
Confluent Layered Drawings ?

David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng

School of Information and Computer Science,
University of California, Irvine,

Irvine, CA 92697, USA
{eppstein, goodrich, ymeng}@ics.uci.edu

Abstract. We combine the idea of confluent drawings with Sugiyama
style drawings, in order to reduce the edge crossings in the resultant
drawings. Furthermore, it is easier to understand the structures of graphs
from the mixed style drawings. The basic idea is to cover a layered graph
by complete bipartite subgraphs (bicliques), then replace bicliques with
tree-like structures. The biclique cover problem is reduced to a special
edge coloring problem and solved by heuristic coloring algorithms. Our
method can be extended to obtain multi-depth confluent layered draw-
ings.

1 Introduction

Layered drawings visualize hierarchical graphs in a way such that vertices are
arranged in layers and edges are drawn as straight lines or curves connecting
these layers. A common method was introduced by Sugiyama, Tagawa and
Toda [25] and by Carpano [4]. Several closely related methods were proposed
later (see e.g. [12, 19, 15, 22, 6, 20, 11].)

Crossing reduction is one of the most important objectives in layered draw-
ings. But it is well known that for two-layer graphs the straight-line crossing
minimization problem is NP-complete [14]. The problem remains NP-complete
even when one layer is fixed. Jünger and Mutzel [16] present exact algorithms for
this problem, and perform experimental comparison of their results with various
heuristic methods. They conclude that if the permutation of one layer is fixed,
there is no need for heuristics, and in the case where two layers are not fixed, the
iterated barycenter method is the best among several heuristics. Recently new
methods related to crossing reduction ([26, 1, 8, 23, 10]) have been proposed.

However when the given two-layer graph is dense, even in an optimum solu-
tion, there are still a large number of crossings. Then the resulting straight-line
drawing will be hard to read, since edge-crossing minimization is one of the most
important aesthetic criteria for visualizing graphs [24]. This give us a motivation
for exploring new approaches to reduce the crossings in a drawing other than
the traditional methods.

? Work by the first author is supported by NSF grant CCR-9912338. Work by the sec-
ond and the third author is supported by NSF grants CCR-0098068, CCR-0225642,
and DUE-0231467.

2 Eppstein, Goodrich, and Meng

In addition, it is sometime of interest to find the bicliques between two layers.
For example in the drawing of a call graph, it is interesting to find out which set
of modules are calling a common set of functions and what are those common
functions. Call graphs are usually visualized as layered drawings. However it is
hard to learn this information from layered drawings by traditional Sugiyama-
style approaches, especially when the input graphs are dense.

Our previous work [5] introduces the concept of confluent drawings. In [5]
we talk about the confluent drawability of several classes of graphs and give a
heuristic for finding confluent drawings of graphs with bounded arboricity. In
this paper we experiment with an implementation of confluent drawings for the
layered graphs. However we relax the constraint of planarity and allow crossings
in the drawings, while it is not allowed to have crossings in a confluent drawing
in our previous definitions.

We are aware of the Edge Concentration method by Newbery [21]. Edge Con-
centration and our method share a same idea of covering by bicliques. But in
Newbery’s method, dummy nodes (edge concentrators) are explicit in the draw-
ing and treated equally as original nodes, which causes the nodes’ original levels
to change. In our method dummy nodes are implicit in the curve representation
of edges and the original levels are preserved. Furthermore, our method uses a
very different algorithm to compute the biclique covers.

2 Definitions

In this section we give definitions for confluent layered drawings. The definitions
almost remain the same as in our previous confluent drawing paper, except that
the planarity constraints are dropped. Fig. 1 gives an idea of confluent layered
drawings. Edges in the drawing are represented as smooth curves.

Fig. 1. An example confluent layered drawing.

Confluent Layered Drawings 3

A curve is locally monotone if it contains no sharp turns, that is, it contains
no point with left and right tangents that forms a angle less than or equal to 90
degrees. Intuitively, a locally-monotone curve is like a single train track, which
can make no sharp turns. Tracks are the union of locally-monotone curves. They
are formed by merging edges together.

A drawing A formed by a collection of tracks on the plane is called a confluent
drawing for an undirected graph G if and only if

– There is a one-to-one mapping between the vertices in G and A, so that,
for each vertex v ∈ V (G), there is a corresponding vertex v′ ∈ A, and all
vertices of G are assigned to distinct points in the plane.

– There is an edge (vi, vj) in E(G) if and only if there is a locally-monotone
curve e′ connecting v′

i and v′j in along tracks in A.

The directed version of a confluent drawing is defined similarly, except that
in such a drawing the locally-monotone curves are directed and in every track
formed by the union of directed curves, the curves must be oriented consistently.

Self loops and parallel edges of G are not allowed in our definitions, although
multiple ways of realizing the same edge are allowed. Namely, for an edge in
the original graph, there could be more than one locally monotone path in the
drawing corresponding to this edge.

We apply the idea of confluent drawings on layered graphs. Particularly, in
the resultant confluent drawing, we replace bicliques in a biclique cover of a two-
layer graph G = (U, L, E) by tree-like structures and draw them with smooth
curves. As we can see in Fig. 1, our method can greatly reduce the crossings
in the drawings of dense bipartite graphs. Additionally, nodes of a biclique can
be easily identified by following the smooth curve paths. We only focus on two-
layer graphs because if the input multi-layer graph have a biclique subgraph
that includes nodes from > 2 layers, we can transform the input graph into a
graph that only have biclique subgraphs between two adjacent layers by using
confluent tracks and dummy nodes (Fig. 2).

Fig. 2.

4 Eppstein, Goodrich, and Meng

Since it is valid to have more than one confluent path between two nodes u

and l in the confluent drawing when (u, l) ∈ E, as defined above, it is straightfor-
ward that a confluent layered drawing can be obtained by computing a biclique
cover C of G, then visualizing each biclique in C as a tree-like structure. We
show how to compute a biclique cover of G in the next section.

3 Computing Biclique Covers of Bipartite Graphs

Fishburn and Hammer [9] show that the biclique cover problem is equivalent to
a restricted edge coloring problem. This coloring is not much useful for general
graphs. However, it has a nice result for triangle-free graphs, and since bipartite
graphs belong to the class of triangle-free graphs, an immediate result is that
this type of edge coloring can be used to find a biclique cover of a bipartite
graph. This result is useful in layered drawing because the edges between any
two layers in such a drawing induce a bipartite subgraph.

An edge coloring c: E ← {1, 2, . . . , k} for G = (V, E) is simply-restricted if
no induced K3 is monochromatic and the vertex-disjoint edges in an induced
P4 or Cc

4 have different colors. Fig. 3 shows the conditions that such induced
subgraphs of a simply-restricted edge coloring must satisfy.PSfrag replacements

c1 c1c1 c2
c2 c2

c3

induced P4
induced Cc

4

|{c1, c2, c3}| ≥ 2 c1 6= c2 c1 6= c2

Fig. 3. The required conditions of induced subgraphs of a simply edge coloring.

Let d(G) denote the bipartite dimension of G, which is the minimum cardi-
nality of a biclique cover of G. Let χs(G) be the chromatic number of a simply-
restricted edge coloring of G. χs(G) is 0 if E = ∅; otherwise, it is the minimum k

for which G has a simply-restricted coloring c: E ← {1, 2, . . . , k}. The following
theorem states the equivalence of d(G) and χs(G) for triangle-free graphs.

Theorem 1 (Fishburn and Hammer [9])
d(G) = χs(G) for every triangle-free graph.

For completeness, we include the proof of Theorem 1 in Appendix A. The
proof is also helpful for readers to understand the algorithm.

Let Ej be the set of edges with color j in a simply-restricted edge coloring
for a triangle-free graph G. As we can see in the second part of the proof of
Theorem 1 , Ej is included in the edge set of a biclique subgraph of G. Therefore,
every edge set of a single color induces a biclique subgraph of G. By computing
a simply restricted edge coloring we can get a biclique cover of G.

Confluent Layered Drawings 5

Because it is known that the problem of Covering by Complete Bipar-

tite Subgraphs is NP-hard (Garey and Johnson [13] GT18), it is unlikely to
have efficient optimization algorithms for finding the minimum biclique cover of
a bipartite graph. Thus we only focus on fast heuristics for computing a near-
optimal biclique cover.

Note that given G = (V, E), we can construct a new graph GE = (V ′, E′)
such that, for every edge e ∈ E there is a vertex in V ′, and there is an edge in
E′ between two vertices in V ′ if their corresponding e and e′ are vertex-disjoint
and the two lie in an induced P4 or Cc

4 . If G is triangle-free, then d(G) is the
vertex chromatic number of GE . This transformation from simply-restricted edge
coloring into vertex coloring makes it possible to use vertex coloring algorithms
to compute biclique covers. So, instead of devising a special algorithm for the
simply-restricted edge coloring, we can choose to use one of the existing vertex
coloring algorithms. Well known heuristic algorithms for vertex coloring include
Recursive Largest First (RLF) algorithm of Leighton [18], DSATUR algorithm
of Brélaz [2]. For more about heuristics on graph coloring, see Campers et al. [3].

There is one thing worth noting: this method of computing a biclique cover
by vertex coloring doesn’t distinguish between two kinds of bicliques: bicliques
with at least two nodes in each partition of its vertex set, and bicliques having
at least two nodes in only one partition of its vertex set. So if we are more
interested in finding out the set of common callers and callees as mentioned in
the introduction, we would want to give higher priority to Kp,q than K1,r (where
p, q, r > 1) when covering the edges. This can be done in the coloring process by
picking first the nodes of GE that represent vertex-disjoint edges in the original
bipartite graph G. But then we would need to pass extra information to the
coloring procedure, because GE doesn’t contain information about whether two
edges of G are sharing a vertex or not. It has only the information of whether
two edges could be colored using same color.

After the biclique cover of the two-layer bipartite graph is computed, each
biclique in the cover is drawn as a tree-like structure in the final drawing. Doing
this repeatedly for every two adjacent layers, we can get the drawings for multi-
layer graphs.

The time complexity of the algorithm depends on the coloring heuristic sub-
routines. For a graph with a set of vertices V , both the RLF algorithm and the
DSATUR algorithm run in worst case O(|V |3) time. There are some other faster
coloring heuristics with O(|V |2) time, but their output qualities are worse. Sup-
pose we have a two-layer bipartite graph G = (V, E). The transformation from

the simply-restricted edge coloring into vertex coloring version takes O(|E|2)
time. Using RLF or DSATUR costs O(|E|3), thus the total time is O(|E|3).

4 Layout of the bicliques

We described how to compute a biclique cover of a two-layer bipartite graph in
the previous section. Now it is time to show how the bicliques are laid out. In
the confluent layered drawings, each biclique in the biclique cover is visualized

6 Eppstein, Goodrich, and Meng

as a tree-like structure, as in Fig. 1. Now here are the questions. What are the
best positions to place the centers of the tree-like structures? How to arrange
the curves so that they form confluent tracks defined in Section 2?

4.1 Barycenter method to place centers

In the case where the positions of nodes in the upper level and lower level are
fixed, one would like to put the center of a tree to the center of the nodes
belonging to the corresponding biclique. For example, in Fig. 4, the drawing on
the left is visually better than the drawing on the right. Firstly it has better
angular resolution and better edge separation. Secondly it is easier for people to
see the biclique as a whole. Then the next question is: what does the center of
those nodes mean? In our method, the natural candidate position for a center
of the tree-like structure is the barycenter, i.e., the average position, of all the
nodes in this biclique.

Fig. 4. Good-looking tree and bad-looking tree with centers placed differently.

It looks bad too if these tree centers stay very close to each other. So we need
to specify a minimum separation between two centers.

The above requirements can be formulated into constraints:

1. A tree center stays within the range of its leaves.

min
j

xij ≤ xi ≤ max
j

xij ,

where xi is the x-coordinate of the ith tree center ci, and xij is the x-
coordinate of the jth leaf of ci.

2. The distance between any two centers is greater than or equal to the mini-
mum separation.

∀ i 6= j, |xi − xj | ≥ δ

where δ is some pre-specified minimum distance.

Under these constraints, we want a tree center to stay as close as possible to
the barycenter of all its leaf nodes. i.e., we want to minimize

∑
i(xi−avgj(xij))

2,

Confluent Layered Drawings 7

subject to the above constraints. This is a Quadratic Programming problem, and
unfortunately it is NP-hard (Garey and Johnson [13], MP2).

Since it is unlikely to have efficient algorithms for solving this optimization
problem, and a small deviation of a tree center from the perfect position won’t
cause too much displeasure, we use instead a very simple heuristic method to
place the tree centers. We first assign to each tree center the x-coordinate of the
barycenter of its leaves. Then we sort tree centers by their x-value. The third step
is to try to place these tree centers at their x-coordinates one by one. Assume
we have k centers to place. Start from the jth center, where j = b k

2
c. Place

center j at its barycenter, then try to place centers one by one in the following
order: j− 1, j− 2, . . . , 1. If constraint 2 is violated, the violating center is placed
the minimum distance away from the previous placed center. Tree centers to the
right of center j are placed similarly in the order of j+1, j+2, . . . , k. It is easy to
see that the running time of the barycenter method is dominated by the sorting
of the tree centers.

4.2 Placing tree centers to reduce crossings

Alternatively, one might want to place these centers on positions such that the
total number of edge crossings is as few as possible, especially in the case where
nodes of upper level and lower level are not fixed. If this is the main concern, we
can place the tree centers in another way in order to reduce the edge crossings.

After the biclique cover of a two-layer graph G = (U, L, E) is computed, we
construct a new three-layer graph G′. We treat these tree centers as nodes of a
middle layer. The set of vertices includes three levels: an upper layer U ′ = U , a
middle layer M consisting of tree centers, and a lower layer L′ = L. The edges
of G′ are added as follows: for each biclique Bi in the biclique cover, add one
edge between the tree center node mi and each node u ∈ U that belongs to Bi.
Similarly add one edge between mi and each node l ∈ L that belongs to Bi.

Now a two-layer graph of the original problem is transformed into a three-
layer graph G′. Straight-line crossing reduction algorithms can be applied on G′.
After the crossing reduction, we obtain the ordering of nodes in each of the three
layers. The orderings will be used to compute the positions of nodes and tree
centers in the final drawings. Note that when crossing reduction method is used
to place tree centers, it is not always true that a tree center always stays within
the x-range of its leaves, i.e., bad centers like the one in Fig. 4 could appear.

Here we are using straight-line edge crossing reduction algorithms for our
confluent layered drawings with curve edges. Readers may suspect the equality
of the crossing number in the straight-line drawing for the new three-layer graph
G′ and the crossing number of our curve edge drawings. We will confirm this
equality after we describe the generation of curves in the next section.

4.3 Curves

After the positions of tree centers (and the positions of nodes if not given) are
computed, we are now ready to place the confluent tracks for the edges.

8 Eppstein, Goodrich, and Meng

We use Bézier curves to draw the curve edges in confluent drawings. Given
a set of control points P1, P2, . . . , Pn, the corresponding Bézier curve is given by

C(t) =

n∑

k=0

Pk Bk,n(t) 0 ≤ t ≤ 1 , (1)

where Bk,n(t) is a Bernstein polynomial

Bk,n(t) =
n!

k! (n− k)!
tk(1− t)n−k . (2)

Bézier curves have some nice properties that are suitable for our confluent
tracks. The first property is that a Bézier curve always passes its first and last
control point. The second is that a Bézier curve always stays within the convex
hull formed by its control points. In addition, the tangents of a Bézier curve at
the endpoints are P1 −P0 and Pn −Pn−1. Thus it is easy to connect two Bézier
curves while still maintaining the first order continuity: just let Pn = P ′

0 and let
the control points Pn−1, Pn = P ′

0, and P ′

1 co-linear.

The confluent track between each node and the tree center is drawn as a
Bézier curve. In our program we use cubic Bézier curves (n = 4 in Equation 2).
Each such a curve has four control points, chosen as shown in Fig. 5.

��

����

��

��

	�	

��

�

��

����

PSfrag replacements

P0

P1

P2

P3 = P ′

0

P ′

1 = P ′′

1

P ′

2

P ′

3

P ′′

2

P ′′

3

Fig. 5. Bézier curves

More formally, assume we are given the following input for a biclique Bi:

– yu, the y-coordinate of the upper level.
– yl, the y-coordinate of the lower level.

– yc, the y-coordinate of the tree center level (or just 1

2
(yu + yl)).

– xi, the x-coordinate of the tree center for Bi.
– xij ’s, the x-coordinates of nodes in biclique Bi.

Confluent Layered Drawings 9

Let ∆y be a distance parameter that controls the shape of the curve edges.
When node j is in the upper level, the four control points are P0 = (xij , yu),
P1 = (xij , yu + ∆y), P2 = (xi, yc −∆y), and P3 = (xi, yc). When node j is in
the lower level, the four control points are P0 = (xi, yc), P1 = (xi, yc + ∆y),
P2 = (xij , yl −∆y), and P3 = (xij , yl). Note that ∆y must be chosen with care
so that the y-coordinates of P0, P1, P2, and P3 are in descending order.

It still remains to show that in a confluent layered drawing, two Bézier curves
cross each other once if and only if the corresponding straight-line edges (dashed
lines in Fig. 5) of the bicliques cross each other, given that the control points
are chosen as above. It is impossible for a Bézier curve in the upper part of the
tree-like structure to cross with another Bézier curve in the lower part because
they are within two non-overlapping y-intrevals. Thus we only consider the cases
where two Bézier curves are in the upper part of the tree-like structure. The cases
of lower part are similar.

Since we are using the cubic Bézier curves, any point P on a Bézier curve
with control points P0, P1, P2, and P3 is given by the following equation

P = (1− t)3P0 + 3(1− t)2 t P1 + 3(1− t) t2 P2 + t3 P3 0 ≤ t ≤ 1 . (3)

For a Bézier curve on the 2D plane, Equation 3 is equivalent to the following
two equations

x = (1− t)3 x0 + 3(1− t)2 t x1 + 3(1− t) t2 x2 + t3 x3 0 ≤ t ≤ 1 , (4)

y = (1− t)3 y0 + 3(1− t)2 t y1 + 3(1− t) t2 y2 + t3 y3 0 ≤ t ≤ 1 , (5)

where(x, y), (x0, y0), (x1, y1), (x2, y2), and (x3, y3) are the coordinates of P ,
P0, P1, P2 and P3, respectively.

In one direction, assume two underlying straight-line edges P0 P3 and P ′

0 P ′

3

cross each other at a point P other than their endpoints. WLOG, assume x0 <

x′

0 and x3 > x′

3. Because of the way we choose the control points, it is easy
to see that the Bézier curves are continuous and monotonic in both x and y

axes. Furthermore, they stay within their bounding polygons. It can be seen
from Fig. 6 (a) that the two Bézier curves cross each other once if their underlying
edges crosses each other.

In the other direction, assume there are two non-crossing underlying straight-
line edges P0 P3 and P ′

0 P ′

3, with x0 < x′

0 and x3 < x′

3 (Fig. 6 (b)). Suppose on
the contrary that the two corresponding Bézier curves cross each other at point
P = (x, y). Because yi = y′

i for 0 ≤ i ≤ 3, by substituting the y-coordinate
of P into Equation 5 and solving the equation for t we would obtain a same
value of t for both of the two Bézier curves. However since x0 = x1 < x′

0 = x′

1

and x2 = x3 < x′

2 = x′

3, from the same t value and Equation 4 of the two
different Bézier curves, we obtain two non-equal x-coordinates for P , which is a
contradiction. Thus it’s impossible for these two Bézier curves to have crossings
(even though their bounding polygons have overlapping.)

Now the doubt that appears at the end of Section 4.2 should be cleared.

10 Eppstein, Goodrich, and Meng

��

��

��

��

�	

�

�

������

������

��

����

PSfrag replacements

P0 P0

P1

P2

P3P3

P ′

0P ′

0

P ′

1

P ′

2

P ′

3P ′

3

(a) (b)

Fig. 6.

5 Multi-depth Confluent Layered Drawings

So far we have introduced the method of confluent layered drawings: replacing
subsets of edges in a two-layer graph by tree-like structures. This method can
be extended to obtain drawings that display richer information. The extended
drawings are called multi-depth confluent layered drawings .

The idea is as follows: after the biclique cover for a two-layer graph G =
(U, L, E) is computed, the tree center nodes are viewed as a middle layer M ,
and a new three layer graph G′ = (U, M, L, E′) is constructed as in Section 4.2.
The same biclique cover algorithm is then applied to G′ twice, once for the
subgraph induced by U ∪ M ; once for the subgraph induced by M ∪ L. By
applying this approach recursively, we get biclique covers at different depth.
In the final drawing, only biclique covers at the largest depth are replaced by
sets of tree-like structures. The final drawing is a multi-depth confluent layered
drawing. The drawings discussed before this section are all depth-one (confluent
layered) drawings .

In a depth-one drawing, we compute a biclique cover and lay out the biclique
cover. In general, for a depth-i drawing, we need to compute 2i − 1 biclique
covers and 2i−1 biclique covers are laid out.

An example drawing of depth-two is shown in Fig. 7.
Because the control points for the Bézier curves are chosen in a way such

that the tangents at the endpoints of the Bézier curves are all vertical, it is
guaranteed that all segments of a path are connected seamlessly and smoothly in
multi-depth drawings. Readers probably have already noticed some wavy edges
in the drawing of Fig. 7. It is because a single edge biclique (K1,1) is also drawn
as two Bézier curves. We offer an option in our program to do a simple treatment
for these single edge bicliques: draw them as a single Bézier curves instead of two.
But after this special treatment is applied, the crossing property is not preserved
any more. That means two curve segments could have crossing(s), even though
their corresponding edges in G′ don’t cross each other in a straight-line drawing.

Multi-depth drawings may further reduce the number of crossings. They also
show a richer structure than the depth-one drawings, which only display bi-
cliques. For example we can observe relationships between bicliques in a depth-

Confluent Layered Drawings 11

Fig. 7. Depth-two confluent drawing (on same input as the drawing of Fig. 1).

two confluent layered drawing. However higher depth requires more computa-
tions of biclique covers, and generates more dummy centers. The former leads
to the increasing of time and space complexity, while the latter could result in
a more complicate confluent drawing. We feel that drawings with depth higher
than two are not very practically useful.

6 Real-world Examples

We list two example drawings of real-world graphs in Fig. 8. We implemented the
algorithm of computing biclique cover using the RLF heuristic. For the center
placement we implemented the barycenter method. We assume that besides the
two-layer graph, the input also includes the positions of (fixed) nodes in upper
and lower levels (possibly output by other algorithms that take labels and other
information into account.) Our program computes the biclique covers, the
positions of tree centers, and the curve edges. The result is then written into a
file of DOT format ([17]). We choose DOT format because the neato program in
the Graphviz package [7] has a no-op option, which makes neato to respect the
node positions and the edge positions specified in the input. In other words, our
program outputs the layout of the drawing into a DOT file, and neato only serves
as a powerful converter that transforms the layout into various graphic formats
such as PostScript, SVG, FIG, JPEG, etc. Fig. 8 (a) is a depth-one drawing.
Fig. 8 (b) is a depth-two drawing with the special smoothing treatment applied.

7 Conclusions and Acknowledgments

In this paper we introduce a new method – confluent layered drawing, for visual-
izing layered graphs. It combines the layered drawing technique with the relaxed

12 Eppstein, Goodrich, and Meng

(a) “Derives” relation for the Shar program

(b) “Includes” relation for the Texchk program

Fig. 8. Confluent drawing for examples of Newbery [21].

confluent drawing approach. We describe a reduction from biclique cover prob-
lem to a special kind of edge coloring problem and use this reduction in our
confluent layered drawing algorithm. We show how to lay out the bicliques. The
idea can be extended to obtain multi-depth drawings. Examples of real-world
graphs are also given. There are still interesting open problems, e.g., how to test
whether a layered graph has a crossing-free confluent layered drawing? How to
find the drawing among all possible drawings that the crossing of the drawing is
minimized? It is also useful to investigate better ways for visualizing confluent
tracks.

References

1. W. Barth, M. Jünger, and P. Mutzel. Simple and efficient bilayer crossing counting.
In M. Goodrich and S. Kobourov, editors, Graph Drawing (Proc. GD ’02), volume
2528 of Lecture Notes Comput. Sci., pages 130–141. Springer-Verlag, 2002.

2. Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22(4):251–256, 1979.

Confluent Layered Drawings 13

3. G. Campers, O. Henkes, and J. P. Leclerq. Graph coloring heuristics: A survey,
some new propositions and computational experiences on random and “Leighton’s”
graphs. In G. K. Rand, editor, Operational research ’87 (Buenos Aires, 1987), pages
917–932. North-Holland Publishing Co, 1988.

4. M. J. Carpano. Automatic display of hierarchized graphs for computer aided
decision analysis. IEEE Trans. Syst. Man Cybern., SMC-10(11):705–715, 1980.

5. M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent draw-
ing: Visualizing nonplanar diagrams in a planar way. In G. Liotta, editor, Graph
Drawing (Proc. GD ’03), volume 2912 of Lecture Notes Comput. Sci., pages 1–12.
Springer-Verlag, 2003.

6. P. Eades and K. Sugiyama. How to draw a directed graph. J. Inform. Process.,
13:424–437, 1991.

7. J. Ellson, E. Gansner, E. Koutsofios, and S. North. Graphviz. URL: http://www.
research.att.com/sw/tools/graphviz.

8. T. Eschbach, W. Günther, R. Drechsler, and B. Becker. Crossing reduction by
windows optimization. In M. Goodrich and S. Kobourov, editors, Graph Draw-
ing (Proc. GD ’02), volume 2528 of Lecture Notes Comput. Sci., pages 285–294.
Springer-Verlag, 2002.

9. P. C. Fishburn and P. L. Hammer. Bipartite dimensions and bipartite degree of
graphs. Discrete Math., 160:127–148, 1996.

10. M. Forster. Applying crossing reduction strategies to layered compound graphs.
In M. Goodrich and S. Kobourov, editors, Graph Drawing (Proc. GD ’02), volume
2528 of Lecture Notes Comput. Sci., pages 276–284. Springer-Verlag, 2002.

11. E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for drawing
directed graphs. IEEE Trans. Softw. Eng., 19:214–230, 1993.

12. E. R. Gansner, S. C. North, and K. P. Vo. DAG – A program that draws directed
graphs. Softw. – Pract. Exp., 18(11):1047–1062, 1988.

13. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

14. M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J.
Algebraic Discrete Methods, 4(3):312–316, 1983.

15. D. J. Gschwind and T. P. Murtagh. A recursive algorithm for drawing hierarchical
directed graphs. Technical Report CS-89-02, Department of Computer Science,
Williams College, 1989.

16. M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: Performance
of exact and heuristic algorithms. J. Graph Algorithms Appl., 1(1):1–25, 1997.

17. E. Koutsofios and S. North. Drawing graphs with dot. Technical report, AT&T
Bell Laboratories, Murray Hill, NJ., 1995. Available from http://www.research.

bell-labs.com/dist/drawdag.

18. F. T. Leighton. A graph coloring algorithm for large scheduling problems. Journal
of Research of National Bureau of Standard, 84:489–506, 1979.

19. E. B. Messinger. Automatic layout of large directed graphs. Technical Report
88-07-08, Department of Computer Science, University of Washington, 1988.

20. E. B. Messinger, L. A. Rowe, and R. H. Henry. A divide-and-conquer algorithm
for the automatic layout of large directed graphs. IEEE Trans. Syst. Man Cybern.,
SMC-21(1):1–12, 1991.

21. F. J. Newbery. Edge concentration: A method for clustering directed graphs. In
Proc. 2nd Internat. Workshop on Software Configuration Management, pages 76–
85, 1989.

14 Eppstein, Goodrich, and Meng

22. F. Newbery Paulisch and W. F. Tichy. EDGE: An extendible graph editor. Softw.
– Pract. Exp., 20(S1):63–88, 1990. also as Technical Report 8/88, Fakultat fur
Informatik, Univ. of Karlsruhe, 1988.

23. M. Newton, O. Sýkora, and I. Vrt’o. Two new heuristics for two-sided bipartite
graph drawing. In M. Goodrich and S. Kobourov, editors, Graph Drawing (Proc.
GD ’02), volume 2528 of Lecture Notes Comput. Sci., pages 312–319. Springer-
Verlag, 2002.

24. H. Purchase. Which aesthetic has the greatest effect on human understanding?
In G. Di Battista, editor, Graph Drawing (Proc. GD ’97), volume 1353 of Lecture
Notes Comput. Sci., pages 248–261. Springer-Verlag, 1997.

25. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–125, 1981.

26. V. Waddle and A. Malhotra. An E log E line crossing algorithm for levelled graphs.
In J. Kratochv́ıl, editor, Graph Drawing (Proc. GD ’99), volume 1731 of Lecture
Notes Comput. Sci., pages 59–71. Springer-Verlag, 1999.

A Proof to Theorem 1 (Fishburn and Hammer [9])

Proof. (Fishburn and Hammer [9])
When E = ∅, it is easy to see that d(G) = χs(G) = 0. Now assume that

E 6= ∅. We prove the following two inequalities.

1. d(G) ≥ χs(G).
Because if B = {B1, B2, . . . , Bm} covers G, we can color the edges of G

by assigning color j to an edge e, where j is the smallest number that Bj

includes e ∈ E. By definition the coloring is simply-restricted.
2. d(G) ≤ χs(G).

Let c be a simply-restricted edge coloring of K3-free G onto {1, 2, . . . , m}.
Let Ej = {e ∈ E: c(e) = j}. We now try to construct a complete bipartite
subgraph B1 from E1. It is obvious when |E1| = 1.
Suppose E1 has two edges e1 and e2. If e1 and e2 share a vertex, then they
form a K1,2. It is not possible that e1 and e2 are disjoint, otherwise they
violate the restriction that vertex-disjoint edges in an induced Cc

4 must have
different colors.
Suppose E1 ≥ 3, we add vertices involved with E1 one by one, after each
addition we make sure it is true that all E1 edges between vertices used so
far are among the edges of a complete bipartite subgraph Kp,q of G. Suppose
this is true to a point and at this point we have a Kp,q and an edge e = (u, v)
with color c(e) = 1 such that e is not yet in the construction because at least
one of u and v is new. This case can be further divided into two sub-cases:
Case 1: only one of u and v is new. WLOG, assume v is new (Fig. 9 (a)). if
A1 = {u} we have a K1,q+1 and go to the next step. Suppose |A1| ≥ 2. For
every w ∈ A1 \ {u} there is an E1 edge from w to a vertex y in A2 because
every time we add vertices, these vertices are involved with E1. At the same
time there is an edge (not necessarily in E1) from u to y. According to the
restrictions there must be an edge between w and v and it is forbidden to
have edges between u and w and between y and v. Thus we now have a

Confluent Layered Drawings 15

Kp,q+1, which includes all E1 edges between vertices used so far. We then
go to the next step.

PSfrag replacements

u

v

w

z

1

A1

A2

new

(a)

PSfrag replacements

u

v

w

z

1 1

A1

A2

new

new

(b)

Fig. 9. Cases of construction of B1 when |E1| ≥ 3.

Case 2: both u and v are new. Fix w ∈ A1 and find z ∈ A2 such that
(w, z) ∈ E1 (Fig. 9 (b)). Then {u, v, w, z} has exactly two more G edges.
Assume they are (u, z) and (w, v). Suppose (x, y) ∈ E1 for x ∈ A1 and
y ∈ A2. If x 6= w, there is no edge between x and u, else {x, z, u} forms
a K3. Similarly if y 6= z there is no edge between y and v. It follows that
(x, v), (y, u) ∈ E. Since every x ∈ A1 has an E1 edge with something in A2,
and every y ∈ A2 has an E1 edge with something in A1, we can conclude
that by adding u and v we create a Kp+1,q+1 subgraph that includes all E1

edges between vertices used so far. We can then go to the next step.
When all vertices in E1 are covered, the process terminates. We then have a
complete bipartite subgraph B1 of G, which includes all edges in E1. We can
use similar constructions for each other color j > 1 to create complete bipar-
tite subgraphs of G, say B2, . . . , Bm that includes all edges in E2, . . . , Em,
respectively. Thus B = {B1, B2, . . . , Bm} covers G, so d(G) ≤ χs(G).

From the above two inequalities we conclude that d(G) = χs(G). ut

