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Abstract

We study practically efficient methods for performing condibrial group testing. We present effi-
cient non-adaptive and two-stage combinatorial groupnigstigorithms, which identify the at most
items out of a given set af items that are defective, using fewer tests for all prat8easizes. For
example, our two-stage algorithm matches the informatienietic lower bound for the number of tests
in a combinatorial group testing regimen.
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1 Introduction

The problem of combinatorial group testing dates back toldVéfar I, for the problem of determining
which in a group ofr blood samples contain the syphilis antigen (hence, areantinated). Formally, in
combinatorial group testing, we are given a set Géms, at most of which are defective (or contaminated),
and we are interested in identifying exactly which of théems are defective. In addition, items can be
“sampled” and these samples can be “mixed” together, sefi@stontamination can be applied to arbitrary
subsets of these items. The result of a test may be positidaaiting that at least one of the items of that
subset is defective, or negative, indicating that all itemihat subset are good. Example applications that
fit this framework include:

e Screening blood samples for diseasds. this application, items are blood samples and tests are
disease detections done on mixtures taken from selectepglesam

e Screening vaccines for contaminatidmn. this case, items are vaccines and tests are cultures aone o
mixtures of samples taken from selected vaccines.

e Clone libraries for a DNA sequencelere, the items are DNA subsequences (catlede3 and tests
are done on pools of clones to determine which clones coataiarticular DNA sequence (called a
probe [10].

e Data forensics. In this case, items are documents and the tests are apmplisadf one-way hash
functions with known expected values applied to selectél@¢actmns of documents. The differences
from the expected values are then used to identify whichyf af the documents have been altered.

The primary goal of a testing algorithm is to identify all defive items using as few tests as possible.

That is, we wish to minimize the following function:
e t(n,d): The number of tests needed to identify upltdefectives among items.



This minimization may be subject to possibly additional stomints, as well. For example, we may wish to
identify all the defective items in a singleagn-adaptivg round of testing, we may wish to do this in two
(partially-adaptive rounds, or we may wish to perform the tests sequentiallyadtes the other in dully
adaptivefashion.

In this paper we are interested in efficient solutions to domtiorial group testing problems for realistic
problem sizes, which could be applied to solve the motigairamples given above. That is, we wish
solutions that minimize(n, d) for practical values of. andd as well as asymptotically. Because of the
inherent delays that are built into fully adaptive, seqisisblutions, we are interested only in solutions that
can be completed in one or two rounds. Moreover, we desitdisot that are efficient not only in terms of
the total number of tests performed, but also for the foltmyuineasures:

e A(n,t): Theanalysistime needed to determine which items are defective.

e S(n,d): Thesamplingrate—the maximum number of tests any item may be included in.

An analysis algorithm is said to kedficientif A(n,t) is O(tn), wheren is the number of items andis
the number of tests conducted. Itisie-optimalif A(n,t) is O(t). Likewise, we desire efficient sampling
rates for our algorithms; that is, we desire thét, d) be O(t(n, d)/d). Moreover, we are interested in this
paper in solutions that improve previous results, eithgmgotically or by constant factors, for realistic
problem sizes. We do not define such “realistic” problemssioemally, but we may wish to consider as
unrealistic a problem that is larger than the total memopacay (in bytes) of all CDs and DVDs in the
world (< 102%), the number of atomic particles in the earth {0°°), or the number of atomic particles in
the universe € 1089).

Viewing Testing Regimensas Matrices. A single round in a combinatorial group testing algorithnm-co
sists of a test regimen and an analysis algorithm (which, mom@-adaptive (one-stage) algorithm, must
identify all the defectives). The test regimen can be matlbleat x n Boolean matrix,A/. Each of then
columns ofM corresponds to one of theitems. Each of the rows of M represents a test of items whose
corresponding column has a 1-entry in that row. All testsaneducted before the results of any test is
made available. The analysis algorithm uses the resultsedftests to determine which of theitems are
defective.

As described by Du and Hwang [6](p. 133), the matkikis d-disjunctif the Boolean sum of any
columns does not contain any other column. In the analysasiafisjuncttesting algorithm, items included
in a test with negative outcome can be identified as pure.dJsifidisjunct matrix enables the conclusion
that if there arel or fewer items that cannot be identified as pure in this mathear all those items must be
defective and there are no other defective items. If mone édhitems remain then at leagt+ 1 of them are
defective. Thus, using@disjunct matrix enables an efficient analysis algorithrithwd (n, t) beingO(tn).

M is d-separable(d-separablg if the Boolean sums ofl (up tod) columns are all distinct. Thé-
separable property implies that each selection of updefective items induces a different set of tests with
positive outcomes. Thus, it is possible to identify whicé ire up tal defective items by checking, for each
possible selection, whether its induced positive testssexactly the obtained positive outcomes. However,
it might not be possible to detect that there are more thdafective items. This analysis algorithm takes
time ©(n?) or requires a large table mappingubsets tal-subsets.

Generally,d-separable matrices can be constructed with fewer rowsdfiast-disjunct matrices having
the same number of columns. Although the analysis algoritbetribed above faf-separable matrices is
not efficient, somel-separable matrices that are aedisjunct have an efficient analysis algorithm.

Previous Related Work. Combinatorial group testing is a rich research area withyragplications to
many other areas, including communications, cryptogragig networking [3]. For an excellent discussion
of this topic, the reader is referred to the book by Du and Hyvf). For generald, Du and Hwang
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[6](p. 149) describe a slight modification of the analysisafonstruction due to Hwang and Sos [11] that
results in a x n d-disjunct matrix, withn > (2/3)3/16%° and sot < 16d%(1 + logz 2 + (logz 2)1gn).
For two-stage testing, Debores al. [5] provide a scheme that achieves a number of tests withactaif of
7.54(1+40(1)) of the information-theoretic lower bound @fog(n/d). Ford = 2, Kautz and Singleton [12]
construct a 2-disjunct matrix with= 39+ andn = 3%, for any positive integeq. Macula and Reuter [13]
describe &-separable matrix and a time-optimal analysis algorithtiwi= (¢> 4 3¢)/2 andn = 29 — 1,

for any positive integeg. Ford = 3, Du and Hwang [6](p. 159) describe the construction 8fseparable
matrix (but do not describe the analysis algorithm) witk 4(32‘1) = 18¢%> — 6¢ andn = 27 — 1, for any
positive integey;.

Our Results. In this paper, we consider problems of identifying defeediwising non-adaptive or two-
stage protocols with efficient analysis algorithms. We @néseveral such algorithms that require fewer
tests than do previous algorithms for practical-sized, sgtisough we omit the proofs of some supporting
lemmas in this paper, due to space constraints. Our geresal algorithm, which is based on a method
we call the Chinese Remainder Sieve, improves the congtruecf Hwang and Sés [11] for all values df
for real-world problem instances as well as e n'/> andn > €'°. Our two-stage algorithm achieves
a bound fort(n, d) that is within a factor ofi(1 + o(1)) of the information-theoretic lower bound. This
bound improves the bound achieved by Debatial. [5] by almost a factor oP. Likewise, our algorithm
for d = 2 improves on the number of tests required for all real-worlttbfem sizes and is time-optimal (that
is, with A(n,t) € O(t)). Our algorithm ford = 3 is the first known time-optimal testing algorithm for that
d-value. Moreover, our algorithms all have efficient sampliates.

2 TheChinese Remainder Sieve

In this section, we present a solution to the problem forrdetgng which items are defective when we know
that there are at mogt< n defectives. Using a simple number-theoretic method, wiveltall theChinese
Remainder Sieveethod, we describe the construction akdisjunct matrix witht = O(d? log? n/(log d +
loglogn)). As we will show, our bound is superior to that of the methodHefang and Sos [11], for all
realistic instances of the combinatorial group testindofmm.

Suppose we are givem items, numbered, 1,...,n — 1, such that at mosf < n are defective. Let
{p*,p52, ..., pi*} be a sequence of powers of distinct primes, multiplying teastn?. That is,I1; p;j >
n®. We construct & x n matrix M as the vertical concatenation bfsubmatrices);, Mo, . .., M. Each
submatrix)M; is at; x n testing matrix, where; = p;j; hencet = Z;?:lp;j. We form each row of\/; by
associating it with a non-negative valudess tharpjj . Specifically, for eactr, 0 < z < pjj , form a test
in M; consisting of the item indices (in the ran@gl, ..., n — 1) that equalr (mod p;j). For example, if
T =2 andpj.j = 32, then the row forz in M has al only in columns2, 11, 20, and so on.

The following lemma shows that the test matiik is d-disjunct.

Lemma 1. Ifthere are at most defective items, and all tests ¥ are positive fori, theni is defective.

Proof: If all k tests fori (one for each prime powgrj.") are positive, then there exists at least one defective

item. With each positive test that include@hat is, it has d in columnji), Ietpjj be the modulus used for
this test, and associate wijha defective index; that was included in that test (choosifngarbitrarily in
case tesj includes multiple defective indices). For any defectivaer:’, let

Pr= 1[I »j.

j S.toij=d’

That is, Py is the product of all the prime powers such tilataused a positive test that includetbr that
prime power. Since there aketests that are positive f@'reachpjj appears in exactly one of these products,
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Py. So[] Py = [1p;’ > n". Moreover, there are at magproducts Py. Thereforemax; Py > (nh)1/d =

n; hence, there exists at least one defective indéor which P, > n. By construction;’ is congruent to
the same values to whighs congruent, modulo each of the prime power#&jn By the Chinese Remainder
Theorem, the solution to these common congruences is uniquikello the least common multiple of these
prime powers, which i itself. Therefore; is equal toi’ modulo a number that is at least soi = /;
hence; is defective. []

The important role of the Chinese Remainder Theorem in thefmf the above lemma gives rise to our
name for this construction—the Chinese Remainder Sieve.

Analysis. As mentioned above, the total number of tests, d), constructed in the Chinese Remainder
Sieve iszg?:lp;", Wherel'[p;‘fj > nd. If we let eache; = 1, we can simplify our analysis to note that
t(n,d) = YF_, p;, wherep; denotes thei-th prime number and is chosen so thaff[¥_, p; > n. To
produce a closed-form upper bound fér, d), we make use of the prime counting functior;z), which
is the number of primes less than or equaktoWe also use the well-know@hebyshev functiort(z) =

Z;rfl) In p;. In addition, we make use of the following (less well-knowrine summation functior (x) =

Z}rfl) pj. Using these functions, we bound the number of tests in theeSa Remainder Sieve method as
t(n,d) < o(z), wherez is chosen so that(z) > dInn, sinceln], <. p; = 6(z). For the Chebyshev
function, it can be shown [1] that(z) > x/2 for x > 4 and thatd(xz) ~ z for largex. So if we let

x = [2dInn], thenf(z) > dlnn. Thus, we can bound the number of tests in our methodrasl) <
o([2dInn]). To further bound (n,d), we use the following lemma, which may be of mild independent

interest.
Lemma 2: Forinteger: > 2,

2 1.2762
o(z) < ° <1+ g )

2lnzx Inx
Proof: Letn = = (x). Dusart [7, 8] shows that, for > 799,

Lgh <L
1 4 Dj 2pna
7j=1

that is, the average of the firstprimes is half the value of theth prime. Thus,

for integerz > 6131 (the 799th prime). Dusart [7, 8] also shows that

()< x <1+1.2762)
mr lnz lnx /’

for x > 2. Therefore, for integer > 6131,
2
T 1.2762
<—1 .
o(z) Inx ( + Inx )

In addition, we have verified by an exhaustive computer $eidat this inequality also holds for all integers
2 <z < 6131. This completes the proof. [ |

Thus, we can characterize the Chinese Remainder Sieve dnastfollows.
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Theorem 1. Given a set ofi items, at mostl of which are defective, the Chinese Remainder Sieve method
can identify the defective items using a number of tests

Hn.d) < [2dInn]? ( 1.2762 )
" 2In[2d1nn] In[2dInn] /"

The sample rate can be bounded by

S(n,d) < [2dInn] (1 1.2762 )

2In[2dInn] In[2dInn|

and the analysis timel(n,t), isO(nt(n,d)).

By calculating the exact numbers of tests required by the€3s Remainder Sieve method for particular
parameter values and comparing these numbers to the cldiowedls for Hwang and Sés [11], we see that
our algorithm is an improvement when:

ed=2andn <10 ed=3andn < 10%
ed=4andn <10° ed=>5andn <10™
ed==6andn <1077 ed>T7andn < 10%.

Of course, these are the most likely cases for any expecteadlanstance of the combinatorial group
testing problem. In addition, our analysis shows that outhwis superior to the claimed bounds of Hwang
and Sos [11] ford > n'/® andn > €!0. Less precisely, we can say thdt, d) is O(d? log? n/(log d +
loglogn)), thatS(n, d) is O(dlog n/(log d+log log n), andA(n, t) is O(tn), which isO(d?n log® n/ (log d-+
loglogn)).

Heuristic Improvements. Although it will not reduce the asymptotic complexity 9fwe can reduce the
number of tests by starting with a sequence of primes up t@sgper bound:, and efficiently constructing

a set of good prime powers from this sequence. We can allove gmwerse;, to be zero (meaning that we
don’t use this prime), while giving others values greatantibne. The objective is to choose carefully the
valuese; in order to minimize the number of tests while maintaining fioperty tha{]p;’ > n?. This
typically yields a savings of between five and ten percent.

An example implementation in Python 2.3 is shown in the Agldein Figures 1 and 2. This imple-
mentation starts with the; = 1 solution to determine an initial suitable sequence of psime, to use. It
then does a backtracking search to find the optimal sef fafr thesep;, subject to the constraint that each
p;‘f”' is not greater than the largest prime in the original sofufigith eache; = 1). Since the number aof;
powers is sublogarithmic, and most of them must be 0 or 1 joéuektracking search takes time sublinear in
n for fixed d.

Comparison of theNumber of TestsRequired. Table 1 lists the number of tests required by the Hwang/So6s
algorithm, our general algorithm (using the initial set ofhpesp; having exponents; = 1), and our im-
proved backtrack algorithm, for some values0fAs can be seen, for moderate valuesi@ur algorithms
require a small fraction of the number of tests required leyHl$ algorithm. However, asymptotically for
fixed d, the HS algorithm requires fewer tests.

3 A Two-Stage Rake-and-Winnow Protocol

In this section, we present a randomized construction forgtage group testing. This two-stage method
uses a humber of tests within a constant factor of the infaomaheoretic lower bound. It improves pre-
vious upper bounds [5] by almost a factor®fIn addition, it has an efficient sampling rate, wiln, d)
being onlyO(log(n/d)). All the constant factors “hiding” behind the big-ohs indleebounds are small.
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Table 1: Comparing(n) for d = 5 andd = 10

(d=05) 100 10* 10° 10® 100 10?0 10%0
our bktrk | 131 378 738 1176 1709 5737 11782
our genl 160 440 791 1264 1851 6081 12339
HS 2329 4006 5683 7359 9036 17420 25803
(d=10) | 100 10* 105 10% 10'° 10% 10%Y
our bktrk | 378 1176 2350 3896 5737 19681 41020
ourgenl | 440 1264 2584 4227 6081 20546 42468
HS 9316 16023 22730 29437 36144 69678 103213

Preliminaries. One of the important tools we use in our analysis is the fahgwemma for bounding the
tail of a certain distribution. It is a form of Chernoff boufit4].

Lemma3: LetX be the sum of, independent indicator random variables, such ¥at >~ , X;, where
eachX; = 1 with probabilityp;, fori = 1,2,...,n. If E[X] = >, p; < i < 1, then, for any integer
k>0, i
Pr(X > k) < (%) :

Proof: Let u = E[X] be the actual expected value &t Then, by a well-known Chernoff bound [14], for
anyo > 0,

65 .
(1 + 5)1+5‘| '
(The bound in [14] is for strict inequality, but the same bduolds for nonstrict inequality.) We are
interested in the case whéh+ ¢)u = k, that is, whenl + § = k/u. Observing thab < 1+ 6, we can

therefore deduce that
| e = ()
(/)R |~ efp* — \ k)

Pr(X > k) < (%)k

Pr[X > (14+)u] <

Pr(X > k) <

Finally, noting thatu < f,

In addition to this lemma, we also use the following.
)< (5)
d d)
n\ n!
d)  (n—d)d

nn—1)n-2)---(n—d+1)
d!

Lemma4:. If d < n, then

Pr oof:




By Stirling’s approximation [4],
d
d! =+V2mn (SZ) (1+6(1/n)).
€

Thus,d! > (d/e)?. Therefore,

Identifying Defective [temsin Two Stages. As with our Chinese Remainder Sieve method, our random-
ized combinatorial group testing construction is basedhenuise of a Boolean matrix/ where columns
correspond to items and rows correspond to tests, so thalifj] = 1, then itemj is included in tesy. Let

C denote the set of columns af. Given a setD of d columns inM, and a specific colump € C — D,

we say thatj is distinguishablefrom D if there is a rowi of M such thatM i, j] = 1 buti contains &)

in each of the columns . Such a property is useful in the context of group testingttie setD could
correspond to the defective items and if a columa distinguishable from the sé?, then there would be a
test in our regimen that would determine that the item cpoading to columry is not defective.

An alternate and equivalent definition [6](p. 165) for a maif¥/ to bed-disjunctis if, for any d-sized
subsetD of C', each column i’ — D is distinguishable fronD. Such a matrix determines a powerful group
testing regimen, but, unfortunately, building such a magquiresM to havef)(d? logn/ log d) rows, by a
result of Ruszinko [15] (see also [6], p. 139). The best kmoanstructions have (d? log(n/d)) rows [6],
which is a factor ofi greater than information-theoretic lower bound, whick{g log(n/d)).

Instead of trying to use a matrix/ to determine all the defectives immediately, we will sefte a
weaker property for/, which nevertheless is still powerful enough to define a ggradip testing regimen.
We say that)M is (d, k)-resolvableif, for any d-sized subseD of C, there are fewer thakh columns in
C — D that are not distinguishable from. Such a matrix defines a powerful group testing regimen, for
defining tests according to the rows of-@esolvable matrix allows us to restrict the set of defeciiems to
a groupD’ of smaller thand + & size. Given this set, we can then perform an additional raimadividual
tests on all the items i’. This two-stage approach is sometimes called the triviatstage algorithm; we
refer to this two-stage algorithm as treke-and-winnowapproach.

Thus, a(d, k)-resolvable matrix determines a powerful group testingnmeg. Of course, a matrix is
d-disjunct if and only if it is(d, 1)-resolvable. Unfortunately, as mentioned above, constg@ (d, 1)-
resolvable matrix requires that the number of rows (whiamespond to tests) be significantly greater than
the information theoretical lower bound. Neverthelessyefare willing to use &d, k)-resolvable matrix,
for a reasonably small value &f we can come within a constant factor of the information tagcal lower
bound.

Our construction of &d, k)-resolvable matrix is based on a simple, randomzaahple-injectiorstrat-
egy, which itself is based on the approach popularized byBthem filter [2]. This novel approach also
allows us to provide a strong worst-case bound for the samapée S(n, d), of our method. Given a pa-
rametert, which is a multiple ofd that will be set in the analysis, we construcRiax n matrix M in a
column-wise fashion. For each columirof M, we choose /d rows at random and we set the values of
these entries td. The other entries in columpare set td. In other words, we “inject” the samplginto
each of the /d random tests we pick for the corresponding column (since @i/ correspond to tests and
the columns correspond to samples). Note, then, that fosangfd defective samples, there are at most
tests that will have positive outcomes and, therefore, adttetests that will have negative outcomes. The
columns that correspond to samples that are distinguisHatiin the defectives ones can be immediately



identified. The remaining issue, then, is to determine thgevaf ¢t needed so that, for a given value igf
M is a(d, k)-resolvable matrix with high probability.

Let D be a fixed set ofl defectives samples. For each (column) item C — D, let X; denote the
indicator random variable that sif i is falsely identified as a positive sample By (that is, i is not
included in the set of (negative) items distinguished frowse inD), and isO otherwise. Observe that the
X,’'s are independent, sincE; depends only on whether the choice of rows we picked for coluoollide
with the at most rows of M that we picked for the columns corresponding to item®irFurthermore, this
observation implies that any; is 1 (a false positive) with probability at mogt/<. Therefore, the expected
value of X, F[X], is at mosti = n/2t/d. This fact allows us to apply Lemma 3 to bound the probability
that M does not satisfy thél, k)-resolvable property for this particular choide, of d defective samples.
In particular,

e\t _ ()"
Pr(X > k) < <?> =
Note that this bound immediately implies thakit= 1 andt > d(e + 1) log n, then M will be completely
(d, 1)-resolvable with high probabilityl(— 1/n) for any particular set of defective itemb.

We are interested, however, in a bound implying thatfoysubsetD of d defectives (of which there are
(1) < (en/d)?, by Lemma 4), our matri®/ is (d, k)-resolvable with high probability, that is, probability at
leastl —1/n. Thatis, we are interested in the value sfich that the above probability boundis./d)~¢ /n..
From the above probability bound, therefore, we are intedeim a value of such that

That is, we would like

This bound will hold whenever
t > (d®/k)log(en/d) + dlog(en/k) + (d/k)logn.

Thus, we have the following.

Theorem 2. If t > (d?/k)log(en/d) + dlog(en/k) + (d/k)logn, then a2t x n random matrixM
constructed by sample-injection (i, k)-resolvable with high probability, that is, with probabiliat least
1-1/n.

Taking k = 1, therefore, we have an alternative method for construaidedisjunct matrixA with
high probability:

Corollary 1: If t > d?log(en/d) + dlogen + dlogn, then a2t x n random matrixM constructed by
sample-injection ig-disjunct with high probability.

That is, we can construct a one-round group test based onlesamgztion that use®(d? log(n/d))
tests.

As mentioned above, a productive way of using the sampéssiign construction is to build @, k)-
resolvable matrix\/ for a reasonably small value &f We can then use this matrix as the first round in a
two-round rake-and-winnow testing strategy, where thesgcound simply involves our individual testing
of the at most! + k£ samples left as potential positive samples from the firshdou

Corallary 2: Ift > 2dlog(en/d)+logn, then the2t x n random matrix\ constructed by sample-injection
is (d, d)-resolvable with high probability.



This corollary implies that we can construct a rake-andaeim algorithm where the first stage involves
performingO(dlog(n/d)) tests, which is within a (small) constant factor of the infiation theoretic lower
bound, and the second round involves individually testingast2d samples.

4 Improved Boundsfor Small d Values

In this section, we consider efficient algorithms for thecéplecases whed = 2 andd = 3. We present
time-optimal algorithms for these cases; that is, wittn,¢) beingO(t). Our algorithm ford = 3 is the
first known such algorithm.

Finding up to Two Defectives. Consider the problem of determining which items are defeatihen we
know that there are at most two defectives. We describes@parable matrix and a time-optimal analysis
algorithm witht = (¢ + 5¢)/2 andn = 39, for any positive integey.

Let the number of items be = 39, and let the item indices be expressed in radix 3. Index=
X¢—1---Xo, where each digiX, € {0, 1,2}.

Hereafter, X ranges over the item index numbef@,...n — 1}, p ranges over the radix positions
{0,...q — 1}, andv ranges over the digit valug9, 1, 2}.

For our construction, matrid/ is partitioned into submatriceB and C'. Matrix B is the submatrix
of M consisting of its firs3¢ rows. Row(p,v) of B is associated with radix positiop and valuev.
B[(p,v),X]| =1iff X, = .

Matrix C'is the submatrix ofd/ consisting of its las{?) rows. Row(p,p’) of C' is associated with
distinct radix positiong andp’, wherep < p'. Cl(p,p’), X] = 1iff X, = X,,.

Let testp(p,v) be the result (1 for positive, O for negative) of the test efris having a 1-entry in row
(p,v) in B. Similarly, lettestc(p,p’) be the result of testing ro\p, p’) in C. Lettest1(p) be the number
of different values held by defectives in radix positipn test1(p) can be computed byestp(p,0) +
testp(p,1) + testp(p, 2).

The analysis algorithm is shown in the Appendix in Figure 3.

It is easy to determine how many defective items are presé&hiere are no defective items when
test1(0) = 0. There is only one defective item wheast1(p) = 1 for all p, since if there were two
defective items then there must be at least one positionwhich their indices differ andest1(p) would
then have value 2. The one defective item has inflex D,_; - - - Dy, where digitD,, is the valuev for
whichtestp(p,v) = 1.

Otherwise, there must be 2 defective items,= D,_;--- Dy andE = E,_; --- Ey. We iteratively
determine the values of the digits of indicBsand E.

For radix positions in which defective items exist for onlyeovalue of that digit, bottD and £ must
have that value for that digit. For each other radix posjtiwo distinct values for that digit occur in the
defective items.

The first radix position in whictD and E differ is recorded in the variable® and the value of that digit
in D (respectively,F) is recorded inj (respectivelyps).

For any subsequent positigrin which D and E differ, the digit values of the defectives in that position
arev, andwy,, which are two distinct values frof0, 1, 2}, as arev} andv, and therefore there must be at
least one value in common betweém,, v, } and{vj, v }.

Let a common value be, and, without loss of generality, let, = v].

Lemmab: The digit assignment for positignis D, = v, andE,, = v, iff testc(p*,p) = 1.
Proof: We consider the two possibilities of which defective itens haas its digit in positiornp.



Case 1.D,, = v,.
We see thaD,, = v, = v}. Accordingly, a defectivelp) would be among the items testedtistc (p*, p).
Thereforetestc(p*,p) = 1.

Case 2., = v,.
We see thaD,, # v}, becausd), # E, = v, = v, and also thaty, # v3, becauser, = v, = v] # v3.
Accordingly, neither of the defective items would be amoheg items tested inest-(p*, p). Therefore,
testo(p*,p) = 0. [

We have determined the values of defectives D and E for aitipos — those where they are the same
and those where they differ. For each position, only a comstaount of work is required to determine the
assignment of digit values. Therefore, we have proven thafimg theorem.

Theorem 3. A 2-separable matrix that has a time-optimal analysis algoritan be constructed with=
(¢ + 5¢)/2 andn = 34, for any positive intege.

Comparison of the Number of Tests Required for d = 2 Method. A 2-separable or a 2-disjunetx n

matrix enables determination of up to 2 defective items fimmongn or feweritems usingt tests. An
algorithm is more competitive at or just below one of its lqmants, values oh for which increasing:

by one significantly increaseés The MR algorithm has breakpoints at one under all powers otiR(d=2)

algorithm at all powers of 3, and the KS algorithm at only aierppowers of 3. Our generdlalgorithms do
not have significant breakpoints.

Table 2 lists the number of tests required by these algosittamsome small values of. For alln < 33,
our d = 2 algorithm uses the smallest number of tests. For higheesabfin < 33, the Kautz/Singleton
and ourd = 2 and general (Chinese Remainder Sieve) algorithms aleebeahg dominant. The alternations
are illustrated in Table 3. For all > 3!3!, the Hwang/Sés algorithm uses the fewest tests.

Table 2:t(n) for smalln (d = 2)

(d=2) [15 100 10® 10* 10° 10° 10® 100 10%° 10%
ourd=2]12 25 42 63 88 117 187 273 987 2142
our bktrk | 19 36 60 89 131 168 268 378 1176 2350
ourgenl |28 41 77 100 160 197 281 440 1264 2584

MR 14 35 65 119 170 230 405 629 2345 5150
KS 27 81 81 243 243 243 729 729 2187 2187
HS 373 507 641 775 909 1177 1446 2787 4129

Table 3:t(n) for largen (d = 2)

(d — 2) 363 364 3104 3112 3128 3130 3256
ourd =2 |2142 2208 5668 6552 8512 8775 33408
our bktrk | 2366 2424 5687 6454 8184 8394 28311
our genl 2584 2584 6081 6870 8582 8893 29296
KS 2187 2187 6561 6561 6561 19683 19683
HS 4136 4200 6760 7272 8296 8424 16488
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Findingup to Three Defectives.  Consider the problem of determining which items are defeatinen we
know that there are at most three defectives. We describseparable matrix and a time-optimal analysis
algorithm witht = 2¢> — 2¢ andn = 24, for any positive integey.

Let the number of items be = 29, and let the item indices be expressed in radix 2. Index=
X¢—1--- Xo, where each digiX,, € {0,1}.

Hereafter, X ranges over the item index numbef@,...n — 1}, p ranges over the radix positions
{0,...q — 1}, andv ranges over the digit valug$), 1}.

Matrix M has2q? — 2q rows. Row(p, p’,v,v’) of M is associated with distinct radix positiopsand
p', wherep < p/, and with values) andv’, each of which is in{0,1}. M[(p,p’,v,v"), X] = 1iff X, = v
anpr/ =9

Let test s (p, p’,v,v") be the result (1 for positive, 0 for negative) of testing isehaving a 1-entry in
row (p,p’,v,v') in M. Forp’ > p, definetestp;(p/, p, v, v) = testyr(p,p’,v,0").

The following three functions can be computed in termseet ;.

e testp(p,v) has value 1 (0) if there are (not) any defectives having value radix positionp.
Hence,testp(0,v) = 0 if testp(0,1,v,0) + testps(0,1,v,1) = 0, and 1 otherwise. Fagr > 0,
testp(p,v) = 0if testprs(p,0,v,0) + testpr(p,0,v,1) = 0, and 1 otherwise.

e testl(p) is the number of different binary values held by defectivegadix positionp. Thus,
testl(p) = testp(p,0) + testp(p, 1).

e test2(p,p’) is the number of different ordered pairs of binary valuesl sl defectives in the desig-
nated ordered pair of radix positions.
test2(p,p') = testpy(p, p',0,0) + testy(p, p', 0, 1) + testpyr(p, p', 1,0) + testpy(p, p', 1,1).

The analysis algorithm is shown in the Appendix in Figure 4.

We determine the number of defective items and the valueedf thgits. There are no defective items
whentest1(0) = 0. At each radix positiop in whichtest1(p) = 1, all defective items have the same value
of that digit. If all defectives agree on all digit valueseththere is only one defective. Otherwise there are
at least two defectives, and we need to consider how to adgigrvalues for only the set of positior3 in
which there is at least one defective having each of the tvgsipte binary digit values.

Lemma6: There are only two defectives if and only if, forp’ € P, test2(p,p’) = 2.

Proof: A defective item can contribute at most one new combinatibwatues in positionsp, p’ and
so test2(p,p’) < the number of defectives. Accordingly, if there are feweanthwo defectives then
test2(p,p’) < 2.

If there are exactly two defectives themst2(p, p’) < 2. Sincep € P, both binary values appear among
defectives, soest2(p, p’) > 2, and thereforgest2(p,p’) = 2.

Consider the case in which there are three defectives. Irpasyionp; in which both binary values
appear at that digit among the set of defectives, one of thectilees (say,D) has one binary value (say,
v1) and the other two defectived’( F') have the other binary value{). SinceFE and F are distinct, they
must differ in value at some other positips. Therefore, there will be three different ordered pairsinfiby
values held by defectives in positiops andp., and sotest2(p1, p2) = 3. [ |

Accordingly, if there is no pair of positions for whiclst2 has value 3, we can conclude that there are
only two defectives. Otherwise, there are positipngps for which test2(p1, p2) = 3, and one of the four
combinations of two binary values will not appear. Let thassing combination be;,vs. Thus, while
positionp; uniquely identifies one defective, s&y, as the only defective having value at that position,
positionp, uniquely identifies one of the other defectives, #3yas having values.

Lemma 7. If the positionp* uniquely identifies the defectiv& to have valuey*, then the value of the
defectiveX at any other positiop will be that valuev such thatest y;(p*, p,v*,v) = 1.
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Proof: If position p* uniquely identifies defectiv&’ as having value*, then X, = v* and, for any other
defectiveY’, Y« # v*.

Letv = X, for anyp # p*. Thentesty(p*, p,v*,v) = 1, sinceX is a defective that has the required
values at the required positions to be included in this test.

Also, testyr (p*, p,v*,7) = 0, because none of the defectives are included in this tedecbee X is
not included becaus¥, # ©. Any other defectiveY” # X, is not included becausg,- # v*. [

Since we have positions that uniquely identifyand £, we can determine the values of all their other
digits and the only remaining problem is to determine thei@slof the digits of defectivé'.

Since positiorp; uniquely identifiesD, we know thatF},, = v;. For any other positiop, after deter-
mining thatE, = v, we note that itest,/(p1,p,71,7) = 1 then there must be at least one defecti¥e for
which X,,, = 7; andX,, = 7. DefectiveD is ruled out sinceD,,, = v, and defectively is ruled out since
E, = v. Therefore, it must be thdt, = v. Otherwise, if thatest); = 0 thenF,, = v, sinceF,, = v would
have causetest,; = 1.

We have determined the values of defectives D, E and F foraglitipns. For each position, only a
constant amount of work is required to determine the assigmiof digit values. Therefore, we have proven
the following theorem.

Theorem 4. A 3-separable matrix that has a time-optimal analysis algoritan be constructed with=
2¢> — 2q andn = 29, for any positive integey.

Comparison of the Number of Tests Required for ¢ = 3 Method. The generald algorithm due to
Hwang and Sos [11] requires fewer tests than does the #igofor d = 3 suggested by Du and Hwang [6].
Forn < 10'°, our (@ = 3) algorithm requires even fewer tests and our general (Ghifemainder Sieve)
algorithm fewest. However, asymptotically Hwang/Sossuse fewest tests. We note that, unlike these
other efficient algorithms, oudl(= 3) algorithm is time-optimal. Table 4 lists the number of s$asiquired

by these algorithms for some small values:of

Table 4: Comparing(n) ford = 3

(d=3) 100 10f 10° 105 10° 10%° 109
our bktrk | 60 168 321 513 738 2350 4777
ourgenl | 77 197 381 568 791 2584 5117
ourd=3| 84 364 760 1404 2244 8844 19800
HS 838 1442 2046 2649 3253 6271 9289
DH 840 3444 7080 12960 20604 80400 179400
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A

Pseudo-Code Listings

def eratosthenes ():

def

""Generate the sequence of prime numbers via the Sieve ot@&sthenes.™”
D={} # mapcomposite integers to primes witnessing their cortgraEss
g=2 # first integer to test for primality
while True:
if gnot in D:
yied ¢ # not marked composite, must be prime
Dlgxq] = [q] # first multiple of g not already marked
else:
for p in D[g]: # move each witness to its next multiple
D. setdefault (p+q ,[]). append(p)
del DIq] # no longer need D[q], free memory
q+=1

search (primes, maxpow,target):
Backtracking search for exponents of prime powers, each @t maxpow,
so that the product of the powers is at least target and the cluithe
non—unit powers is minimized. Returns the pair [sum, list of exqguus ].
if target <=1: # all unit powers will work?
return [0,[0]* len(primes)]
eif not primesor maxpowxlen(primes)< target:
return None # no primes supplied, no solution exists
primes = list (primes) # list all but the last prime for recursive calls
p = primes.pop()
best = None # no solution found yet
i =0
while pxxi <= maxpow: # loop through possible exponents of p
s = search (primes, maxpow,(target #«p — 1)// pxxi)
if s is not None:
s[0] +=1 and pxxi
s [1]. append(i)
best = min(best,spr s
i +=1
return best

Figure 1: Subroutines for construction based on prime feztbion
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def primecgt(n,d):
""Find a CGT for n and d and output a description of it to stdou™

# collect primes until their total product is large enough
primes = []
product = 1
for p in eratosthenes ():

primes.append(p)

product = p

if product > nxxd:

break

# now find good collection of powers of those primes ...
result = search (primes, primes]],n«xd)
powers = result [1]

# output results
print 'n =" ,njd =" ,d,””" ,
for i in range(len(primes)):
if powers[i] == 1:
print primesJi],
eif powers[i] > 1:
print str(primes[i]) +™" + str (powers[i]),
print "total tests:”, sum([primes[i}+powers[i] for i in range(len(primes))
if powers[i]])

if _name_ =="_main_":
for d in range (2,6):
for x in range (6,16):
prime_ cgt(1<<x,d)
print

Figure 2: Construct tests based on prime factorization

15



if test1(0) = 0 then return there are no defective items
pte——1
forp«— 0tog—1do
if test1(p) = 1 then
D, — E, < the valuev such thatestg(p,v) = 1
else Il test1(p) has value 2
Let vy, vy be the two values of such thatestg(p,v) = 1
if p* < 0then
pt—p
v] — Dy — vy
vy — Ep v
else
if testc(p*,p) = 1 and (v} = vy or v3 = v9 ) then
Dp — U
Ep < V9
else
Dp < V9
Ep — U1
if p* < 0then
return there is one defective ite?
dse
return there are two defective iteni3 and £

Figure 3: Analysis algorithm for up to 2 defectives
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if test1(0) = 0 then return there are no defective items
P~
forp+— 0tog—1do
if test1(p) = 1 then
D, — E, «— F, «— the valuev s.t. testg(p,v) =1
ese P — PU{p}
if P = () then return there is one defective ite
if test2(py,p2) = 2 forall py,ps € P then
pt——1
for p e Pdo
if p* < 0then
pt—p
v* D, 0
eseif testps(p*, p,v*,0) = 1 then
D, 0
ese D, 1
E,—1-D,
return there are two defective itenis, &/
ese
Let p1, p2 be positions such thatst2(py, p2) = 3
Let vy, vy be values such thaesty, (p1, p2, v1,v2) =0
Dpl ACH
Fpl <_EIH —1l-u
Ep2 02
Fpy — Dp, — 1 — w2
for p € P —{p1,p2} do
if testar(p1,p,v1,0) =1 then
D, 0
ese D, 1
if testar(pe2, p,v2,0) = 1 then
E, 0
else B, — 1
v E,
if testyr(p1,p, 1 —v1,1 —v) = 1then
F,—1-v
else F, —v
return there are three defective itemis E, and I’

Figure 4: Analysis algorithm for up to 3 defectives
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