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Abstract

We study practically efficient methods for performing combinatorial group testing. We present effi-
cient non-adaptive and two-stage combinatorial group testing algorithms, which identify the at mostd
items out of a given set ofn items that are defective, using fewer tests for all practical set sizes. For
example, our two-stage algorithm matches the information theoretic lower bound for the number of tests
in a combinatorial group testing regimen.
Keywords: combinatorial group testing, Chinese remaindering, Bloomfilters

1 Introduction
The problem of combinatorial group testing dates back to World War II, for the problem of determining
which in a group ofn blood samples contain the syphilis antigen (hence, are contaminated). Formally, in
combinatorial group testing, we are given a set ofn items, at mostd of which are defective (or contaminated),
and we are interested in identifying exactly which of then items are defective. In addition, items can be
“sampled” and these samples can be “mixed” together, so tests for contamination can be applied to arbitrary
subsets of these items. The result of a test may be positive, indicating that at least one of the items of that
subset is defective, or negative, indicating that all itemsin that subset are good. Example applications that
fit this framework include:
• Screening blood samples for diseases.In this application, items are blood samples and tests are

disease detections done on mixtures taken from selected samples.
• Screening vaccines for contamination.In this case, items are vaccines and tests are cultures done on

mixtures of samples taken from selected vaccines.
• Clone libraries for a DNA sequence.Here, the items are DNA subsequences (calledclones) and tests

are done on pools of clones to determine which clones containa particular DNA sequence (called a
probe) [10].

• Data forensics. In this case, items are documents and the tests are applications of one-way hash
functions with known expected values applied to selected collections of documents. The differences
from the expected values are then used to identify which, if any, of the documents have been altered.

The primary goal of a testing algorithm is to identify all defective items using as few tests as possible.
That is, we wish to minimize the following function:
• t(n, d): The number of tests needed to identify up tod defectives amongn items.
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This minimization may be subject to possibly additional constraints, as well. For example, we may wish to
identify all the defective items in a single (non-adaptive) round of testing, we may wish to do this in two
(partially-adaptive) rounds, or we may wish to perform the tests sequentially oneafter the other in afully
adaptivefashion.

In this paper we are interested in efficient solutions to combinatorial group testing problems for realistic
problem sizes, which could be applied to solve the motivating examples given above. That is, we wish
solutions that minimizet(n, d) for practical values ofn andd as well as asymptotically. Because of the
inherent delays that are built into fully adaptive, sequential solutions, we are interested only in solutions that
can be completed in one or two rounds. Moreover, we desire solutions that are efficient not only in terms of
the total number of tests performed, but also for the following measures:
• A(n, t): Theanalysistime needed to determine which items are defective.
• S(n, d): Thesamplingrate—the maximum number of tests any item may be included in.

An analysis algorithm is said to beefficient if A(n, t) is O(tn), wheren is the number of items andt is
the number of tests conducted. It istime-optimalif A(n, t) is O(t). Likewise, we desire efficient sampling
rates for our algorithms; that is, we desire thatS(n, d) beO(t(n, d)/d). Moreover, we are interested in this
paper in solutions that improve previous results, either asymptotically or by constant factors, for realistic
problem sizes. We do not define such “realistic” problem sizes formally, but we may wish to consider as
unrealistic a problem that is larger than the total memory capacity (in bytes) of all CDs and DVDs in the
world (< 1025), the number of atomic particles in the earth (< 1050), or the number of atomic particles in
the universe (< 1080).

Viewing Testing Regimens as Matrices. A single round in a combinatorial group testing algorithm con-
sists of a test regimen and an analysis algorithm (which, in anon-adaptive (one-stage) algorithm, must
identify all the defectives). The test regimen can be modeled by at× n Boolean matrix,M . Each of then
columns ofM corresponds to one of then items. Each of thet rows ofM represents a test of items whose
corresponding column has a 1-entry in that row. All tests areconducted before the results of any test is
made available. The analysis algorithm uses the results of thet tests to determine which of then items are
defective.

As described by Du and Hwang [6](p. 133), the matrixM is d-disjunct if the Boolean sum of anyd
columns does not contain any other column. In the analysis ofad-disjuncttesting algorithm, items included
in a test with negative outcome can be identified as pure. Using ad-disjunct matrix enables the conclusion
that if there ared or fewer items that cannot be identified as pure in this mannerthen all those items must be
defective and there are no other defective items. If more than d items remain then at leastd + 1 of them are
defective. Thus, using ad-disjunct matrix enables an efficient analysis algorithm, with A(n, t) beingO(tn).

M is d-separable(d-separable) if the Boolean sums ofd (up to d) columns are all distinct. Thed-
separable property implies that each selection of up tod defective items induces a different set of tests with
positive outcomes. Thus, it is possible to identify which are the up tod defective items by checking, for each
possible selection, whether its induced positive test set is exactly the obtained positive outcomes. However,
it might not be possible to detect that there are more thand defective items. This analysis algorithm takes
timeΘ(nd) or requires a large table mappingt-subsets tod-subsets.

Generally,d-separable matrices can be constructed with fewer rows thancand-disjunct matrices having
the same number of columns. Although the analysis algorithmdescribed above ford-separable matrices is
not efficient, somed-separable matrices that are notd-disjunct have an efficient analysis algorithm.

Previous Related Work. Combinatorial group testing is a rich research area with many applications to
many other areas, including communications, cryptography, and networking [3]. For an excellent discussion
of this topic, the reader is referred to the book by Du and Hwang [6]. For generald, Du and Hwang
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[6](p. 149) describe a slight modification of the analysis ofa construction due to Hwang and Sós [11] that
results in at × n d-disjunct matrix, withn ≥ (2/3)3t/16d2

, and sot ≤ 16d2(1 + log3 2 + (log3 2) lg n).
For two-stage testing, Deboniset al. [5] provide a scheme that achieves a number of tests within a factor of
7.54(1+o(1)) of the information-theoretic lower bound ofd log(n/d). Ford = 2, Kautz and Singleton [12]
construct a 2-disjunct matrix witht = 3q+1 andn = 32q

, for any positive integerq. Macula and Reuter [13]
describe a2-separable matrix and a time-optimal analysis algorithm with t = (q2 + 3q)/2 andn = 2q − 1,
for any positive integerq. Ford = 3, Du and Hwang [6](p. 159) describe the construction of a3-separable
matrix (but do not describe the analysis algorithm) witht = 4

(3q
2

)

= 18q2 − 6q andn = 2q − 1, for any
positive integerq.

Our Results. In this paper, we consider problems of identifying defectives using non-adaptive or two-
stage protocols with efficient analysis algorithms. We present several such algorithms that require fewer
tests than do previous algorithms for practical-sized sets, although we omit the proofs of some supporting
lemmas in this paper, due to space constraints. Our general case algorithm, which is based on a method
we call the Chinese Remainder Sieve, improves the construction of Hwang and Sós [11] for all values ofd
for real-world problem instances as well as ford ≥ n1/5 andn ≥ e10. Our two-stage algorithm achieves
a bound fort(n, d) that is within a factor of4(1 + o(1)) of the information-theoretic lower bound. This
bound improves the bound achieved by Deboniset al. [5] by almost a factor of2. Likewise, our algorithm
for d = 2 improves on the number of tests required for all real-world problem sizes and is time-optimal (that
is, with A(n, t) ∈ O(t)). Our algorithm ford = 3 is the first known time-optimal testing algorithm for that
d-value. Moreover, our algorithms all have efficient sampling rates.

2 The Chinese Remainder Sieve
In this section, we present a solution to the problem for determining which items are defective when we know
that there are at mostd < n defectives. Using a simple number-theoretic method, whichwe call theChinese
Remainder Sievemethod, we describe the construction of ad-disjunct matrix witht = O(d2 log2 n/(log d+
log log n)). As we will show, our bound is superior to that of the method ofHwang and Sós [11], for all
realistic instances of the combinatorial group testing problem.

Suppose we are givenn items, numbered0, 1, . . . , n − 1, such that at mostd < n are defective. Let
{pe1

1 , pe2

2 , . . . , pek

k } be a sequence of powers of distinct primes, multiplying to atleastnd. That is,
∏

j p
ej

j ≥
nd. We construct at× n matrix M as the vertical concatenation ofk submatrices,M1,M2, . . . ,Mk. Each
submatrixMj is atj × n testing matrix, wheretj = p

ej

j ; hence,t =
∑k

j=1 p
ej

j . We form each row ofMj by
associating it with a non-negative valuex less thanp

ej

j . Specifically, for eachx, 0 ≤ x < p
ej

j , form a test

in Mj consisting of the item indices (in the range0, 1, . . . , n − 1) that equalx (mod p
ej

j ). For example, if

x = 2 andp
ej

j = 32, then the row forx in Mj has a1 only in columns2, 11, 20, and so on.
The following lemma shows that the test matrixM is d-disjunct.

Lemma 1: If there are at mostd defective items, and all tests inM are positive fori, theni is defective.

Proof: If all k tests fori (one for each prime powerp
ej

j ) are positive, then there exists at least one defective
item. With each positive test that includesi (that is, it has a1 in columni), let p

ej

j be the modulus used for
this test, and associate withj a defective indexij that was included in that test (choosingij arbitrarily in
case testj includes multiple defective indices). For any defective indexi′, let

Pi′ =
∏

j s.t. ij=i′

p
ej

j .

That is,Pi′ is the product of all the prime powers such thati′ caused a positive test that includedi for that
prime power. Since there arek tests that are positive fori, eachp

ej

j appears in exactly one of these products,
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Pi′ . So
∏

Pi′ =
∏

p
ej

j ≥ nd. Moreover, there are at mostd products,Pi′ . Therefore,maxi′ Pi′ ≥ (nd)1/d =
n; hence, there exists at least one defective indexi′ for which Pi′ ≥ n. By construction,i′ is congruent to
the same values to whichi is congruent, modulo each of the prime powers inPi′ . By the Chinese Remainder
Theorem, the solution to these common congruences is uniquemodulo the least common multiple of these
prime powers, which isPi′ itself. Therefore,i is equal toi′ modulo a number that is at leastn, so i = i′;
hence,i is defective.

The important role of the Chinese Remainder Theorem in the proof of the above lemma gives rise to our
name for this construction—the Chinese Remainder Sieve.

Analysis. As mentioned above, the total number of tests,t(n, d), constructed in the Chinese Remainder
Sieve is

∑k
j=1 p

ej

j , where
∏

p
ej

j ≥ nd. If we let eachej = 1, we can simplify our analysis to note that

t(n, d) =
∑k

j=1 pj , wherepj denotes thej-th prime number andk is chosen so that
∏k

j=1 pj ≥ nd. To
produce a closed-form upper bound fort(n, d), we make use of the prime counting function,π(x), which
is the number of primes less than or equal tox. We also use the well-knownChebyshev function, θ(x) =
∑π(x)

j=1 ln pj . In addition, we make use of the following (less well-known)prime summation function,σ(x) =
∑π(x)

j=1 pj . Using these functions, we bound the number of tests in the Chinese Remainder Sieve method as
t(n, d) ≤ σ(x), wherex is chosen so thatθ(x) ≥ d ln n, sinceln

∏

pj≤x pj = θ(x). For the Chebyshev
function, it can be shown [1] thatθ(x) ≥ x/2 for x > 4 and thatθ(x) ∼ x for large x. So if we let
x = d2d ln ne, thenθ(x) ≥ d ln n. Thus, we can bound the number of tests in our method ast(n, d) ≤
σ(d2d ln ne). To further boundt(n, d), we use the following lemma, which may be of mild independent
interest.

Lemma 2: For integerx ≥ 2,

σ(x) <
x2

2 ln x

(

1 +
1.2762

ln x

)

.

Proof: Let n = π(x). Dusart [7, 8] shows that, forn ≥ 799,

1

n

n
∑

j=1

pj <
1

2
pn,

that is, the average of the firstn primes is half the value of thenth prime. Thus,

σ(x) =

π(x)
∑

j=1

pj <
π(x)

2
pn ≤

π(x)

2
x,

for integerx ≥ 6131 (the799th prime). Dusart [7, 8] also shows that

π(x) <
x

ln x

(

1 +
1.2762

ln x

)

,

for x ≥ 2. Therefore, for integerx ≥ 6131,

σ(x) <
x2

ln x

(

1 +
1.2762

ln x

)

.

In addition, we have verified by an exhaustive computer search that this inequality also holds for all integers
2 ≤ x < 6131. This completes the proof.

Thus, we can characterize the Chinese Remainder Sieve method as follows.
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Theorem 1: Given a set ofn items, at mostd of which are defective, the Chinese Remainder Sieve method
can identify the defective items using a number of tests

t(n, d) <
d2d ln ne2

2 lnd2d ln ne

(

1 +
1.2762

lnd2d ln ne

)

.

The sample rate can be bounded by

S(n, d) <
d2d ln ne

2 lnd2d ln ne

(

1 +
1.2762

lnd2d ln ne

)

,

and the analysis time,A(n, t), is O(nt(n, d)).

By calculating the exact numbers of tests required by the Chinese Remainder Sieve method for particular
parameter values and comparing these numbers to the claimedbounds for Hwang and Sós [11], we see that
our algorithm is an improvement when:

• d = 2 andn ≤ 1057 • d = 3 andn ≤ 1066

• d = 4 andn ≤ 1070 • d = 5 andn ≤ 1074

• d = 6 andn ≤ 1077 • d ≥ 7 andn ≤ 1080.
Of course, these are the most likely cases for any expected actual instance of the combinatorial group

testing problem. In addition, our analysis shows that our method is superior to the claimed bounds of Hwang
and Sós [11] ford ≥ n1/5 andn ≥ e10. Less precisely, we can say thatt(n, d) is O(d2 log2 n/(log d +
log log n)), thatS(n, d) isO(d log n/(log d+log log n), andA(n, t) isO(tn), which isO(d2n log2 n/(log d+
log log n)).

Heuristic Improvements. Although it will not reduce the asymptotic complexity oft, we can reduce the
number of tests by starting with a sequence of primes up to some upper boundx, and efficiently constructing
a set of good prime powers from this sequence. We can allow some powers,ej , to be zero (meaning that we
don’t use this prime), while giving others values greater than one. The objective is to choose carefully the
valuesej in order to minimize the number of tests while maintaining the property that

∏

p
ej

j ≥ nd. This
typically yields a savings of between five and ten percent.

An example implementation in Python 2.3 is shown in the Appendix in Figures 1 and 2. This imple-
mentation starts with theej = 1 solution to determine an initial suitable sequence of primes, pj, to use. It
then does a backtracking search to find the optimal set ofej for thesepj, subject to the constraint that each
p

ej

j is not greater than the largest prime in the original solution (with eachej = 1). Since the number ofej

powers is sublogarithmic, and most of them must be 0 or 1, thisbacktracking search takes time sublinear in
n for fixedd.

Comparison of the Number of Tests Required. Table 1 lists the number of tests required by the Hwang/Sós
algorithm, our general algorithm (using the initial set of primespj having exponentsej = 1), and our im-
proved backtrack algorithm, for some values ofn. As can be seen, for moderate values ofn our algorithms
require a small fraction of the number of tests required by the HS algorithm. However, asymptotically for
fixedd, the HS algorithm requires fewer tests.

3 A Two-Stage Rake-and-Winnow Protocol
In this section, we present a randomized construction for two-stage group testing. This two-stage method
uses a number of tests within a constant factor of the information-theoretic lower bound. It improves pre-
vious upper bounds [5] by almost a factor of2. In addition, it has an efficient sampling rate, withS(n, d)
being onlyO(log(n/d)). All the constant factors “hiding” behind the big-ohs in these bounds are small.
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Table 1: Comparingt(n) for d = 5 andd = 10

(d = 5) 100 104 106 108 1010 1020 1030

our bktrk 131 378 738 1176 1709 5737 11782
our genl 160 440 791 1264 1851 6081 12339
HS 2329 4006 5683 7359 9036 17420 25803

(d = 10) 100 104 106 108 1010 1020 1030

our bktrk 378 1176 2350 3896 5737 19681 41020
our genl 440 1264 2584 4227 6081 20546 42468
HS 9316 16023 22730 29437 36144 69678 103213

Preliminaries. One of the important tools we use in our analysis is the following lemma for bounding the
tail of a certain distribution. It is a form of Chernoff bound[14].

Lemma 3: Let X be the sum ofn independent indicator random variables, such thatX =
∑n

i=1 Xi, where
eachXi = 1 with probability pi, for i = 1, 2, . . . , n. If E[X] =

∑n
i=1 pi ≤ µ̂ < 1, then, for any integer

k > 0,

Pr(X ≥ k) ≤
(

eµ̂

k

)k

.

Proof: Let µ = E[X] be the actual expected value ofX. Then, by a well-known Chernoff bound [14], for
anyδ > 0,

Pr[X ≥ (1 + δ)µ] ≤
[

eδ

(1 + δ)1+δ

]µ

.

(The bound in [14] is for strict inequality, but the same bound holds for nonstrict inequality.) We are
interested in the case when(1 + δ)µ = k, that is, when1 + δ = k/µ. Observing thatδ < 1 + δ, we can
therefore deduce that

Pr(X ≥ k) ≤
[

ek/µ

(k/µ)k/µ

]µ

=
ek

(k/µ)k
=

(

eµ

k

)k

.

Finally, noting thatµ ≤ µ̂,

Pr(X ≥ k) ≤
(

eµ̂

k

)k

.

In addition to this lemma, we also use the following.

Lemma 4: If d < n, then
(

n

d

)

<

(

en

d

)d

.

Proof:
(

n

d

)

=
n!

(n− d)! d!

=
n(n− 1)(n− 2) · · · (n− d + 1)

d!

<
nd

d!
.
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By Stirling’s approximation [4],

d! =
√

2πn

(

d

e

)d

(1 + θ(1/n)).

Thus,d! > (d/e)d. Therefore,
nd

d!
<

nd

(d/e)d
=

(

en

d

)d

.

Identifying Defective Items in Two Stages. As with our Chinese Remainder Sieve method, our random-
ized combinatorial group testing construction is based on the use of a Boolean matrixM where columns
correspond to items and rows correspond to tests, so that ifM [i, j] = 1, then itemj is included in testj. Let
C denote the set of columns ofM . Given a setD of d columns inM , and a specific columnj ∈ C −D,
we say thatj is distinguishablefrom D if there is a rowi of M such thatM [i, j] = 1 but i contains a0
in each of the columns inD. Such a property is useful in the context of group testing, for the setD could
correspond to the defective items and if a columnj is distinguishable from the setD, then there would be a
test in our regimen that would determine that the item corresponding to columnj is not defective.

An alternate and equivalent definition [6](p. 165) for a matrix M to bed-disjunct is if, for anyd-sized
subsetD of C, each column inC−D is distinguishable fromD. Such a matrix determines a powerful group
testing regimen, but, unfortunately, building such a matrix requiresM to haveΩ(d2 log n/ log d) rows, by a
result of Ruszinkó [15] (see also [6], p. 139). The best known constructions haveΘ(d2 log(n/d)) rows [6],
which is a factor ofd greater than information-theoretic lower bound, which isΩ(d log(n/d)).

Instead of trying to use a matrixM to determine all the defectives immediately, we will settlefor a
weaker property forM , which nevertheless is still powerful enough to define a goodgroup testing regimen.
We say thatM is (d, k)-resolvableif, for any d-sized subsetD of C, there are fewer thank columns in
C − D that are not distinguishable fromD. Such a matrix defines a powerful group testing regimen, for
defining tests according to the rows of ad-resolvable matrix allows us to restrict the set of defective items to
a groupD′ of smaller thand + k size. Given this set, we can then perform an additional roundof individual
tests on all the items inD′. This two-stage approach is sometimes called the trivial two-stage algorithm; we
refer to this two-stage algorithm as therake-and-winnowapproach.

Thus, a(d, k)-resolvable matrix determines a powerful group testing regimen. Of course, a matrix is
d-disjunct if and only if it is(d, 1)-resolvable. Unfortunately, as mentioned above, constructing a (d, 1)-
resolvable matrix requires that the number of rows (which correspond to tests) be significantly greater than
the information theoretical lower bound. Nevertheless, ifwe are willing to use a(d, k)-resolvable matrix,
for a reasonably small value ofk, we can come within a constant factor of the information theoretical lower
bound.

Our construction of a(d, k)-resolvable matrix is based on a simple, randomizedsample-injectionstrat-
egy, which itself is based on the approach popularized by theBloom filter [2]. This novel approach also
allows us to provide a strong worst-case bound for the samplerate,S(n, d), of our method. Given a pa-
rametert, which is a multiple ofd that will be set in the analysis, we construct a2t × n matrix M in a
column-wise fashion. For each columnj of M , we chooset/d rows at random and we set the values of
these entries to1. The other entries in columnj are set to0. In other words, we “inject” the samplej into
each of thet/d random tests we pick for the corresponding column (since rows ofM correspond to tests and
the columns correspond to samples). Note, then, that for anyset ofd defective samples, there are at mostt
tests that will have positive outcomes and, therefore, at leastt tests that will have negative outcomes. The
columns that correspond to samples that are distinguishable from the defectives ones can be immediately
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identified. The remaining issue, then, is to determine the value of t needed so that, for a given value ofk,
M is a(d, k)-resolvable matrix with high probability.

Let D be a fixed set ofd defectives samples. For each (column) itemi in C − D, let Xi denote the
indicator random variable that is1 if i is falsely identified as a positive sample byM (that is, i is not
included in the set of (negative) items distinguished from those inD), and is0 otherwise. Observe that the
Xi’s are independent, sinceXi depends only on whether the choice of rows we picked for column i collide
with the at mostt rows ofM that we picked for the columns corresponding to items inD. Furthermore, this
observation implies that anyXi is 1 (a false positive) with probability at most2−t/d. Therefore, the expected
value ofX, E[X], is at mostµ̂ = n/2t/d. This fact allows us to apply Lemma 3 to bound the probability
thatM does not satisfy the(d, k)-resolvable property for this particular choice,D, of d defective samples.
In particular,

Pr(X ≥ k) ≤
(

eµ̂

k

)k

=

( en
k

)k

2(t/d)k
.

Note that this bound immediately implies that ifk = 1 andt ≥ d(e + 1) log n, thenM will be completely
(d, 1)-resolvable with high probability (1− 1/n) for any particular set of defective items,D.

We are interested, however, in a bound implying that foranysubsetD of d defectives (of which there are
(n
d

)

< (en/d)d, by Lemma 4), our matrixM is (d, k)-resolvable with high probability, that is, probability at
least1−1/n. That is, we are interested in the value oft such that the above probability bound is(en/d)−d/n.
From the above probability bound, therefore, we are interested in a value oft such that

2(t/d)k

( en
k

)k
≥
(

en

d

)d

n.

That is, we would like

2(t/d)k ≥
(

en

d

)d (en

k

)k

n.

This bound will hold whenever

t ≥ (d2/k) log(en/d) + d log(en/k) + (d/k) log n.

Thus, we have the following.

Theorem 2: If t ≥ (d2/k) log(en/d) + d log(en/k) + (d/k) log n, then a2t × n random matrixM
constructed by sample-injection is(d, k)-resolvable with high probability, that is, with probability at least
1− 1/n.

Taking k = 1, therefore, we have an alternative method for constructinga d-disjunct matrixM with
high probability:

Corollary 1: If t ≥ d2 log(en/d) + d log en + d log n, then a2t × n random matrixM constructed by
sample-injection isd-disjunct with high probability.

That is, we can construct a one-round group test based on sample-injection that usesO(d2 log(n/d))
tests.

As mentioned above, a productive way of using the sample-injection construction is to build a(d, k)-
resolvable matrixM for a reasonably small value ofk. We can then use this matrix as the first round in a
two-round rake-and-winnow testing strategy, where the second round simply involves our individual testing
of the at mostd + k samples left as potential positive samples from the first round.

Corollary 2: If t ≥ 2d log(en/d)+log n, then the2t×n random matrixM constructed by sample-injection
is (d, d)-resolvable with high probability.
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This corollary implies that we can construct a rake-and-winnow algorithm where the first stage involves
performingO(d log(n/d)) tests, which is within a (small) constant factor of the information theoretic lower
bound, and the second round involves individually testing at most2d samples.

4 Improved Bounds for Small d Values
In this section, we consider efficient algorithms for the special cases whend = 2 andd = 3. We present
time-optimal algorithms for these cases; that is, withA(n, t) beingO(t). Our algorithm ford = 3 is the
first known such algorithm.

Finding up to Two Defectives. Consider the problem of determining which items are defective when we
know that there are at most two defectives. We describe a2-separable matrix and a time-optimal analysis
algorithm witht = (q2 + 5q)/2 andn = 3q, for any positive integerq.

Let the number of items ben = 3q, and let the item indices be expressed in radix 3. IndexX =
Xq−1 · · ·X0, where each digitXp ∈ {0, 1, 2}.

Hereafter,X ranges over the item index numbers{0, . . . n − 1}, p ranges over the radix positions
{0, . . . q − 1}, andv ranges over the digit values{0, 1, 2}.

For our construction, matrixM is partitioned into submatricesB andC. Matrix B is the submatrix
of M consisting of its first3q rows. Row〈p, v〉 of B is associated with radix positionp and valuev.
B[〈p, v〉,X] = 1 iff Xp = v.

Matrix C is the submatrix ofM consisting of its last
(q
2

)

rows. Row〈p, p′〉 of C is associated with
distinct radix positionsp andp′, wherep < p′. C[〈p, p′〉,X] = 1 iff Xp = Xp′ .

Let testB(p, v) be the result (1 for positive, 0 for negative) of the test of items having a 1-entry in row
〈p, v〉 in B. Similarly, let testC(p, p′) be the result of testing row〈p, p′〉 in C. Let test1(p) be the number
of different values held by defectives in radix positionp. test1(p) can be computed bytestB(p, 0) +
testB(p, 1) + testB(p, 2).

The analysis algorithm is shown in the Appendix in Figure 3.
It is easy to determine how many defective items are present.There are no defective items when

test1(0) = 0. There is only one defective item whentest1(p) = 1 for all p, since if there were two
defective items then there must be at least one positionp in which their indices differ andtest1(p) would
then have value 2. The one defective item has indexD = Dq−1 · · ·D0, where digitDp is the valuev for
which testB(p, v) = 1.

Otherwise, there must be 2 defective items,D = Dq−1 · · ·D0 andE = Eq−1 · · ·E0. We iteratively
determine the values of the digits of indicesD andE.

For radix positions in which defective items exist for only one value of that digit, bothD andE must
have that value for that digit. For each other radix position, two distinct values for that digit occur in the
defective items.

The first radix position in whichD andE differ is recorded in the variablep∗ and the value of that digit
in D (respectively,E) is recorded inv∗1 (respectively,v∗2).

For any subsequent positionp in whichD andE differ, the digit values of the defectives in that position
areva andvb, which are two distinct values from{0, 1, 2}, as arev∗1 andv∗2 , and therefore there must be at
least one value in common between{va, vb} and{v∗1 , v∗2}.

Let a common value beva and, without loss of generality, letva = v∗1 .

Lemma 5: The digit assignment for positionp is Dp = va andEp = vb iff testC(p∗, p) = 1.

Proof: We consider the two possibilities of which defective item has va as its digit in positionp.
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Case 1.Dp = va.
We see thatDp = va = v∗1 . Accordingly, a defective (D) would be among the items tested intestC(p∗, p).
Therefore,testC(p∗, p) = 1.

Case 2.Ep = va.
We see thatDp 6= v∗1, becauseDp 6= Ep = va = v∗1 , and also thatEp 6= v∗2 , becauseEp = va = v∗1 6= v∗2.
Accordingly, neither of the defective items would be among the items tested intestC(p∗, p). Therefore,
testC(p∗, p) = 0.

We have determined the values of defectives D and E for all positions – those where they are the same
and those where they differ. For each position, only a constant amount of work is required to determine the
assignment of digit values. Therefore, we have proven the following theorem.

Theorem 3: A 2-separable matrix that has a time-optimal analysis algorithm can be constructed witht =
(q2 + 5q)/2 andn = 3q, for any positive integerq.

Comparison of the Number of Tests Required for d = 2 Method. A 2-separable or a 2-disjunctt × n
matrix enables determination of up to 2 defective items fromamongn or fewer items usingt tests. An
algorithm is more competitive at or just below one of its breakpoints, values ofn for which increasingn
by one significantly increasest. The MR algorithm has breakpoints at one under all powers of 2, our (d=2)
algorithm at all powers of 3, and the KS algorithm at only certain powers of 3. Our general-d algorithms do
not have significant breakpoints.

Table 2 lists the number of tests required by these algorithms for some small values ofn. For alln ≤ 363,
our d = 2 algorithm uses the smallest number of tests. For higher values ofn ≤ 3130, the Kautz/Singleton
and ourd = 2 and general (Chinese Remainder Sieve) algorithms alternate being dominant. The alternations
are illustrated in Table 3. For alln ≥ 3131, the Hwang/Sós algorithm uses the fewest tests.

Table 2:t(n) for smalln (d = 2)

(d = 2) 15 100 103 104 105 106 108 1010 1020 1030

our d = 2 12 25 42 63 88 117 187 273 987 2142
our bktrk 19 36 60 89 131 168 268 378 1176 2350
our genl 28 41 77 100 160 197 281 440 1264 2584
MR 14 35 65 119 170 230 405 629 2345 5150
KS 27 81 81 243 243 243 729 729 2187 2187
HS 373 507 641 775 909 1177 1446 2787 4129

Table 3:t(n) for largen (d = 2)

(d = 2) 363 364 3104 3112 3128 3130 3256

our d = 2 2142 2208 5668 6552 8512 8775 33408
our bktrk 2366 2424 5687 6454 8184 8394 28311
our genl 2584 2584 6081 6870 8582 8893 29296
KS 2187 2187 6561 6561 6561 19683 19683
HS 4136 4200 6760 7272 8296 8424 16488
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Finding up to Three Defectives. Consider the problem of determining which items are defective when we
know that there are at most three defectives. We describe a3-separable matrix and a time-optimal analysis
algorithm witht = 2q2 − 2q andn = 2q, for any positive integerq.

Let the number of items ben = 2q, and let the item indices be expressed in radix 2. IndexX =
Xq−1 · · ·X0, where each digitXp ∈ {0, 1}.

Hereafter,X ranges over the item index numbers{0, . . . n − 1}, p ranges over the radix positions
{0, . . . q − 1}, andv ranges over the digit values{0, 1}.

Matrix M has2q2 − 2q rows. Row〈p, p′, v, v′〉 of M is associated with distinct radix positionsp and
p′, wherep < p′, and with valuesv andv′, each of which is in{0,1}. M [〈p, p′, v, v′〉,X] = 1 iff Xp = v
andXp′ = v′.

Let testM (p, p′, v, v′) be the result (1 for positive, 0 for negative) of testing items having a 1-entry in
row 〈p, p′, v, v′〉 in M . Forp′ > p, definetestM(p′, p, v′, v) = testM(p, p′, v, v′).

The following three functions can be computed in terms oftestM .
• testB(p, v) has value 1 (0) if there are (not) any defectives having valuev in radix positionp.

Hence,testB(0, v) = 0 if testM(0, 1, v, 0) + testM(0, 1, v, 1) = 0, and 1 otherwise. Forp > 0,
testB(p, v) = 0 if testM (p, 0, v, 0) + testM (p, 0, v, 1) = 0, and 1 otherwise.

• test1(p) is the number of different binary values held by defectives in radix positionp. Thus,
test1(p) = testB(p, 0) + testB(p, 1).

• test2(p, p′) is the number of different ordered pairs of binary values held by defectives in the desig-
nated ordered pair of radix positions.
test2(p, p′) = testM (p, p′, 0, 0) + testM(p, p′, 0, 1) + testM (p, p′, 1, 0) + testM (p, p′, 1, 1).

The analysis algorithm is shown in the Appendix in Figure 4.
We determine the number of defective items and the value of their digits. There are no defective items

whentest1(0) = 0. At each radix positionp in which test1(p) = 1, all defective items have the same value
of that digit. If all defectives agree on all digit values, then there is only one defective. Otherwise there are
at least two defectives, and we need to consider how to assigndigit values for only the set of positionsP in
which there is at least one defective having each of the two possible binary digit values.

Lemma 6: There are only two defectives if and only if, forp, p′ ∈ P, test2(p, p′) = 2.

Proof: A defective item can contribute at most one new combination of values in positionsp, p′ and
so test2(p, p′) ≤ the number of defectives. Accordingly, if there are fewer than two defectives then
test2(p, p′) < 2.

If there are exactly two defectives thentest2(p, p′) ≤ 2. Sincep ∈ P , both binary values appear among
defectives, sotest2(p, p′) ≥ 2, and thereforetest2(p, p′) = 2.

Consider the case in which there are three defectives. In anypositionp1 in which both binary values
appear at that digit among the set of defectives, one of the defectives (say,D) has one binary value (say,
v1) and the other two defectives (E,F ) have the other binary value (v1). SinceE andF are distinct, they
must differ in value at some other positionp2. Therefore, there will be three different ordered pairs of binary
values held by defectives in positionsp1 andp2, and sotest2(p1, p2) = 3.

Accordingly, if there is no pair of positions for whichtest2 has value 3, we can conclude that there are
only two defectives. Otherwise, there are positionsp1, p2 for which test2(p1, p2) = 3, and one of the four
combinations of two binary values will not appear. Let that missing combination bev1, v2. Thus, while
positionp1 uniquely identifies one defective, sayD, as the only defective having valuev1 at that position,
positionp2 uniquely identifies one of the other defectives, sayE, as having valuev2.

Lemma 7: If the positionp∗ uniquely identifies the defectiveX to have valuev∗, then the value of the
defectiveX at any other positionp will be that valuev such thattestM(p∗, p, v∗, v) = 1.
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Proof: If position p∗ uniquely identifies defectiveX as having valuev∗, thenXp∗ = v∗ and, for any other
defectiveY , Yp∗ 6= v∗.

Let v = Xp, for anyp 6= p∗. ThentestM (p∗, p, v∗, v) = 1, sinceX is a defective that has the required
values at the required positions to be included in this test.

Also, testM (p∗, p, v∗, v) = 0, because none of the defectives are included in this test. DefectiveX is
not included becauseXp 6= v. Any other defective,Y 6= X, is not included becauseYp∗ 6= v∗.

Since we have positions that uniquely identifyD andE, we can determine the values of all their other
digits and the only remaining problem is to determine the values of the digits of defectiveF .

Since positionp1 uniquely identifiesD, we know thatFp1
= v1. For any other positionp, after deter-

mining thatEp = v, we note that iftestM(p1, p, v1, v) = 1 then there must be at least one defective,X, for
which Xp1

= v1 andXp = v. DefectiveD is ruled out sinceDp1
= v1, and defectiveE is ruled out since

Ep = v. Therefore, it must be thatFp = v. Otherwise, if thattestM = 0 thenFp = v, sinceFp = v would
have causedtestM = 1.

We have determined the values of defectives D, E and F for all positions. For each position, only a
constant amount of work is required to determine the assignment of digit values. Therefore, we have proven
the following theorem.

Theorem 4: A 3-separable matrix that has a time-optimal analysis algorithm can be constructed witht =
2q2 − 2q andn = 2q, for any positive integerq.

Comparison of the Number of Tests Required for d = 3 Method. The generald algorithm due to
Hwang and Sós [11] requires fewer tests than does the algorithm ford = 3 suggested by Du and Hwang [6].
For n < 1010, our (d = 3) algorithm requires even fewer tests and our general (Chinese Remainder Sieve)
algorithm fewest. However, asymptotically Hwang/Sós uses the fewest tests. We note that, unlike these
other efficient algorithms, our (d = 3) algorithm is time-optimal. Table 4 lists the number of tests required
by these algorithms for some small values ofn.

Table 4: Comparingt(n) for d = 3

(d = 3) 100 104 106 108 1010 1020 1030

our bktrk 60 168 321 513 738 2350 4777
our genl 77 197 381 568 791 2584 5117
our d = 3 84 364 760 1404 2244 8844 19800
HS 838 1442 2046 2649 3253 6271 9289
DH 840 3444 7080 12960 20604 80400 179400
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A Pseudo-Code Listings

def eratosthenes ():
”””Generate the sequence of prime numbers via the Sieve of Eratosthenes .”””
D = {} # map composite integers to primes witnessing their compositeness
q = 2 # first integer to test for primality
while True:

if q not in D:
yield q # not marked composite, must be prime
D[q∗q] = [q] # first multiple of q not already marked

else :
for p in D[q]: # move each witness to its next multiple

D. setdefault (p+q ,[]). append(p)
del D[q] # no longer need D[q], free memory

q += 1

def search (primes,maxpow,target ):
”””
Backtracking search for exponents of prime powers, each at most maxpow,
so that the product of the powers is at least target and the sumof the
non−unit powers is minimized. Returns the pair [sum, list of exponents ].
”””
if target <= 1: # all unit powers will work?

return [0,[0]∗ len (primes)]
elif not primes or maxpow∗∗len(primes)< target :

return None # no primes supplied , no solution exists
primes = list (primes) # list all but the last prime for recursive calls
p = primes.pop()
best = None # no solution found yet
i = 0
while p∗∗i <= maxpow: # loop through possible exponents of p

s = search (primes,maxpow,(target + p∗∗i − 1)// p∗∗i)
if s is not None:

s [0] += i and p∗∗i
s [1]. append(i )
best = min(best ,s)or s

i += 1
return best

Figure 1: Subroutines for construction based on prime factorization
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def prime cgt (n,d):
”””Find a CGT for n and d and output a description of it to stdout . ”””

# collect primes until their total product is large enough
primes = []
product = 1
for p in eratosthenes ():

primes.append(p)
product ∗= p
if product > n∗∗d:

break

# now find good collection of powers of those primes ...
result = search (primes,primes[−1],n∗∗d)
powers = result [1]

# output results
print ”n =” ,n,”d =” ,d,”:” ,
for i in range( len (primes )):

if powers[i ] == 1:
print primes[ i ],

elif powers[i ] > 1:
print str (primes[ i ]) +”ˆ” + str (powers[i ]),

print ” total tests :” , sum([primes[i ]∗∗powers[i ] for i in range( len (primes))
if powers[i ]])

if name == ” main ” :
for d in range (2,6):

for x in range (6,16):
prime cgt(1<<x,d)

print

Figure 2: Construct tests based on prime factorization
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if test1(0) = 0 then return there are no defective items
p∗ ← −1
for p← 0 to q − 1 do

if test1(p) = 1 then
Dp ← Ep ← the valuev such thattestB(p, v) = 1

else // test1(p) has value 2
Let v1, v2 be the two values ofv such thattestB(p, v) = 1
if p∗ < 0 then

p∗ ← p
v∗1 ← Dp ← v1

v∗2 ← Ep ← v2

else
if testC(p∗, p) = 1 and ( v∗1 = v1 or v∗2 = v2 ) then

Dp ← v1

Ep ← v2

else
Dp ← v2

Ep ← v1

if p∗ < 0 then
return there is one defective itemD

else
return there are two defective itemsD andE

Figure 3: Analysis algorithm for up to 2 defectives
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if test1(0) = 0 then return there are no defective items
P ← ∅
for p← 0 to q − 1 do

if test1(p) = 1 then
Dp ← Ep ← Fp ← the valuev s.t. testB(p, v) = 1

else P ← P ∪ {p}
if P = ∅ then return there is one defective itemD
if test2(p1, p2) = 2 for all p1, p2 ∈ P then

p∗ ← −1
for p ∈ P do

if p∗ < 0 then
p∗ ← p
v∗ ← Dp ← 0

else if testM(p∗, p, v∗, 0) = 1 then
Dp ← 0

else Dp ← 1
Ep ← 1−Dp

return there are two defective itemsD,E
else

Let p1, p2 be positions such thattest2(p1, p2) = 3
Let v1, v2 be values such thattestM (p1, p2, v1, v2) = 0
Dp1
← v1

Fp1
← Ep1

← 1− v1

Ep2
← v2

Fp2
← Dp2

← 1− v2

for p ∈ P − {p1, p2} do
if testM(p1, p, v1, 0) = 1 then

Dp ← 0
else Dp ← 1
if testM(p2, p, v2, 0) = 1 then

Ep ← 0
else Ep ← 1
v ← Ep

if testM(p1, p, 1− v1, 1− v) = 1 then
Fp ← 1− v

else Fp ← v
return there are three defective itemsD,E, andF

Figure 4: Analysis algorithm for up to 3 defectives
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