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Biased Skip Lists1

Amitabha Bagchi,2 Adam L. Buchsbaum,3 and Michael T. Goodrich2

Abstract. We design a variation of skip lists that performs well for generally biased access sequences. Given
n items, each with a positive weight wi , 1 ≤ i ≤ n, the time to access item i is O(1 + log(W/wi )), where
W =∑n

i=1 wi ; the data structure is dynamic. We present two instantiations of biased skip lists, one of which
achieves this bound in the worst case, the other in the expected case. The structures are nearly identical; the
deterministic one simply ensures the balance condition that the randomized one achieves probabilistically. We
use the same method to analyze both.
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1. Introduction. The primary goal of data structures research is to design data organi-
zation mechanisms that admit fast access and update operations. For a generic n-element
ordered data set that is accessed and updated uniformly, this goal is typically satisfied
by dictionaries that achieve O(log n)-time performance for searches and updates; for
example, AVL-trees [2], red–black trees [12], and (a, b)-trees [13].

Nevertheless, many dictionary applications involve sets of weighted data items that are
searched and updated non-uniformly according to those weights; that is, they are biased.
For example, most operating systems textbooks (e.g., see [23]) devote major coverage to
methods for dealing with biasing in memory requests. Other recent examples of biased
sets include client web server requests [11] and DNS lookups [6]. For such applications,
a biased search structure is more appropriate—that is, a structure that achieves search
times faster than log n for highly weighted items. Biased searching is also useful in
auxiliary structures deployed inside other data structures [5], [10], [21].

Formally, a biased dictionary is a data structure that maintains an ordered set X , each
element i of which has a weight, wi ; without loss of generality, we assume wi ≥ 1. The
operations are as follows:

Search(X, i). Determine if i is in X .
Insert(X, i). Add i to X .
Delete(X, i). Delete i from X .
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Join(X L , X R). Assuming that i < j for each i ∈ X L and j ∈ X R , create a new set
X = X L ∪ X R . The operation destroys X L and X R .

Split(X, i). Assuming without loss of generality that i 	∈ X , create X L = { j ∈ X :
j < i} and X R = { j ∈ X : j > i}. The operation destroys X .

FingerSearch(X, i, j). Determine if j is in X , beginning the search with a handle in
the data structure to element i ∈ X .

Reweight(X, i, w′i ). Change the weight of i to w′i .

In this paper we study efficient data structures for biased data sets subject to these
operations. We desire search times that are asymptotically optimal and update times
that are also efficient. For example, consider the case when wi is the number of times
item i from a set of n items is accessed over a sequence of m searches, where m =
W =∑n

i=1wi . A biased dictionary with O(log(W/wi )) search time for the i th item can
perform this sequence in O(m(1−∑n

i=1 pi log pi )) time, where pi = wi/m, assuming
that each wi ≥ 1; this is asymptotically optimal [1].

We therefore desire O(log(W/wi )) search times and similar update times for general
biased data (with arbitrary weights). Moreover, we seek biased structures that would be
simple to implement and that do not require major restructuring operations, such as tree
rotations, to achieve biasing. Tree rotations in particular make structures less amenable
to augmentation, for such rotations often require the complete rebuilding of auxiliary
structures stored at the affected nodes.

1.1. Related Prior Work. The study of biased data structures for weighted data is a
classic topic in algorithmics. Early work includes a dynamic programming method by
Knuth [14] for constructing a static biased binary search tree for items weighted by
their search frequencies (see also [15]). Subsequent work focuses primarily on methods
for achieving search times within a constant factor of optimal while also being able to
perform updates efficiently. Most of the known methods for constructing dynamic biased
data structures do so using search trees, and they differ from one another primarily in their
degree of complication and whether or not their resulting time bounds are amortized,
randomized, or worst case.

Sleator and Tarjan [22] introduce the theoretically elegant splay tree data structure,
which automatically adjusts itself to achieve optimal amortized biased access times for
access-frequency weights. Splay trees achieve this result by performing a large number
of tree rotations after every access; they do not store any balance or weight information.
From a theoretical standpoint, the splay tree is a beautiful structure, but the large number
of tree rotations done after every access makes it less practically efficient than even
AVL-trees in many applications [3]. These rotations also make splay trees a poor choice
for augmentation with auxiliary structures at internal nodes.

Bent et al. [4] and Feigenbaum and Tarjan [9] design biased search trees for arbi-
trary weights that significantly reduce, but do not eliminate, the number of tree rota-
tions needed in order to maintain a biased search tree. They offer efficient worst-case
and amortized performance of biased dictionary operations but do so with complicated
implementations.

Alternatively, Seidel and Aragon [20] demonstrate randomized bounds with treaps.
Like splay trees, treaps achieve biasing by performing a large number of rotations after
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every access. Their data structure is elegant and efficient in practice, but its performance
does not achieve bounds that are efficient in a worst-case or amortized sense.

As mentioned above, these biased search tree structures achieve their biasing using
tree rotations. Pugh [19] introduces an alternative skip list structure, which efficiently
implements an unbiased dictionary without using rotations. Skip lists store the items
in a series of a linked lists, which are themselves linked together in a leveled fash-
ion. Pugh presents skip lists as a randomized structure that is easily implemented and
shows that they are empirically faster than fast balanced search trees, such as AVL-trees.
Searches and updates take O(log n) expected time in skip lists, with no rotations or
other rebalancing needed for updates. Exploiting the relationship between skip lists and
(a, b)-trees, Munro et al. [18] show how to implement a deterministic version of skip
lists that achieves similar bounds in the worst case through the use of simple promote
and demote operations.

In terms of biased skip list structures, much less prior work exists. Mehlhorn and
Näher [17] anticipated biased skip lists but claimed only a partial result and omitted
details and analysis of such a structure. Martı́nez and Roura [16] designed an algorithm
that takes a probability distribution over accesses to a dictionary and builds a static
weighted skip list structure that minimizes the average access cost. Recently, Ergun
et al. [7], [8] presented a biased skip list structure that is designed for a specialized
notion of biasing, in which access to an item i takes O(log r(i)) expected time, where
r(i) is the number of items accessed since the last time i was accessed. Their data
structure is incomparable with a general biased dictionary, as each provides properties
not present in the other.

1.2. Our Results. In this paper we present a comprehensive design of a biased version
of the skip list data structure. It combines techniques underlying deterministic skip
lists [18] with Mehlhorn and Näher’s suggestion [17]. Our methods work for arbitrarily
defined item weights and provide optimal search times based on these weights (to within
constant factors). Moreover, since our methods are built using the technology of skip lists,
they do not employ tree rotations to achieve biasing. We present complete descriptions
of all the biased dictionary operations, with time performances that compare favorably
with those of the various versions of biased search trees. We give both deterministic and
randomized implementations of biased skip lists. Our deterministic structure achieves
worst-case running times that are similar to those of biased search trees [4], [9] but
uses techniques that are arguably simpler. A node in a deterministic biased skip list is
assigned an initial level based on its weight, and simple invariants govern promotion
and demotion of node levels to ensure the desired access time. Our randomized structure
achieves expected bounds that are similar to the respective amortized and randomized
bounds of splay trees [22] and treaps [20]. Our randomized structure does not use partial
rebuilding and hence does not need any amortization of its own. Table 1 juxtaposes our
results against biased search trees, splay trees, and treaps.

In Section 2 we define our deterministic biased skip list structure, and in Section 3 we
describe how to perform updates efficiently in this structure. In Section 4 we describe
a simple, randomized variation of biased skip lists and analyze its performance. We
conclude in Section 5.
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1 5 10 22 50 60 75 80�1 1

Fig. 1. A skip list for the set X = {1, 5, 10, 22, 50, 60, 75, 80}.

2. Biased Skip Lists. A skip list [19] S is a dictionary data structure storing an ordered
set X , the items of which we number 1 through |X |. Each item i ∈ X has a key, xi , and
a corresponding node in the skip list of some integral height, hi ≥ 0. The height of S
is H(S) = maxi∈X hi . The depth, di , of item i is H(S) − hi . We use the terms item,
node, and key interchangeably where convenient; the context clarifies any ambiguity. We
assume without loss of generality that the keys in X are unique: xi < xi+1, 1 ≤ i < |X |.

Each node i is implemented by a linked list or array of length hi + 1, which we refer
to as the tower for that node. The level- j successor of a node i is the least node � > i
of height h� ≥ j ; i.e., no node i < k < � has height hk ≥ j . Symmetrically, the level- j
predecessor of node i is the greatest node � < i of height h� ≥ j . For node i and each
0 ≤ j ≤ hi , the j th element of the node contains pointers to the j th elements of the
level- j successor and predecessor of i . Two distinct nodes x < y are called consecutive
if and only if hz < min(hx , hy) for all x < z < y. A plateau is a maximal sequence of
consecutive nodes of equal height.

For convenience we assume sentinel nodes of height H(S) at the beginning (with key
−∞) and end (with key∞) of S; in practice, this assumption is not necessary. We orient
the pointers so that the skip list stores items in left-to-right order, and the node levels
progress bottom to top. See Figure 1.

To search for an item with key K we start at level H(S) of the left sentinel. When
searching at level i from some node we follow the level-i links to the right until we find
a key matching K or a pair of nodes j, k such that k is the level-i successor of j and
xj < K < xk . We then traverse one level down and continue the search at level i − 1
from node j . The search ends with success if we find a node with key K , or failure if we
find nodes j and k as above on level 0. See Figure 2.

1 5 10 22 50 60 75 80�1 1

21

3 4

5

(a)

1 5 10 22 50 60 75 80�1 1

21

3

4 5

(b)

Fig. 2. (a) Searching for key 80 in the skip list of Figure 1. Numbers over the pointers indicate the order in
which they are traversed. (b) Similarly, searching for key 65.
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1 5 10 22 50 60 75 80�1 1

Fig. 3. The skip list of Figure 1 with the unnecessary level-0 pointers between −∞ and 1 set to nil.

We describe a deterministic, biased version of skip lists. In addition to a key, xi , each
item i ∈ X has a weight, wi ; without loss of generality, we assume wi ≥ 1. We define
the rank of item i as ri = �loga wi�, where a is a constant to be defined shortly.

DEFINITION 2.1. For every a and b such that 1 < a ≤ �b/2�, an (a, b)-biased skip list
is one in which each item has height hi ≥ ri and the following invariants hold:

(I1) For all 0 ≤ i ≤ H(S), there are never more than b consecutive items of height i .
(I2) For each node x and all rx < i ≤ hx , there are at least a nodes of height i − 1

between x and any consecutive node of height at least i .

To derive exact bounds for the case when an item does not exist in the skip list we
modify the structure to eliminate redundant pointers. For every pair of adjacent items
i, i + 1, we set the pointers between them on levels 0 through min(hi , hi+1)− 1 to nil.
(See Figure 3.)

When searching for an item i 	∈ X , we assert failure immediately upon reaching a
nil pointer. It suffices, in fact, to ensure only that the pointers between them on level
min(hi , hi+1)− 1 are nil; the pointers below this level remain undefined.

Throughout the remainder of the paper, we define W =∑i∈X wi to be the weight of
S before any operation. For any key i , we denote by i− the item in X with largest key
less than i , and by i+ the item in X with smallest key greater than i . The main result of
our definition of biased skip lists is summarized by the following lemma, which bounds
the depth of any node.

LEMMA 2.2 (Depth Lemma). The depth of any node i in an (a, b)-biased skip list is
O(loga(W/wi )).

Before we prove the depth lemma, consider its implication on the access time for key
i , defined to be the time it takes to find i in S if i ∈ X or to find the pair i−, i+ in S if
i 	∈ X .

COROLLARY 2.3 (Access Lemma). The access time for any key i in an (a, b)-biased
skip list is O(1 + b loga(W/wi )) if i ∈ X and O(1 + b loga(W/min (wi− , wi+))) if
i /∈ X .

PROOF. By (I1), at most b + 1 pointers are traversed at any level during a search.
Because a search stops upon reaching the first nil pointer, the Depth Lemma thus implies
the result.
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It is important to note that while all the bounds we prove rely on W , the data structure
itself need not maintain this value.

To prove the depth lemma, observe that the number of items of any given rank that
can appear at higher levels decreases geometrically by level. Define Ni = |{x : rx = i}|
and N ′i = |{x : rx ≤ i ∧ hx ≥ i}|.

LEMMA 2.4. N ′i ≤
∑i

j=0(1/a
i− j )Nj .

PROOF. We prove the lemma by induction. The base case, N ′0 = N0, is true by definition.
For i > 0, (I2) implies that

N ′i+1 ≤ Ni+1 +
⌊

1

a
N ′i

⌋

≤ Ni+1 + 1

a
N ′i ,

which, together with the induction hypothesis, proves the lemma.

Intuitively, this implies that a node promoted to a higher level is supported by enough
weight associated with items at lower levels. Define Wi =

∑
rx≤i wx .

COROLLARY 2.5. Wi ≥ ai N ′i .

PROOF. By definition,

Wi ≥
i∑

j=0

a j Nj

= ai
i∑

j=0

1

ai− j
Nj .

Lemma 2.4 yields the result.

PROOF OF LEMMA 2.2. Define R = maxx∈X rx . Any nodes with height exceeding R
must have been promoted from lower levels to maintain the invariants. Invariant (I2) thus
implies that H(S) ≤ R+ loga N ′R , and therefore the maximum possible depth of an item
i is di ≤ H(S)− ri ≤ R + loga N ′R − ri .

By Corollary 2.5, W = WR ≥ aR N ′R . Therefore loga N ′R ≤ loga W − R. Hence,
di ≤ loga W − ri . The Depth Lemma follows, because loga wi − 1 < ri ≤ loga wi .

Invariants (I1) and (I2) resemble the invariants defining (a, b)-skip lists [18], but
(I2) is stronger than their analogue. In fact, (I2) is stronger than necessary to prove
the Depth Lemma. It would suffice for a node of height h exceeding its rank, r , to be
supported by at least a items to each side only at level h − 1, not at every level between
r and h−1. The stronger invariant is easier to maintain, however; the update procedures
in the next section rely on the support occurring at every level.
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3. Updating Biased Skiplists. We present and analyze deterministic procedures to
update biased skip lists.

First, we define the profile of an item i . For hi− ≤ j ≤ H(S), let Li
j be the level- j

predecessor of i ; for hi+ ≤ j ≤ H(S), let Ri
j be the level- j successor of i . Define the

ordered sets PL(i) = ( j : hLi
j
= j, hi− ≤ j ≤ H(S)) and PR(i) = ( j : h Ri

j
= j, hi+ ≤

j ≤ H(S)). PL(i) (resp., PR(i)) is the set of distinct heights of the nodes to the left
(resp., right) of i . We call the ordered set (Li

j : j ∈ PL(i))∪ (Ri
j : j ∈ PR(i)) the profile

of i . We call the subset of predecessors the left profile and the subset of successors the
right profile of i . For example, in Figure 1, PL(60) = (3); PR(60) = (2, 3); the left
profile of 60 is (50); and the right profile of 60 is (75,∞).

The profile definitions assume i ∈ S, but they are also precise when i 	∈ S, in which
case they apply to the node that would contain key i . Given node i (if i ∈ S) or nodes i−

and i+ (if i 	∈ S), we can trace i’s profile back from lowest-to-highest nodes by starting
at i− (resp., i+) and, at any node x , iteratively finding its level-(hx + 1) predecessor
(resp., successor), until we reach the left (resp., right) sentinel.

3.1. Inserting an Item. The following procedure inserts a new item with key i into an
(a, b)-biased skip list S. We assume that i does not already exist in the skip list, or else
we discover it in Step 1.

PROCEDURE Insert(S, i).

1. Search S for i to discover the pair i−, i+.
2. Create a new node of height ri to store i , and insert it between i− and i+ in S, tracing

through i’s profile to splice predecessors and successors as in a standard skip list [19].
3. Restore (I2) if necessary. Any node x in the left (sym., right) profile of i might need

to have its height demoted, because i might interrupt a sequence of consecutive nodes
of height less than hx , leaving fewer than a to its left (sym., right). In this case, x is
demoted to the next lower height in the profile (or rx , whichever is higher).

More precisely, for j in turn from hi− up through ri , if j ∈ PL(i), consider node
u = Li

j . If (I2) is violated at node u, then demote u to height ru if u = i− and
otherwise to height max( j ′, ru), where j ′ is the predecessor of j in PL(i); let h′u
be the new height of u. If the demotion violates (I1) at level h′u , then, among the
k ∈ (b, 2b] consecutive items of height h′u , promote the �k/2�th node (in order) to
height h′u + 1. (See Figure 4.) Iterate at the next j . Symmetrically process the right
profile of i .

10 20 30 40 50 60 70 80 60 70 8010 20 30 40 50 55 60 70 8010 20 30 40 50 55

(a) (b) (c)

Fig. 4. (a) A (2,4)-biased skip list. Nodes are drawn to reflect their heights; hatch marks indicate ranks.
Pointers between nodes are omitted. (b) After the insertion of 55 with rank 3, node 40 violates (I2). (c) After
the demotion of node 40 and compensating promotion of node 30.
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10 20 30 40 50 60 70 80 65 80757010 20 30 40 50 60 80757010 20 30 40 50 60 65

(a) (b) (c)

Fig. 5. (a) The (2,4)-biased skip list of Figure 4(a). (b) (I1) is violated by the insertion of 65 and 75 with rank
1 each. (c) After promoting node 65.

4. Restore (I1) if necessary. Starting at node i and level j = ri , if node i violates (I1) at
level j , then, among the b+1 consecutive items of height j , promote the �(b+1)/2�th
node (in order), u, to height j + 1, and iterate at node u and level j + 1. Continue
until the violations stop. (See Figure 5.)

LEMMA 3.1. Invariants (I1) and (I2) are true after Insert(S, i).

PROOF. Assume the invariants were true before the insertion. To the left of node i ,
(I2) can be violated at most once at each level j ∈ PL(i)∩ [hi− , ri ], where node i might
split a sequence of consecutive nodes of height less than j . Consider the least j and the
associated node u = Li

j where such a violation occurs. Demoting u in Step 3 restores
(I2) at level j , by the assumption that (I2) was true before the operation. The demotion
might cause there to be more than b consecutive nodes of height h′u around u, however, in
which case the promotion of the node in the middle restores (I1). By definition of profile,
h′u is the only height at which this demotion might incur a compensating promotion. Since
a ≤ �b/2�, this compensating promotion cannot violate (I2). By induction, iterating
Step 3 up to level ri restores (I2) to the left of i . Symmetrically argue for the nodes to
the right of i .

Step 4 restores (I1) at level ri if it was violated by the insertion of node i . Promoting
the node in the middle cannot violate (I2), because a ≤ �b/2�. The promotion might
violate (I1) at the next level, however, in which case the iteration of Step 4 restores the
invariant.

THEOREM 3.2. Inserting an item i in an (a, b)-biased skip list takes

O

(
1+ b loga

W + wi

min(wi− , wi , wi+)

)

time.

PROOF. Lemma 3.1 proves the correctness of Insert(S, i).
By the Depth and Access Lemmas, Steps 1 and 2 take

O

(
1+ b loga

W + wi

min(wi− , wi , wi+)

)

time. If min(hi− , hi+) ≤ ri , Step 3 performs O(b) work at each level between
min(hi− , hi+) and ri ; Step 4 performs O(b) work at each level from ri through H(S).
Again applying the Depth Lemma yields the result.
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3.2. Deleting an Item. Deletion is the inverse of insertion.

PROCEDURE Delete(S, i).

1. Search S to discover i .
2. Find the immediate neighbors i− and i+. Remove i , and splice predecessors and

successors as required.
3. Restore (I1) if necessary. (Removing i might unite sequences of consecutive nodes

into sequences of length exceeding b.) For j in turn from min(hi− , hi+) up through
hi − 1, if removing i violates (I1) at level j , consider the k ∈ (b, 2b] consecutive
nodes of height j , and promote the �k/2�th among them to height j + 1. Iterate at
the next j .

4. Restore (I2) if necessary. (Removing i might decrease the length of the sequence
of consecutive nodes of height hi to a − 1, in which case one of the delineating
towers might need to be demoted, and so on from there.) Starting at node i and the
least j ∈ PL(i) greater than hi , if (I2) is violated at node u = Li

j , then demote u
to height max(hi , ru); let h′u be the new height of u. For each j ′ in turn from h′u up
through hu (the old height of u), if the demotion violates (I1) at level j ′, then, among
the k ∈ (b, 2b] consecutive items of height j ′, promote the �k/2�th among them to
height j ′. Iterate, checking for an (I2) violation at the old height hu , continuing until
the violations stop. Symmetrically process the right profile of i .

LEMMA 3.3. Invariants (I1) and (I2) are true after Delete(S, i).

PROOF. Assume the invariants were true before the deletion. Invariant (I1) can be
violated at most once at each level min(hi− , hi+) ≤ j < hi , where the removal of
node i might unite two previously separate sequences of consecutive nodes of height j .
Step 3 restores (I1) at each such level j . Promoting the node in the middle cannot violate
(I2), because a ≤ �b/2�, nor can the promotion propagate to higher levels, because the
previous existence of node i at level j satisfied (I1).

Invariant (I2) can be violated by the removal of i or the subsequent demotion of a
predecessor (resp., successor). By the assumption that (I2) held before the operation,
any node so violating (I2) need be demoted no farther than the height of the preceding
node in the left (resp., right) profile of i (or i in the case of i− (resp., i+)). As in Step 3
of Insert, the demotion might require compensating promotions, each of which cannot
percolate higher. Step 4 thus restores (I2).

THEOREM 3.4. Deleting an item i from an (a, b)-biased skip list takes

O

(
1+ b loga

W

min(wi− , wi , wi+)

)

time.

PROOF. Lemma 3.3 proves correctness of Delete(S, i).
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By the Depth and Access Lemmas, Steps 1 and 2 take

O

(
1+ b loga

W

min(wi− , wi , wi+)

)

time. If min(hi− , hi+) ≤ hi , Step 3 performs O(b) work at each level between
min(hi− , hi+) and hi ; Step 4 performs O(b) work at each level from hi through H(S).
Again applying the Depth Lemma yields the result.

3.3. Joining Two Skiplists. Consider two biased skip lists, SL and SR , of total weights
WL and WR , respectively. The item with the largest key in SL is denoted Lmax, and the
item with the smallest key in SR is denoted Rmin. If Lmax < Rmin, we can join SL and SR

to form a single biased skip list.

PROCEDURE Join(SL , SR).

1. Trace through the profiles of Lmax and Rmin to splice the pointers leaving SL together
with the pointers going into SR .

2. Restore (I1) if necessary. For j in turn from max(hLmax , h Rmin) through
max(H(SL), H(SR)), if (I1) is violated at level j , then among the k ∈ (b, 2b + 1]
consecutive items of height j , promote the �k/2�th node (in order) to height j + 1.

LEMMA 3.5. Invariants (I1) and (I2) are true after Join(SL , SR).

PROOF. Assuming the invariants were true before the join, splicing the pointers cannot
violate (I2), because nodes never lose predecessors or successors.

Invariant (I1) can be violated by joining two sequences of nodes at a given level;
max(hLmax , h Rmin) is the lowest height at which such a violation can occur. Promoting
the node in the middle cannot violate (I2), because a ≤ �b/2�. The promotion can add
another node to the next higher level, but the splicing procedure left no more than 2b
nodes there, by the assumption that (I1) was true before the join. Thus, no more than
2b + 1 nodes occur at any level prior to a promotion, and so the promotion strategy
restores (I1).

THEOREM 3.6. Joining (a, b)-biased skip lists SL and SR takes

O

(
1+ b loga

WL

wLmax

+ b loga
WR

wRmin

)

time.

PROOF. Lemma 3.5 proves the correctness of Join(SL , SR). Step 1 performs O(b)
work at each level between min(hLmax , h Rmin) and min(H(SL), H(SR)). Step 2 potentially
performs O(b) work at each level between max(hLmax , h Rmin) and max(H(SL), H(SR)).
Putting this together and applying the Depth Lemma yields the result.
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3.4. Splitting a Skiplist. Given a biased skip list S of total weight W and a key i 	∈ S,
we can split S into two biased skip lists SL , containing keys in S less than i , and SR ,
containing keys in S greater than i . (We can formulate this equivalently when i ∈ S.)

PROCEDURE Split(S, i).

1. Perform Insert(S, i), where the weight of i is aH(S)+1.
2. Disconnect the pointers between i and its predecessors to form SL ; disconnect the

pointers between i and its successors to form SR .

THEOREM 3.7. Splitting an (a, b)-biased skip list on key i takes

O

(
1+ b loga

W

min(wi− , wi+)

)

time.

PROOF. Lemma 3.1 proves that (I1) and (I2) are true after Step 1. Because i is taller
than all of its predecessors and successors, disconnecting the pointers between them and
i in Step 2 does not violate either invariant. Thus, Procedure Split(S, i) is correct.

Step 1 takes O(1+ b loga(W/min(wi− , wi+))) time, by Theorem 3.2 together with
the observation that wi = 
(W ), and yields a biased skip list of height H(S) + 1.
Step 2 takes O(2(H(S)+ 1)− hi− − hi+) time. Applying the Depth Lemma finishes the
proof.

3.5. Finger Searching. We can search for a key j in a biased skip list S starting at
any node i (not just the left sentinel) to which we are given an initial pointer (or finger).
Assume without loss of generality that j > i . The following procedure is symmetric for
the case j < i .

PROCEDURE FingerSearch(S, i, j).

1. Initialize u ← i , h ← ri .
2. (Up phase.) If Ru

h ≥ j , then go to Step 3. Otherwise, if h < hu , set h ← h + 1; else
set u ← Ru

h ; iterate at Step 2.
3. (Down phase.) Search from u, starting at height h, as in the normal skip-list search

procedure outlined in Section 2.

The up phase moves up and to the right in the skip list until we detect a node u < j
with a level-h successor (for some h) Ru

h > j . That the procedure finds j if j ∈ S or the
pair j−, j+ if j 	∈ S follows from the correctness of the vanilla search procedure and
that we enter the down phase at the specified node u and height h.

Define V (i, j) =∑i≤u≤ j wu .

LEMMA 3.8. For any node u and h ∈ [ru, hu], V (Lu
h, u) ≥ ah and V (u, Ru

h ) ≥ ah .
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PROOF. We prove V (Lu
h, u) ≥ ah ; the other direction is symmetric. If h = ru , then

V (Lu
h, u) ≥ wu ≥ ah by definition. Otherwise, h > ru , and, by (I2), there are at least a

elements of height h − 1 between u and Lu
h . By induction, V (Lu

h, u) ≥ aah−1 = ah .

THEOREM 3.9. Accessing an item j in an (a, b)-biased skip list, given a pointer to an
item i , takes

O

(
1+ b loga

V (i, j)

min(wi , wj )

)

time if j ∈ X and

O

(
1+ b loga

V (i, j+)
min(wi , wj− , wj+)

)

time if j /∈ X .

PROOF. We can assume constant-time access to level ri of any node i without affecting
previous time bounds. Consider the node u and height h at which we enter the down
phase. Intuitively, we show that sufficient weight supports either the link into which u
is originally entered during the up phase or the link out of which u is exited during the
down phase.

Define j ′ = j if j ∈ X and j ′ = j+ if j 	∈ X . The total search time is 1 plus
O(b) per each of h − min(ri , hj ′) ≤ h − min(ri , rj ′) levels. We need only show that
V (i, j ′) = a�(h), which, together with the definition of rank, proves the theorem.

In the case u > i , consider the first height h′ ≤ h at which u is entered during the up
phase. If h′ = h, then V (i, u) ≥ V (Lu

h, u), which by Lemma 3.8 is at least ah . Otherwise,
h′ < h, and hence V (u, j ′) ≥ V (u, Ru

h−1), which by Lemma 3.8 is at least ah−1. Since
V (i, j ′) ≥ V (i, u) and V (i, j ′) ≥ V (u, j ′), either subcase yields V (i, j ′) = a�(h).

In the remaining case, u = i . If h = ru , then V (i, j ′) ≥ wi ≥ ah . If h > ru , then
V (i, j ′) ≥ V (i, Ri

h−1), which by Lemma 3.8 is at least ah−1. Again V (i, j ′) = a�(h).

Note that we start the finger search at height ri , not hi , which enables the proof to
work in case the search starts the down phase immediately.

3.6. Changing the Weight of an Item. Finally, we can change the weight of an item i
from wi to w′i without fully deleting and reinserting i . Denote the new rank of i by r ′i .

PROCEDURE Reweight(S, i, w′i ).

1. Search S to find node i .
2. If r ′i = ri , then stop.
3. If r ′i > ri , then do nothing if hi ≥ r ′i . Otherwise, promote i to height r ′i ; apply Step 3

from Procedure Insert(S, i) but starting at height hi + 1; and apply Step 4 from
Procedure Insert(S, i) starting at height r ′i .

4. If r ′i < ri , then demote i to height r ′i ; apply Step 3 from Procedure Delete(S, i) but
starting at height r ′i ; and apply Step 4 from Procedure Delete(S, i) starting at the least
j ∈ PL(i) greater than r ′i .
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LEMMA 3.10. Invariants (I1) and (I2) are true after Reweight(S, i, w′i ).

PROOF. Assume the invariants were true before the reweight. If r ′i = ri , then neither
invariant can be violated. If r ′i > ri , then if hi ≥ r ′i , again neither invariant can be violated.
Otherwise, if r ′i > hi ≥ ri , i must attain height at least r ′i , in which case (I2) can be
violated between levels hi + 1 and r ′i , and (I1) can be violated at level r ′i . Applying the
demotion and promotion steps from the insert procedure fixes the violations as shown
in the proof of Lemma 3.1.

Finally, if r ′i < ri , (I2) can be violated between levels r ′i + 1 and ri . Demoting i
to height r ′i and then applying the promotion and deletion procedures from the delete
procedure fixes the violations as shown in the proof of Lemma 3.3.

THEOREM 3.11. Changing the weight of any node i in an (a, b)-biased skip list from
wi to w′i takes

O

(
1+ b loga

W + w′i
min(wi , w

′
i )

)

time.

PROOF. Lemma 3.10 proves correctness of Reweight(S, i, w′i ). Step 1 takes O(1 +
b loga W/wi ) time by the Access Lemma. (We assume i ∈ X .) Height promotions and
demotions in Steps 3 and 4 perform O(b)work per level and occur no lower than heights
hi + 1 and r ′i , respectively. Applying the Depth Lemma completes the proof.

4. Randomized Updates. We can randomize the biased skip list structure presented
in Section 3 to yield expected optimal access times without the need for promotions
or demotions. Mehlhorn and Näher [17] suggested the following approach but claimed
only that the expected maximal height of a node is log W + O(1). We will show that the
expected depth of a node i is E[di ] = O(log(W/wi )).

A randomized biased skip list S is parameterized by a positive constant 0 < p < 1.
Here we define the rank of an item i as ri = �log1/p wi�. When inserting i into S, we
assign its height to be hi = ri + ei with probability pei (1 − p) for ei a non-negative
integer, which we call the excess height of i . Algorithmically, we start node i at height
ri and continually increment the height by one as long as a biased coin flip returns heads
(with probability p).

Reweight is the only operation that changes the height of a node. The new height is
chosen as for insertion but based on the new weight, and the tower is adjusted appropri-
ately. The remaining operations (insert, delete, join, split, and (finger) search) perform
no rebalancing.

LEMMA 4.1 (Randomized Height Lemma). The expected height of any item i in a ran-
domized, biased skip list is log1/p wi + O(1).
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PROOF.

E[hi ] = ri + E[ei ]

= ri +
∞∑

j=0

j p j (1− p)

= ri + p

1− p
= �log1/p wi� + O(1).

The proof of the Depth Lemma for the randomized structure follows that for the
deterministic structure.

Recall the definitions Ni = |{x : rx = i}|; N ′i = |{x : rx ≤ i ∧ hx ≥ i}|; and
Wi =

∑
rx≤i wx .

LEMMA 4.2. E[N ′i ] =
∑i

j=0 pi− j Nj .

PROOF. We prove the lemma by induction. The base case, N ′0 = N0, is true by definition.
Since the excess heights are i.i.d. random variables, we have, for i > 0, E[N ′i+1] =
Ni+1 + pE[N ′i ], which together with the induction hypothesis proves the lemma.

COROLLARY 4.3. E[N ′i ] ≤ pi Wi .

PROOF. By definition,

Wi ≥
i∑

j=0

1

p j
Nj

= 1

pi

i∑
j=0

pi− j Nj .

Lemma 4.2 yields the result.

LEMMA 4.4 (Randomized Depth Lemma). The expected depth of any node i in a ran-
domized, biased skip list S is O(log1/p(W/wi )).

PROOF. The depth of i is di = H(S) − hi . As before, define R = maxx∈X rx . By
standard skip list analysis [19], we know that

E[H(S)] = R + O(E[log1/p N ′R])

≤ R + cE[log1/p N ′R] (for some constant c)

≤ R + c log1/p E[N ′R] (by Jensen’s inequality)

≤ R + c
(
log1/p WR − R

)
(by Corollary 4.3)

= c log1/p W − (c − 1)R.
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By the Randomized Height Lemma, therefore, E[di ] ≤ c log1/p W−(c−1)R−log1/p wi .
The lemma follows by observing that R ≥ �log1/p wi�.

COROLLARY 4.5 (Randomized Access Lemma). The expected access time for any key
i in a randomized, biased skip list is

O

(
1+ (1/p) log1/p

W

wi

)

if i ∈ X and

O

(
1+ (1/p) log1/p

W

min (wi− , wi+)

)

if i /∈ X .

PROOF. As n→∞, the probability that a plateau starting at any given node is of size k
is p(1− p)k−1. The expected size of any plateau is thus 1/p. Applying the Randomized
Depth Lemma completes the proof.

The operations discussed in Section 3 become simple to implement.

Insert(S, i). Locate i− and i+ and create a new node between them, as described
above, to hold i . The expected time is

O

(
1+ (1/p) log1/p

W + wi

min(wi− , wi , wi+)

)
.

Delete(S, i). Locate and remove node i . The expected time is

O

(
1+ (1/p) log1/p

W

min(wi− , wi , wi+)

)
.

The Randomized Depth and Access Lemmas continue to hold, because S is as if i
had never been inserted in the first place.

Join(SL , SR). Trace through the profiles of Lmax and Rmin to splice the pointers leaving
SL together with those going into SR . The expected time is

O

(
1+ (1/p) log1/p

WL

wLmax

+ (1/p) log1/p
WR

wRmin

)
.

Split(S, i). (Assume i 	∈ X . An equivalent formulation holds when i ∈ X .) Disconnect
the pointers that join the left profile of i− to the right profile of i+. The expected
time is

O

(
1+ (1/p) log1/p

W

min(wi− , wi+)

)
.
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FingerSearch(S, i, j). Perform FingerSearch(S, i, j) as described in Section 3.5. It
is straightforward to prove that Lemma 3.8 holds in the expected case. The expected
time is thus

O

(
1+ (1/p) log1/p

V (i, j)

min(wi , wj )

)

if j ∈ X and

O

(
1+ (1/p) log1/p

V (i, j+)
min(wi , wj− , wj+)

)

if j /∈ X .
Reweight(S, i, w′i ). Reconstruct the tower for node i as described above. The expected

time is

O

(
1+ (1/p) log1/p

W + w′i
min(wi , w

′
i )

)
.

5. Conclusion. It is still open whether a deterministic biased skip list can be devised
that has not only the worst-case times that we provide but also an amortized bound
of O(logwi ) for updating node i ; i.e., once the location of the update is discovered,
inserting or deleting should take O(logwi ) amortized time.

The following counterexample demonstrates that our initial method of promotion and
demotion does not yield this amortized bound. Consider a node i such that hi−ri is large
and, moreover, that separates two plateaus of size b/2 at each level j between ri + 1
and hi and two plateaus of size b/2 and b/2+ 1, resp., at level ri . Deleting i will cause
a promotion starting at level ri that will percolate to level hi . Reinserting i with weight
ari will restore the structural condition before the deletion of i . This sequence of two
operations can be repeated infinitely often; since hi − ri is arbitrary, the cost of restoring
the invariants cannot be amortized.

An initial attempt to address this bad case is to generalize the promotion operation to
split a plateau of size exceeding b into several plateaus of size about b/η each, for some
suitable constant η. Above, η = 2. The counterexample generalizes, however. Consider
η − 1 nodes of some equal height, h, which exceed their (equal) rank, r , and which
separate plateaus of size b/η at each height from r through h, except for one plateau,
P , at height r , which has size b/η + 1. Deleting and reinserting one of the separating
towers that delineates P restores the structure.
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