives in many polygon placement algorithms.

3.1. Intersections

It is shown in[7] how the prune-and-search technique of Kirkpatrick and Snoeyink[22]
can be used for efficiently finding the intersection points of two translated copies of a
vex polygon. We now describe several ways to compute all the vertices of the po
that is the intersection ofn translations of some input polygon withm vertices. These al
gorithms use well-known techniques but are included here for completeness as w
not previously seen them applied to this problem. There are several other compet
proaches as well which we do not outline here. The resulting running times of the follo
approaches are O(nm), O(n logh + m) (whereh is the complexity of the convex hull o
the point set), or O(n(logn + logm) + m). The third approach is always asymptotica
inferior to the second approach. We have implemented five versions of these algo
which we describe inAppendix A.

3.1.1. Brute force 1
A “brute force” approach is to start with two copies of the polygon, and compute

intersection using any of several algorithms for intersecting convex polygons in time w
is linear in the total number of vertices. Each of the remainingn − 2 polygons can then b
iteratively intersected with the polygon resulting from the previous step. LetP1, . . . ,Pn be
our set ofn polygon translations. This algorithm is represented as follows:

(1) P ∗ := P1;
(2) for i := 2, . . . , n do P ∗ := P ∗ ∩ Pi ;

The important observation is that after each step the resulting intersection is still a c
polygon with at mostm edges, each of which is parallel to an edge of the original poly
Thus each step requires O(m) time for a total of O(nm). This brute force approach
not only simple, but is linear inn, and thus is asymptotically efficient whenm is small.
Note that the same running time can be obtained by repeatedly pairing the polygo
merging.

3.1.2. Brute force 2
A second brute force approach relies on a simple observation. Each edgeei in the output

polygonP ∗ is determined by a single translated polygon from the input set—in partic
by that polygon which is extremal in the direction orthogonal toei and toward the opposit
side of the polygon fromei . The algorithm iterates through them edges ofP , and for each
edgeei determines in O(n) time which of then input polygons might contribute an edg
ei to the output by finding extremal points inS. We iteratively constructP ∗, adding one
edge at a time and eliminating edges that are cut off. Note that the addition of a sing
edge may eliminate more than one edge. If edges are added in rotational order, t
cost of adding the edgeei is O(1 + ci), whereci is the number of earlier edges remov
by ei (possiblyci = 0). Since the total number of edges is at mostm, the sum of theci ’s is
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from the previous algorithm. The running time of this approach is also O(nm).

3.1.3. Using the convex hull
We can modify both approaches if we make use of the following lemma, and

importantly the corollary.

Lemma 6. A convex polygon contains all points in a setS if and only if it contains all
vertices of the convex hull ofS.

Corollary 7. The intersection ofn translated copies of a polygonP placed at each ofn
points from a setS is the same as the intersection ofh translated copies ofP placed at the
h vertices of the convex hull ofS.

Corollary 7tells us that we can eliminate non-hull points in a preprocessing step
pending on the relationship betweenh (the complexity of the convex hull ofS) andm,
the speed-up in the latter computation may pay for the preprocessing cost of com
the convex hull. We compute the convex hull ofS in O(n logh) time [11,21]. Applying
the first brute force approach only to theh hull points, we get a total running time o
O(n logh + hm) which is an improvement ifm = ω(logh) andh = o(n).

The second brute force approach can be improved even further. Given the conv
of a set of points, we can compute in rotational order the extremal points in direc
orthogonal to each of them edges ofP in O(m + h) time by using the “rotating-calipers
method[35]. The output polygonP ∗ is still constructed one edge at a time. As in
previous method, the overall number of eliminated edges ism. The overall running time
including computing the convex hull ofS, is thus O(n logh + m).

3.1.4. A furthest-neighbor Voronoi diagram approach
A final approach makes use of the furthest-neighbor Voronoi diagram to compu

intersection of then polygons. First we compute a compact representation of the furt
neighbor Voronoi diagram of then points. For convex distance this is done by the algori
of [26] in O(n(logn+ logm)+m) time. For polygon-offset distance this could be done[6]
slightly slower in O(n(logn + log2 m) + m) time, but as we mention below we can use
first diagram for both distance functions.

Now, we follow the first step (out of three steps) of Lemma 2.1 of[16, p. 124], which
constructs the intersection ofn congruent circles in O(n) time. Specifically, in[16] the au-
thors find the portion of the intersection of the circles in each cell of the furthest-neig
Voronoi diagram. They do that by a simple walking (on the diagram) method. All we
to observe is that they amortize the number of jumps between cells of the diagram
obtain (for the circles case) an O(n) time bound due to the complexity of the diagram. F
both our distance functions we do this in O(n logm) time: from the compact representati
of the diagram we need to explicitly compute only the portions that belong to the inte
tion. This happens O(n) times, and for each we spend O(logm) time. The complexity
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O(n(logn+ log2 m)+m)-time algorithms for the scaling and offsetting distance functio
respectively.

Since we are interested in the intersection of copies of theoriginal polygon, to which
the unit scale or offset6 identify, it does not matter which distance function is used.
we may prefer to choose the respective Voronoi diagram of the scaling function,
provides a slightly faster algorithm. The Voronoi diagram approach may also be mo
with the precomputation of the convex hull. However, the result is asymptotically sl
than the second brute force approach when the convex hull is used.

3.2. Unions

A representation of the union ofn translated copies of a polygon is also needed, a
complement defines another feasibility region.

Since translated copies of the same convex polygon together define a set of p
disks, the union ofn translated copies of a convexm-gon has complexity O(nm), where
“complexity” refers to the total number of edges (and vertices) possible on its bou
(Kedem et al.[19]). The union can be computed in O(nm(logn + logm)) time by using a
plane-sweep approach.

However, the complexity of the union is only O(n) in terms of the number of polygona
arcs (portions of the original polygonP ) and intersection points, and thus it may be sto
more compactly using an implicit representation. Consider the boundary of a convex
gonP = (e0, e1, . . . , em−1) as being defined by a set ofm edges listed in counterclockwis
order. We can represent any continuous portion of the boundary ofP as(p, i, q, j), where
p is the starting endpoint of the polygonal “arc”,ei is the edge containingp, q is the
terminating endpoint of the polygonal “arc”, andej is the edge containingq. If we con-
sistently represent maximal continuous portions of copies of a convex polygonP in this
way, then the bound of[19] regarding pseudo-disks implies that such acompact represen
tation of the union ofn translated copies of a convexm-gon can be stored in O(n + m)

space.
Moreover, by a simple divide-and-conquer algorithm, we can construct such a co

representation in much less time than that required for the explicit representation
preprocessingP in O(m) time (to be able to do intersection tests between translated c
of the convex polygon), we have O(logn) steps in which we unite two intermediate unio
U1,U2 bounded by O(n) polygonal arcs maintained in sorted order. From[19] we know
thatU1,U2 intersect O(n) times. We invoke a plane-sweep procedure in the merge st
U1 andU2. Each time we compare two polygonal arcs it takes O(logm) time to determine
if they intersect in zero, one, or two points. Thus, the merge takes O(n(logn + logm))

time, and the entire procedure requires O(n logn(logn + logm) + m) time.

6 We use the term “unit offset” instead of “zero offset”, since we normalize the offset operation so th
0-offset makes the polygon shrink to its center, and the 1-offset leaves it unchanged.
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4. Minimizing the annulus for a fixed outer polygon
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4.1. The underlying theorem

We now address the problem of minimizing an annulus region by fixing the o
polygon and maximizing the inner polygon (Problem 1). We solve this problem for bot
scaled and offset polygons. In the following theorem and corollary, upon which our
rithm is based, the Voronoi diagram is for the appropriate distance function: either s
(Minkowski) or offset polygon.

Theorem 8. Given a convex feasible region of possible translations of a polygonP , there
exists a largest(scaled or offset) empty polygon( properly containing no points inS) that
is centered on one of the following points:

1. On a vertex of the nearest-neighbor Voronoi diagram ofS;
2. On an intersection of an edge of this diagram with the boundary of the feasible re;
3. At a vertex on the boundary of the feasible region.

Proof. Assume for contradiction that the minimum polygon annulus region is place
the feasible region (ensuring that all the points are contained in the outer polygon
not in any of the three possibilities listed in the stated theorem. That is, assume th
center of the polygon is placed either inside a Voronoi region or at a point on a Vo
edge (that is not a Voronoi vertex), but not on the boundary of the feasible region
show that the inner polygon could then be enlarged, thus shrinking the size of the
lus region and contradicting the assumption. Suppose the polygon is placed at ax
inside a Voronoi region of a pointq ∈ S and not on the boundary of the feasible regi
This implies thatq is the nearest neighbor ofx, and the definition of our distance fun
tion further implies that the maximum inner polygon defining the annulus region hq

and no other point inS on its boundary. It is thus possible to movex in some direction
farther away fromq without x becoming closer to any other point inS than it is toq.
In particular, place an offset (scaled) copy ofP at x sized to be tangent toq; moving x

in the direction orthogonal to the edge ofP tangent toq and away fromq increases the
distance fromx to its nearest neighborq, and in doing so increases the size of the m
imum polygon placed atx containing no points inS, giving us a contradiction. Suppos
next that the pointx is inside a Voronoi region, but on the boundary of the feasible reg
If it is on a vertex of the polygon defining the feasible region, we are in case 3. If
on an edge of the feasible region, then byObservation 2we can again movex in some
direction farther from its nearest neighborq ∈ S, and as in the previous case, we hav
contradiction.

Suppose, finally, that the best placementx is on an edge of the nearest-neighbor Voro
diagram. Recall that an edge of the Voronoi diagram between the cells ofp andq is part
of the bisector betweenp andq defined by the appropriate distance function. ByObser-
vation 1there is a median point or segment that is equidistant fromp andq and contains
the closest points top andq of all such equidistant points. If the median is a point, th
there is some direction thatx can move along the bisector away from that median po
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largest possible polygon not containing any points. The only thing that would preve
movement ofx along this bisector is ifx also sits on the boundary of the feasible regi
in which we are in case 2 and the theorem holds. In the degenerate case, when
dian is a segment and not a unique point, andx is on this segment, we can movex along
this median segment such that its distance to its nearest neighbors inS does not increase
We continue either until we reach the end of the median segment and the distan
gins to increase (which is a contradiction) or until we reach a Voronoi vertex and w
in case 1, or until we reach a boundary of the feasible region, in which case we
case 2. �

Hence, we are able to characterize what constrains the inner annulus boundary
optimization problem:

Corollary 9. The optimal placement of the annulus region, when its outer bounda
fixed, has at least three contact points between the setS and the inner or outer boundar
of the annulus region, at least one of which is in contact with the inner boundary(the
maximized inner polygon).

4.2. The algorithm

The algorithm for solvingProblem 1is based onTheorem 8. First we construct the
feasible region. This is done by computing the intersection ofn convex polygons of com
plexity m, which we do in O(nm) or O(n logh + m) time (seeSection 3.1). Next we
construct the nearest-neighbor Voronoi diagram ofS with respect to the polygonP and the
appropriate (scale or offset) distance function. Compact representations can be co
in O(n(logn+ logm)+m) time (for the scaling case) or in O(n(logn+ log2 m)+m) time
(for the offsetting case). Finally, we check a discrete set of at mostn Voronoi vertices, 2n
intersections between Voronoi edges and the convex feasibility region (the farthes
the medians of the edges), andm vertices of the feasible region, to find which allows t
maximal polygon.

For a Voronoi vertex we can test containment in the feasibility region in O(logm) time.
For a Voronoi edge we can find intersections with the feasibility region in O(logm) time. To
find the maximal inner polygon, we just need to know the distance to the nearest ne
in S. For Voronoi vertices and edges, this is known. For vertices of the feasibility re
we can do point location in the compact Voronoi diagram in O(logn + logm) time, and
computing the actual distance requires additional O(logm) time. The total running time
for checking the O(n + m) possible locations is therefore O(n logm + m(logn + logm))

time.

Theorem 10. The minimum polygon annulus with a fixed outer polygon can be comp
in O((m+n) log(m + n)) time( for scaling) or in O(n(logn+ log2 m)+m(logn+ logm))

time( for offsetting).
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5. Minimizing the annulus for a fixed inner polygon
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5.1. The underlying theorem

In this section we address the problem of minimizing an annulus region by fixin
inner polygon and minimizing the outer polygon (Problem 2). As in the previous sec
tions, the algorithms work both for the scaled and offset polygons. In what follows
furthest-neighbor Voronoi diagram is for the appropriate distance function, either s
(Minkowski) or offset polygon. As before,S is the input point set, but nowP is the fixed
inner polygon.

Lemma 11. The feasible region is the complement of the union of the interiors of tn

reflected copies ofP placed at points ofS.

Proof. Follows fromObservation 5. �
Our first algorithm is a Voronoi-diagram approach, analogous to that of the pre

section. However, it has a different feasibility region as described inLemma 11. Note
that this (polygonal) feasible region may have two different types of vertices. One
(denoted aP-vertex) is simply a vertex of a reflected copy of the polygon. The sec
vertex type (denoted anI-vertex) is an intersection of two copies of the reflected polyg
The following observation follows from the definitions.

Observation 12. An I-vertex is equidistant from two points inS according to the polygon
distance function.

Note that if we move counterclockwise around the feasible region, every trav
P-vertex is a left turn whereas I-vertices are right turns. In particular, from the po
view of the feasible region, the angle around a P-vertex that belongs to the feasible
is greater thanπ . This yields the next observation:

Observation 13. If e is the edge of a feasible region adjacent to a P-vertex, and� is the line
containing the edgee, then it is possible to move some distanceε > 0 in both directions
along� from the P-vertex without leaving the feasible region.

Let U be the union of then reflected copies ofP placed at the points ofS. By Ob-
servation 12, placingP at an I-vertex of the boundary ofU results inP having at leas
two points ofS on its boundary. This means that an I-vertex ofU is on an edge or on
vertex of the nearest-neighbor Voronoi diagram ofS. Furthermore, since each edge of t
diagram corresponds to two points inS, and since the two copies of the reflected polyg
associated with those points intersect in at most two points[19], each Voronoi edge ca
be associated with at most two I-vertices. Since the Voronoi diagram (in its compac
resentation) has O(n) edges (each of which may be a polyline of complexitym in the full
representation) and O(n) vertices,U can have at most O(n) I-vertices. (This can also b
inferred from[19]. In contrast,n polygons can certainly intersect in�(n2) points, but only
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There may also be at most O(nm) P-vertices. Therefore, the complexity of the boun
ary of U is O(nm). The polygonU can be computed in O(nm(logn + logm)) time (see
Section 3.2).

We summarize with the following:

Theorem 14. The unionU of n reflected copies ofP has O(n) I-vertices andO(nm)

P-vertices, and the complexity of its boundary isO(nm). It can be computed in
O(nm(logn + logm)) time.

Given an edgee of the furthest-neighbor Voronoi diagram ofS, we refer to the two
points ofS equidistant frome as thegeneratorsof e.

Theorem 15. The center of the smallest enclosing polygon is in the feasible region o
of the following:

1. A vertex of the furthest-neighbor Voronoi diagram;
2. A point on an edge of the furthest-neighbor Voronoi diagram provided it is the me

of the bisector of its generators(seeObservation1);
3. The intersection point of an edgee of the furthest-neighbor Voronoi diagram and t

boundary of the feasible region that is closest to the median of the bisector
generators ofe; or

4. An I-vertex of the feasible region(seeObservation2).

Proof. Assume that the center of the minimum polygon annulus lies in the feasible re
We will show that if the center is not in one of the four places listed in the theorem,
the outer polygon can always be shrunk and thus contradicts our assumption. The cc

lies in the feasible region and must lie either in the interior of a Voronoi cell, on an ed
the furthest-neighbor Voronoi diagram, or on a vertex of this diagram. Ifc lies on a vertex
of the diagram, we are in case 1. Ifc lies on an I-vertex of the feasible region, we are
case 4. Supposec is on an edgee of the Voronoi diagram and in the interior of the feasib
region. If c is on the median of the bisector of the generators ofe, then we are in case 2
Otherwise, movingc toward the median reduces the size of the outer polygon, which
contradiction.

Supposec is on an edgee of the Voronoi diagram and on an edge of the feasible reg
If c is on the median of the bisector of the generators ofe, then we are in case 2. If w
can movec toward the median while remaining in the feasible region, then we reduc
size of the outer polygon, which is a contradiction. If we cannot movec toward the median
while remaining in the feasible region, then we are in case 3. Suppose that the centec lies
in the interior of the furthest-neighbor Voronoi cell of a pointq ∈ S and in the interior of the
feasible region. This implies thatq is on the boundary of the outer polygon. Furthermo
no other point ofS lies on the boundary of the outer polygon; therefore, it is possib
reduce the size of the outer polygon by movingc towardq, which is a contradiction.

Finally, suppose thatc lies in the interior of the furthest-neighbor Voronoi cell of a po
q ∈ S and is on the boundary of the feasible region. Ifc is on an I-vertex, we are in case 4.
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reducing the size of the outer polygon, thereby contradicting our assumption. Simila
c is on a P-vertex, then byObservation 13there is also a direction along which we c
movec while reducing the size of the outer polygon. This completes the proof.�
Corollary 16. The optimal placement of the annulus region, when its inner bounda
fixed, either has two contact points between the setS and the outer boundary of the annul
region, or has three contact points with both boundaries of the region, at least one of
is in contact with the outer boundary(the minimized outer polygon).

5.2. The algorithm

Theorem 15implies a natural approach to computing the minimum polygon ann
First, compute all the possible locations for the center as listed in the theorem. Seco
each location, compute the size of the annulus. Output the smallest of these annuli.

First, we need a way of deciding whether a pointx is in the feasible region. To d
this we compute a compact representation of the furthest-neighbor Voronoi diagramS

based on a reflection of a convex polygonP and the appropriate (scaled or offset) d
tance function. The computation of the Voronoi diagram requires O(n(logn+ logm)+m)

time (for scaling) or O(n(logn + log2 m) + m) time (for offsetting). Alternatively, we ca
compute explicit representation of the Voronoi diagram in O(nm(logn + logm)) time. We
preprocess the diagram for planar point location. Once we know the closest poinS

to x, we can determine whether it is in the feasible region or not. Each such que
quires O(logn + logm) time. There are O(n) vertices in the furthest-neighbor Voron
diagram. Containment in the feasible region can be checked in O(n(logn + logm)) time:
there are O(n) medians in the furthest-neighbor Voronoi diagram, each can be verifi
O(logn + logm) time. There are O(n) vertices on the boundary of the feasible region (
Theorem 14). All of these vertices can be verified in O(n(logn + logm)) time.

To compute the intersection point of an edgee of the furthest-neighbor Voronoi diagra
and the boundary of the feasible region that is closest to the median of the bise
the generators ofe, we note that each edge of the diagram is a polygonal chain
mostm segments. If the median is one and is feasible, then no other candidate one is
smaller (distance-wise). Therefore, we need only consider the edges where the me
not feasible. In this case, we direct the segments of the edge toward the median. F
segment we need only the first intersection with the feasible region. This can be view
ray shooting query. For each directed segment−→

st , we seek its intersection point withU that
is closest tos. PreprocessingU for ray shooting queries is too costly. Instead, we perfo
two plane sweeps to compute the intersections betweenU and the directed segments, o
for the segments directed to the left and one for the segments directed to the right
the first intersection for a given segment is found, we remove it from the event q
Therefore, each segment is processed at most twice, once when it is placed in the
and once for its first intersection. Since there are O(nm) segments and the boundary ofU

has O(nm) segments, each of the two sweeps takes O(nm(logn + logm)) time. All of the
candidates are generated and verified in O(nm(logn + logm)) time. We conclude with the
following:
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Theorem 17. The minimum polygon annulus with a fixed inner polygon can be computed
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6. Smallest enclosing polygon

In this section we solveProblem 3which is a special case ofProblem 2in which
the inner “radius” of the annulus is set to 0. Namely, we seek the translation of a
imum offset or scaled version of an input polygonP , so that it fully covers a given se
S of n points. The problem could be solved by searching the vertices and edges
furthest-neighbor Voronoi diagram of the respective polygon distance function. How
we provide two algorithms for this problem that are more efficient than computin
entire furthest-neighbor Voronoi diagram.

6.1. Shrinking the feasible region

Our first approach makes use of the results ofSection 3.1. We present the algorithm an
then explain both its correctness and running time.

1. Compute an offset (or scaled) version ofP (denoted asP ∗ = OP,δ), for someδ > 0
large enough so that there exists a placement ofP ∗ containingS.

2. Compute the intersectionJ of then reflected copies ofP ∗ translated to the points o
S.

3. ShrinkJ (by reducingδ) until it becomes a single pointc. Simultaneously shrink
ing P ∗ by the same amount and translating it toc produces the smallest containin
polygon.

The first step is straightforward. We find in O(n) time the axis-parallel bounding-bo
of S. Let C be the maximum of the height and width ofB. Then the diameter of the set
at mostC

√
2. If we offsetP outward byC

√
2/2 in O(m) time we are guaranteed to ha

an offset polygonP ∗ that contains a circle of diameterC
√

2 and thus is large enough
containS.

By Observation 4, it is guaranteed that the regionJ (computed in the second step), th
contains all placements ofP ∗ that fully coverS, is nonempty. Furthermore, the regionJ

is convex, with edges parallel to the original edges ofP ∗, and thus the complexity ofJ is
O(m).

The crucial observation is that by reducingδ (during the third step), the above regi
shrinks too until it becomes a single point defining the placement and size of thesmallest
copy ofP that contains all the points ofS. This observation yields the algorithm. In th
second step we compute the intersectionJ of the n reflections ofP ∗ (the region of all
placements ofP ∗ fully coveringS), and in the third step we decreaseδ until J shrinks into
a point. More specifically, we use the medial axis center (or the equivalent scaling c
of J to determine the point (or segment) to which the polygon shrinks.

A solution to the second step was described inSection 3.1. The intersection polygo
J is computed in O(nm) or O(n logh + m) time. The third step depends on whether
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polygon is offset or scaled. For the offset operation, the point to whichJ shrinks is the
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center of its medial axis. (This is easily seen when we model the effect of reducingδ onJ :
the edges ofJ are portions of edges ofP translated to the points ofS.) This point can be
found in O(m) time by using the method of Aggarwal et al.[2]. For scaled polygons w
need to slightly modify the method of[2]. The method observes that the medial axis o
convex polygon is actually the lower envelope of three-dimensional planes cutting th
the edges ofP at fixed angles to the planez = 0 that containsP . For the scaling operation
all we need to do is to adjust theslopeof every plane. It is a function of three point
the origin and the two endpoints of the respective edge. Namely, the slopes are no
fixed but are proportional to the “speeds” by which the edges move. We keep track
original copy ofP to which each edge inJ belongs, so we can compute all these ang
and solve the problem again in O(m) time. The total time complexity of this algorithm
thus dominated by the second step.

In summary:

Theorem 18. The smallest enclosing(scaled or offset) polygon problem can be solved
eitherO(nm) or O(n logh + m) time.

6.2. A randomized incremental approach

Problem 3can also be solved by a randomized incremental approach, which is a
fied version of that described in[9, §4.7]for finding the smallest enclosing circle. We st
with finding the smallest enclosing polygonP3 of three pointsq1, q2, q3 ∈ S. We add point
qi at theith step (for 4� i � n). If qi is contained inPi−1, thenPi = Pi−1. If not, we com-
putePi with the knowledge that the pointqi must be one of the constraining points (e
qi lies on the boundary ofPi ). The reader is referred to[9] for details. The analysis of th
expected running time is the same as for circles except for one detail: computing the
est (scaled or offset) polygon containing 3 points requires O(logm) time (for scaling)[22]
or O(log2 m) time (for offsetting)[6], rather than O(1) time.

Theorem 19. The smallest enclosing polygon problem can be solved in expected
O(n logm + m) ( for scaling) or O(n log2 m + m) ( for offsetting).

7. A new solution to Problem 2

7.1. The algorithm

We now take our technique fromSection 6.1and show how it can be used to provi
a new solution toProblem 2. The idea is to find some initialδ large enough to guarante
a containing annulus translation, and then to shrink it down as with our solution t
smallest enclosing polygon problem, except we are now constrained within some fe
ity region that defines where the inner polygon remains empty of points. As befor
some large enoughδ > 0, we compute the intersection of then reflected copies ofOP,δ

translated to the points ofS. We call this intersectionIδ (omitting the dependency onP
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Fig. 3. The union and intersection of reflections of a polygonP translated to all points of a setS. (a)P andOP,δ .
(b) U andIδ .

andS), or justI whenδ is clear from the context. We also compute the union of thn

reflected copies ofP translated to the points ofS, which we denote byU .
Fig. 3(a)shows a sample polygonP (solid) and an outer offsetOP,δ (dashed).Fig. 3(b)

shows (as a shaded simple polygon with a solid boundary) the unionU of several copies o
a reflection ofP , and also (as a lighter grey polygon with its medial axis) the intersec
I of several reflected copies of the larger offset. (Note that the union polygonU is not
necessarily a single polygon, but may be a collection of polygons with holes.)

If q is any point that is contained inI but is not properly contained inU , then a trans
lation of the originalP andOP,δ to q gives a containing placement of the annulus reg
for the setS. However it is not yet a solution toProblem 2becauseδ is not minimized.
What we want to do is to shrinkδ down to the smallest value such thatI has a nonempty
intersection with the boundary or exterior ofU .

This leads to the following algorithm:

1. Compute an outer offsetOP,δ of P for someδ > 0 large enough so that there exist
placement of the annulus region betweenP andOP,δ containingS.

2. Compute the intersectionIδ of then reflected copies ofOP,δ translated to the point
of S.

3. Compute the unionU of then reflected copies ofP translated to the points ofS.
4. Findδ∗, the minimum value ofδ such thatIδ∗ contains a point exterior to or on th

boundary ofU .

Before giving more precise details about the algorithm, we make a few further obs
tions about steps 1 and 4. In the first step we need to compute a value ofδ large enough
such thatIδ is not empty, that is, a value that guarantees an annulus region large eno
containS. (We can’t shrink the annulus down if it is not big enough to start with.) To
end we note that there is a semi-circle of radiusδ that lies in the annulus region betweenP
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centered at the leftmost vertex ofP that lies in the annulus region betweenP andOP,δ

and which is large enough to contain the bounding square aroundS.7 Now we consider the
final step. If we offsetIδ inward by some amount, sayα, the resulting polygon is simpl
Iδ−α , the intersection polygon that would have resulted if the original outer offset had
δ − α instead ofδ. So in order to compute the minimal outer offsetδ∗, we really need only
compute the value ofα that determines how far inward the polygonIδ can be offset.

This leads to a further observation. Equivalently to offsettingI inward until it no longer
contains a point that is not properly contained inU , we could compute MA(I) and consider
offsettingI outward from its center until it contacts the first point that is not prop
contained inU . (This approach is similar to that taken inSection 6.1.) Thus we have:

Lemma 20. Let the centerc of MA(I) be insideU . Consider an expanding offset ofI
that begins atc and grows outward. Then there is some pointx that is a first point on the
boundary ofU hit by this expanding offset, andx is either a reflex vertex ofU or is on the
intersection ofMA(I) and the boundary ofU .

Proof. We prove the claim by contradiction. Letx be a first point on the boundary ofU

that is hit by the expanding offset ofI. Suppose thatx is neither a reflex vertex ofU ,
nor a point on MA(I). It follows thatx falls on some edgeei of the expandingI but not
on a vertex ofI (since the vertices ofI move outward along MA(I)). Supposex is on a
vertex ofU . By our assumption, it is not a reflex vertex, and so it is a convex vertex
respect to the interior ofU . Thus at least one edge ofU adjacent tox is interior toI at
the moment the expandingei contactsx, but this would mean thatei intersected that edg
before intersectingx, which is a contradiction of our assumption thatx is an initial contact.

Suppose instead, then, thatx is on an edgeeu of U , but is not a vertex ofU . If eu is not
parallel toei , then one direction alongeu is closer to the inside ofI and thereforeei will
intersecteu before it reachesx, which is a contradiction. However, ifei andeu are parallel,
then the initial point of contact is a segment one of whose endpoints is either a ver
ei (and thus on MA(I) which is a contradiction) or is a convex vertex ofeu, which we
assumed was not the case.�

We now present a more detailed version of step 4 of the last algorithm, enhanci
details of the final step:

4. (a) Compute MA(I), and letc be its center.
(b) Determine whetherc is properly contained inU . If it is not, then we are done. W

let α be the amount by which we offsetI inward until it degenerates to the pointc.
Then ourδ − α is the width of the smallest annulus, andc is the translation of the
annulus bounded byP andOP,δ−α that containsS.

7 √
5/2 is the radius of a circle circumscribing a unit square, where the center of the circle is located

midpoint of one of the edges of the square.
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inner offsetα of I that contains a pointx not properly contained inU . Our optimal
annulus region isδ − α and its containing translation is given byx.

7.2. Analysis

Step 1 requires O(n + m) time: O(n) time is required to compute a bounding squ
of S and O(m) time to offsetP by this much. In step 2 we compute the intersection on

copies of a convex polygon in O(n logn + m) time (or in O(n logh + m) time, whereh is
the size of the convex hull ofS).

In step 3 the union ofn copies of a convex polygon has complexity O(nm) and an
explicit version of it can be computed in O(nm(logn + logm)) time (Section 3.2). We can
compute MA(I) (in step 4) in O(m) time by using the technique of[2].

The last two parts of step 4 are the most complex. We can perform the point-lo
query ofc in O(logn + logm) time. We then use ray-shooting for each of them edges
of MA(I) to determine where they intersectU . Conversely, we test each of then reflex
vertices ofU to determine in which region of MA(I) it falls and then compute the offs
at which the edge sweeps through it.

In the next section we provide one further enhancement of the algorithm and sum
its running time.

7.3. Using a compact representation of the union

The running time of the algorithm can be reduced by almost a linear factor (in the
whenm andn are both large) by using a compact representation ofU : the union of then
copies of the reflection ofP . Note thatU has complexity O(nm), but only O(n) of those
vertices are reflex vertices representing the intersections of the boundaries of two re
copies ofP , since the copies ofP form a family ofn pseudo-disks[19]. Furthermore, al
the reflex vertices ofU are of these O(n) intersection-type vertices. The rest of the verti
are from some copy of the reflection ofP .

We want to compute a representation ofU that explicitly stores only these intersecti
vertices. As noted inSection 3.2, the portions ofU in between these intersection vertic
are just parts of chains of a copy of a reflection ofP and are stored implicitly with two
points that specify what portion of a chain of which copy. This compact structureU∗ can
be computed in O(n logn(logn+ logm)+m) time by using a divide-and-conquer strate
(Section 3.2). The reflex vertices needed in step 4(c) (seeLemma 20) are explicitly stored
in U∗. It is only slightly more complex to compute the intersection of MA(I) with U . We
perform a O(logn)-time ray-shooting query onU∗ to determine which portion of a polygo
the ray from MA(I) passes through, and then a second O(logm)-time ray-shooting query
on that particular portion of a polygon. (Note that these are not nested steps, since w
need to perform the second ray-shooting query until we know which region ofU∗ we are
searching.)

Thus, we have shown the following:
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Theorem 21. Given a convexm-gonP and a setS of n points in the plane, we can deter-
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mine the translation for the minimum outer offset ofP that contains all the points ofS in
O(n logn(logn + logm) + m) time.

As in Section 6.1, this technique applies to scaled as well as offset annuli, but
scaled polygons we replace the medial axis with the modified axis (as explained
based on each edge moving at a different speed.

8. Conclusion and open problems

In this paper we give efficient algorithms forProblems 1 and 2, finding the smalles
constrained annulus containing a setS of n points, where the annulus is defined by a con
m-gonP and the offset operation, and either the outer or inner boundary of the annu
fixed. These algorithms are simpler than previous approaches and asymptotically fa

We conclude by mentioning a few open problems:

Problem 5. Set a theoretical lower bound on the asymptotic running time required to
Problem 2.

Problem 6. Give efficient solutions for the annulus placement problems when the an
is defined by a simple polygon (not necessarily convex).

Problem 7. Give efficient solutions forProblem 2for polyhedra in 3-space.
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Appendix A. Experimental results

As an experimental project, we implemented five of the six algorithms propos
Section 3.1: Brute Force 1 (BF1), Brute Force 2 (BF2), Brute Force 1 with convex-
preprocessing (BF1-CH), Brute Force 2 using convex hulls and rotating calipers t
extremal points (BF2-CH-RC), and Brute Force 2 using binary search to find ext
points (BF2-CH-BS). The algorithms were implemented in Java and tested on num
types of polygons and point sets.

First, we implemented two procedures for computing the intersection of two arb
convex polygons (used in some of the methods). Our first procedure computes the
section by merging the list of halfplanes defining the convex polygons into a single s
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Fig. A.1. A graphical representation of the data inTable A.1(b). (a) The polygon. (b) Plot of running times.

list, and then using a Graham-Yao scan-like approach for computing the convex h
the intersection of all those halfplanes. This approach required 190 lines of Java
We also integrated O’Rourke’s code for computing the convex hull.8 O’Rourke’s software
consisted of 260 lines of Java code and initial tests showed that it was slightly fas
arbitrary convex polygons, but it crashed with polygons that had parallel edges, wh
always the case for our intersections since we intersect translated copies of the sam
gon. For computing the convex hull we implemented a recursive version ofQuickHull.9

Finally, the implementations of the BF1, BF2, BF1-CH, BF2-CH-RC, and BF2-CH
methods required 12, 15, 26, 45, and 23 lines of JAVA code, respectively. The firs
counts do not include calls to the pairwise-intersection procedure; the last three
exclude the code for computing the convex hull.

We used three types of polygons: (1.a) regularm-gons with 3� m � 12; (1.b) random
m-gons, for 3� m � 12, where all vertices were on a circle; and (1.c) convex polyg
taken from MRI contour data.10 Here the most complex polygon contained 38 vertices

8 This code is a Java implementation of the algorithm presented in[28]. It was taken from the author’s we
sitehttp://cs.smith.edu/~orourke/books/CompGeom/CompGeom.html.

9 The expected running time of our implementation of this algorithm was O(n logn) instead of possibly
O(n logh), wheren is the number of points andh is the number of hull points. Therefore, the convex-hull imp
mentations can be made even better for large values ofn.

http://cs.smith.edu/~orourke/books/CompGeom/CompGeom.html
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Table A.1
Performance of the five polygon-intersection algorithms (times are in milliseconds)

(a) A regular 12-gon (type 1.a) with points inside it (type 2.a)

# of points 100 200 300 400 500 600 700 800 900 1,0

BF1 30 46 72 89 101 122 144 166 196 2
BF2 2 3 4 5 6 8 9 11 12 13
BF1-CH 5 5 6 6 6 7 8 8 9 9
BF2-CH-RC 1 1 1 2 2 2 2 3 3 3
BF2-CH-BS 1 1 1 1 2 2 3 3 3 3

# of points 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10

BF1 422 568 755 905 1,034 1,267 2,357 3,052 3,4
BF2 25 38 52 66 79 91 103 116 12
BF1-CH 12 17 21 25 28 32 40 45 5
BF2-CH-RC 7 10 13 15 18 22 25 28 3
BF2-CH-RC 6 10 13 16 19 22 25 28 3

(b) A random 7-gon (type 1.b) with points around it (type 2.b)

# of points 100 200 300 400 500 600 700 800 900 1,0

BF1 18 36 59 79 99 124 148 166 186 2
BF2 1 2 3 4 4 5 6 7 7 9
BF1-CH 5 6 7 8 9 11 11 12 12 1
BF2-CH-RC 1 1 2 2 3 3 4 4 5 5
BF2-CH-BS 1 1 2 2 3 3 3 4 4 5

# of points 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10

BF1 417 623 829 1,032 1,240 1,380 1,564 1,746 1,
BF2 16 25 34 42 51 56 64 71 7
BF1-CH 20 27 32 38 43 46 51 57 6
BF2-CH-RC 10 15 19 25 30 34 40 44 5
BF2-CH-BS 9 15 20 24 29 31 36 42 5

(c) A 38-gon (type 1.c) with points around it (type 2.b)

# of points 100 200 300 400 500 600 700 800 900 1,0

BF1 52 116 184 231 288 348 410 472 535 5
BF2 4 9 15 18 23 28 33 38 42 4
BF1-CH 21 35 48 52 57 64 68 73 78 8
BF2-CH-RC 1 2 3 4 5 5 6 7 8 9
BF2-CH-BS 1 2 3 4 4 5 6 7 8 9

# of points 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10

BF1 1,186 1,725 2,252 2,826 3,389 4,430 5,125 5,751 6
BF2 92 137 182 234 284 332 381 428 4
BF1-CH 109 124 137 153 167 192 206 219 2
BF2-CH-RC 18 28 37 46 56 64 71 80 10
BF2-CH-BS 20 28 35 44 56 62 71 83 9
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addition, we generated point sets (locations of the copies of the polygon) in two ways: (2.a)
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points spread in the polygon interior with a uniform distribution; and (2.b) points locat
anε-neighborhood of the boundary of a reflected copy of it.11 The points were first space
equally along the polygon, then each point was offset independently from the polygo
a uniform distribution in the range[−ε, ε]. Naturally, the number of copies of the polyg
was identical to the number of points. In all our experiments the intersection of then copies
of a polygon was guaranteed to be nonempty. All the running times are averages ov
trials, each on a different random point set. All competing algorithms were tested o
same sets of points. The size of the point sets ranged from 100 to 10,000.

The software was run on a 864 MHz Pentium III Dell computer with 256 KB ca
memory and 248 MB of RAM.Table A.1shows the results of running the five metho
on three different polygons with numerous point sets. A plot of the data inTable A.1(c)is
shown inFig. A.1. The size of the 38-gon was about 250× 250 units. For the experimen
with this polygon the value ofε was 10 units. The graph of the BF1 method was omi
because it was completely out of the scale of the other graphs. (That is, the BF1 m
was much slower than all the others.) As was demonstrated in these experiment (as
in many others), the two leading methods were BF2-CH-RC and BF2-CH-BS.
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