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In this paper we present an efficient parallel algorithm for polygon triangulation. 
The algorithm we present runs in O(log n) time using O(n) processors, which is 
optimal if the polygon is allowed to contain holes. This improves the previous 
parallel complexity bounds for this problem by a log n factor. I f  we are also given a 
trapezoidal decomposition of the polygon as input, then we can triangulate the 
polygon in O(log n) time using only 0( n/ log n) processors. This immediately 
implies that we can triangulate a monotone polygon in O(log n) time using O(n/ 
logn) processors, which is optimal. All of our results are for the CREW PRAM 
computational model. 0 1989 Academic Press, Inc. 

1. INTR~DuCTI~N 

The polygon triangulation problem is the following: we are given an 
n-vertex simple polygon P, which may contain holes, and we wish to 
augment P with diagonal edges so that each interior face of the resulting 
subdivision is a triangle (see Fig. 1). This problem arises in many applica- 
tions, including computer graphics, image analysis, and robotics, and has 
been well studied in sequential computational models (see [3,8,15,16,19, 
22,25,28]). Since polygon triangulation had so many applications, it is 
natural that we wish to solve it as fast as possible. We are interested in 
exploring what kinds of speed-ups can be achieved through parallel process- 
ing. More precisely, we are interested in finding an algorithm which 
minimizes the product TP, where T is the time and P is the number of 
processors used by the algorithm. Given that the product TP is as small as 
possible then our secondary goal is to minimize T. If the product TP 

*This paper appeared in preliminary form as a portion of the following work: M. .I. Atallah 
and M. T. Goodrich, Efficient plane sweeping in parallel, in “Proceedings 2nd ACM Symp. on 
Computational Geometry, 1986,” pp. 216-225. 
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FIG. 1. The polygon triangulation problem. 

matches the sequential lower bound for a problem, then we say that the 
algorithm is optimal, since a single processor could simulate the algorithm 
in O(TP) time. The parallel model we choose for this work is the concur- 
rent-read, exclusive-write parallel RAM (or CREW PRAM). Recall that 
this is the synchronous parallel model in which processors share a common 
memory which allows for concurrent reads from any memory location, but 
no two processors may simultaneously write to the same location. 

The previous parallel algorithm for polygon triangulation is due to 
Aggarwal et al. [I] and runs in O(log’ n) time using O(n) processors in the 
CREW PRAM model. In this paper we present a parallel algorithm for 
polygon triangulation which runs in O(log n) time using O(n) processors in 
the CREW PRAM model. These bounds are optimal if the polygon is 
allowed to contain holes, since, as Asano, Asano, and Pinter have shown 
[3], polygon triangulation has a sequential lower bound of G( n log n) in 
this case (in the comparison model). We divide our polygon triangulation 
procedure into three phases, each of which decomposes the polygon into 
subpolygons which have a “simpler” structure than the polygons in the 
previous phase. With the exception of the first step of the first phase, which 
is trapezoidal decomposition [S, 151, our algorithm runs in O(log n) time 
using only O(n/ log n) processors. That is, we reduce triangulation to the 
problem of decomposing the interior of the polygon into trapezoids parallel 
to the y-axis such that each vertical line contains a vertex of the polygon. 
This provides a parallel analog of the sequential linear-lime reduction of 
triangulation to trapezoidal decomposition by Foumier and Montuno [15], 
since our reduction has a linear TP product. Our algorithm also implies 
that a monotone polygon can be triangulated in O(log n) time using 
0( n/ log n) processors (recall that a polygon is monotone if there is a line L 
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such that every perpendicular to L intersects the boundary of the polygon 
at most twice). 

We recently discovered that Aggarwal et al. have improved their triangu- 
lation algorithm in the final version of their paper [2] so that it runs in 
O(log n) time using O(n) processors given a trapezoidal decomposition of 
the polygon. We have also learned that Yap [29] has a parallel triangulation 
method which runs in these bounds and makes two calls to trapezoidal 
decomposition. The TP products of both of these algorithms are a log n 
factor from our TP product when one is given a trapezoidal decomposition 
of the polygon or if the polygon is monotone. 

We present an overview of our algorithm in Section 2, and in Sections 3, 
4, and 5 we present phases 1, 2, and 3, respectively, of our triangulation 
algorithm. 

2. OVERVIEW 

There are a number of algorithmic techniques which have proven useful 
for solving computational geometry problems in this model [l, 2,5,6,9,13, 
14,17,18,23,29]. We briefly review three of these techniques. One tech- 
nique, as presented in [l, 2,5,6,18], is a variation on the divide-and-con- 
quer paradigm. The main idea behind this divide-and-conquer technique is 
to divide the problem into many subproblems, say into fi problems of size 
O(G) each. One then solves each subproblem recursively in parallel, and 
merges all the subproblems quickly in parallel (say in O(log n) time). This 
many-way divide-and-conquer technique was used primarily to solve the 
well-known planar convex hull problem [l, 2,5,6,18]. This technique pro- 
vides a method for achieving a small running time T. If one wants to reduce 
the number of processors used by an algorithm, then one may be able to 
use another fundamental parallel technique, which we call sequential sub- 
sets, in which one “stops” a divide-and-conquer recursion early (say when 
the subproblems are all of size O(log n)) and solves all the subproblems 
sequentially, one processor per subproblem [7,11]. This often improves the 
processor bounds for an algorithm by a factor of log n or log’ n. Finally, 
another technique which is useful for reducing the processor count of an 
algorithm is the parallel prefix technique, where one reduces one’s problem 
to the problem of computing all the prefix sums of a list of n numbers, i.e., 
ck = Cfmiai, for k E {1,2 ,..., n}, given (a,, u2 ,..., a,). Computing all 
these prefix sums can be done in O(log n) time using 0( n/ log n) proces- 
sors [20,21]. 

We use the sequential subsets technique and reduction to parallel prefix 
in each of the three phases. In fact, we use a generalized version of the 
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FIG. 2. Simple-structure polygons: (a) illustrates a one-sided monotone polygon; (b) 
illustrates a monotone funnel polygon. 

sequential subsets technique, in which there can be a large number of 
differing sized “small” subproblems (possibly even O(n) of them). In the 
most difficult phase, Phase 2, we also make use of the many-way divide- 
and-conquer technique. We do not apply these techniques in the standard 
way, however, for that would not result in an efficient processor bound. 
Instead, we “pipeline” the sequential subsets paradigm through every 
recursive call (not just the last one), and use a parallel data structure, which 
we call the HQ-tree [17,18], to keep the number of processors small while 
still allowing us to quickly merge subproblem solutions. 

In the three sections which follow we present phases 1, 2, and 3 of our 
algorithm, respectively. In the first phase we decompose P into polygons 
which are one-sided and monotone with respect to the x-axis. We say that a 
polygon P is one-sided if there is a distinguished edge s on P such that the 
vertices of P are all above (or all below) s (except for the endpoints of the 
edge). (See Fig. 2a.) This first phase runs in O(log n) time using O(n/ log n) 
processors, if we are given the trapezoidal decomposition, and O(n) proces- 
sors, otherwise. In the second phase we decompose each of the one-sided 
monotone polygons into monotone funnel polygons in parallel. We say that 
a polygonal chain is a funnel if its boundary consists of a single edge 
followed by a convex chain followed by a single edge followed by another 
convex chain (see Fig. 2b). This second phase is the most difficult of the 
three phases, and the method we use to implement this step utilizes the 
HQ-tree data structure as well as the many-way divide-and-conquer tech- 
nique. This phase runs in O(log n) time using O(n/ log n) processors. 
Finally, in the third phase we triangulate each of the funnel polygons. We 
show that parallel merging can be used to implement this step in O(log n) 
time using O(n/ log n) processors. Thus, the entire triangulation computa- 
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tion requires O(log n) time using O(n/ log n) processors, if we are given 
the trapezoidal decomposition, and O(n) processors, otherwise. 

We show how to perform the first phase of our triangulation algorithm 
in the following section. 

3. DECOMPOSITION INTO ONE-SIDED MONOTONE POLYGONS 

Let P be a simple polygon which may contain holes. (One way to 
represent P is as a list of vertices and a list of edge segments joining pairs 
of vertices.) We assume that for each edge segment s of P we are given 
which side of s is in the interior of P. As mentioned above, the first phase 
in our triangulation algorithm is to decompose P into subpolygons which 
are one-sided and monotone with respect to the x-axis. The algorithm 
PHASE-ONE which follows performs this first phase of our triangulation 
procedure. Before presenting the algorithm we make the following defini- 
tions. If p is a point in the plane, then we let x(p) and y(p) denote the x- 
and y-coordinate of p, respectively. Given a vertex u, we say that the edge 
segment s is a trapezoidal segment of u if the vertical line segment from u 
to s is entirely interior to P (hence, does not cross any other segment of P). 
We call the point q on s such that x(q) = x(v) the vertical shadow of u on 
s. Note that a vertex can have zero, one, or two vertical shadows. A 
trapezoidal decomposition (see Fig. 3) of P is a graph G = (V, E) such that 
each vertex of P and its vertical shadows are in V and there is an edge 
between u and w  in V if (i) there is an edge segment on P which joins u 
and w  and contains no other vertices in V, (ii) w  is a vertical shadow of u, 
or (iii) u is a vertical shadow of w. G is called a trapezoidal decomposition 
because it partitions the interior of P into trapezoids. 

ALGORITHM PHASE-ONE. 
Inpur: A simple polygon P which may contain holes. For simplicity, we assume 
that the vertices in P have distinct x-coordinates. It is straightforward to generalize 
our results to the general case. 
output: A decomposition of P into one-sided monotone POlygOnS. 

FIG. 3. A trapezoidal decomposition. The figure illustrates the general trapezoidal decom- 
position problem, when the n line segments do not necessarily form a simple polygon. 
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Step 1. If the trapezoidal decomposition of P is given, then skip to Step 
2. Otherwise, construct a trapezoidal decomposition for P. After perform- 
ing this construction we will have an adjacency list representing the 
decomposition. That is, we will have a graph G = (V, E) such that each 
vertex and vertical shadow is in I/ and there is an edge between u and w  in 
V if u and w  are adjacent in the decomposition (i.e., there is a line segment 
in the decomposition which joins u and w  and contains no other vertices in 
V). This step can be performed in O(log n) time using O(n) processors 
[4,181. 

Step 2. For each edge segment s in P construct a list V, of the vertices of 
P which have a vertical shadow on s, sorted by increasing x-coordinates. 
Since the trapezoidal decomposition gives us the adjacencies in V,, i.e., the 
vertical shadows on any segment s form a simple linked-list structure in the 
trapezoidal decomposition, this step can be implemented by a list-ranking 
procedure. More specifically, let G’ be the subgraph of G which is formed 
by removing all the nodes in G which correspond to vertices of P. Then the 
graph G’ is actually just a collection of linked lists (one for every edge 
segment of P which contains vertical shadows). Thus, we can treat G’ as a 
single linked list (with many of the pointers being nil) and rank all the 
nodes in G’, computing for each node u E G’ the distance from u to the 
nearest nil pointer. This ranking procedure can be performed in O(log n) 
time using O(n/log n) processors by an algorithm by Cole and Vi&kin 
[12], since there are O(n) vertical shadows in all (at most two per vertex). 
This will give us for each segment s on P and each vertical shadow u on s 
the number of vertical shadows which precede u on s. It is then an easy 
matter to construct each V, in parallel from this information in O(log n) 
time using 0( n/ log n) processors (using the sequential subsets technique). 

Step3. Let V, = (u~,~,u~,~,...,u~,~, ) be the list of vertices constructed in 
Step 2 for the edge segment s. Augment P by adding an edge from u,,, to 
‘s i+l if it is not already an edge of P. (See Fig. 4.) We show below that this 
decomposes P into a collection of one-sided monotone polygons P,. It is 
possible that an edge may be added twice (once for each side) in this step, 
but this does not cause a problem, since redundant edges can easily be 
removed by a post-processing parallel prefix computation (data compres- 
sion). Thus, this step can be performed for all the J$‘s in parallel in 
O(log n) time using 0( n/ log n) processors. 

End of Algorithm PHASEONE. 

We analyze this algorithm in the following theorem: 

THEOREM 3.1. Given a simple polygon P, which may contain holes, we can 
decompose P into one-sided monotone polygons in O(log n) time using 
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FIG. 4. A one-sided monotone polygon formed by the decomposition. The figure shows a 
polygon P, for s = ( ui,, ui,) and V, = ( ui,, . . . , u,,). The edges in P, but not in P are shown 
dotted. Note that the sequence uiO, ui,, ui2,. . , u,~ is monotone in the x-direction. 
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FIG. 4. A one-sided monotone polygon formed by the decomposition. The figure shows a 
polygon P, for s = ( ui,, ui,) and V, = ( ui,, . . . , u,,). The edges in P, but not in P are shown 
dotted. Note that the sequence uiO, ui,, ui2,. . , u,~ is monotone in the x-direction. 

0( n/ log n) processors, if we are given the trapezoidal decomposition of P, 
and 0( n ) processors, otherwise, in the CREW PRAM model. 

Proof. First, note that the algorithm PHASE-ONE constructs a decom- 
position. That is, an edge added to P while performing Step 3 for some 
edge segment s1 may coincide with an edge added for some edge segment 
s2, but it will not cut across any other edge. This is because we only add an 
edge between two vertices v and w  when v and w  belong to the same 
trapezoid in the decomposition. Second, the vertices of V, are all on the 
same side of s, because the vertical line segment from any point in V, to the 
segment s must be interior to P, and the interior of P can only be on one 
side of s. Thus, each P, is one-sided. Finally, each P, is monotone because 
we sorted the points in V, by x-coordinate in Step 2. 

The complexity for PHASE-ONE follows from observations made above 
in the discussion. q 

After decomposing P into one-sided monotone polygons, we decompose 
P further into a collection of monotone funnel polygons. We describe the 
method for doing this efficiently in parallel in the following section. 

4. DECOMPOSITION INTO MONOTONE FUNNEL POLYGONS 

The second phase of our triangulation algorithm decomposes all the 
one-sided monotone polygons P, into monotone funnel polygons in paral- 
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lel. Since we only have 0( n/ log n) processors, we begin by performing an 
application of the sequential subsets technique. We divide the collection of 
polygons P, into two groups: (i) those polygons with less than log n vertices 
and (ii) those polygons with more than log n vertices. Those polygons in 
group (i) we triangulate sequentially in O(log n) time [15] and the ones in 
group (ii) we decompose into monotone funnel polygons using the method 
described later in this section. Before we describe the general method we 
must first explain how to solve the processor assignment problem for the 
polygons in group (i), since there may be O(n) of them. We group all the 
Ps’s with (PSI E [l, 21 into groups containing $ log n polygons, all the Ps’s 
with 1 P, 1 E [2,4] into groups of size $ log n, all the Ps’s with I PSI E [4,8] 
into groups of size i log n, and so on, so that each group contains O(log n) 
vertices. This grouping step can be performed in O(log n) time using 
O(n/log n) processors [ll, 261 by reducing it the problem of sorting O(n) 
integers in the range [l, log n]. We can then assign a single processor to 
each group and triangulate all the polygons in the group sequentially in 
O(log n) time [16]. Since this completes the computation for all the poly- 
gons in group (i), for the remainder of this section we assume that each P, 
has more than log n vertices. 

Since the computation which follows is to be performed for each one-sided 
monotone polygon P, in parallel, let us concentrate on the problem of 
decomposing a single one-sided monotone polygon into monotone funnel 
polygons. To simplify the notation, let N denote the number of vertices in 
the original polygon, and let P = ( ui,uz, . . . , u,, ui) be the one-sided mono- 
tone polygon which we wish to decompose, where unu, is the distinguished 
edge of P. Without loss of generality, let us assume that P is monotone in 
the x-direction and the vertices not on the distinguished edge s = unul are 
all above s. We will show how to decompose P into monotone funnel 
polygons in O(log N) time using 0( n/ log N) processors. 

Before we describe the algorithm we first present the HQ-tree data 
structure and study some of its properties. Let C = (q, u2,. . . , u,) be a 
simple polygonal chain. The conuex hull of C is defined to be the smallest 
convex region containing C. We let CH(C) denote the vertices on C which 
are on the boundary of the convex hull of C, listed in clockwise order. The 
list CH(C) can be decomposed into two sublists LH(C) and UH(C), where 
LH( C) (resp. UH(C)) denotes the maximal subchain C’ of CH(C) such 
that all the vertices of C are either on or above (resp. below) C’, relative to 
some y-axis. We call LH( C) the lower hull of C and UH(C) the upper hull 
of C. If there is a line L such that every line perpendicular to L intersects C 
in at most one point, then we say that C is monotone with respect to L. The 
chain C is conuex if C can be made into a convex polygon by adding the 
edge u,q, i.e., CH(C) = (ul, u2 ,..., u,, ui). We say that C is a lower 
hemispheric chain (resp., an upper hemispheric chain) if C = LH(C) (resp., 
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C = UH(C)). Note that if C is a hemispheric chain, then it must be convex 
and monotone with respect to the x-axis. Intuitively, C is lower hemi- 
spheric if one always make “left turns” when traversing C from left to 
right, and upper hemispheric if one always makes “right turns.” 

Let B be a binary tree. For each node u in B we define the height of u, 
denoted height(u), to be the length of the longest leaf-to-root path in the 
subtree rooted at u. We define the height of B, denoted height(B), to be 
the height of the root of B. Let 7~ be a leaf-to-root path. We say that a node 
u belongs to the left fringe (resp. right fringe) of n if u is not on n and 
is the left child (resp. right child) of a node on r. We let lchild(u) and 
r&Id(u) denote, respectively, the left child and right child of the node u. 

The HQ-tree is a data structure which can be used to efficiently manipu- 
late hemispheric chains in parallel. Let C = (ui, u2,. . . , u,) be a convex 
chain monotone with respect to the x-axis. Without loss of generality, we 
assume that x(uI) < x(uj+i) and that C is an lower-hemispheric chain. We 
define the HQ-tree data structure H(C) as follows. It is a binary search tree 
which stores the vertices of C in its leaf nodes, all of which are at the same 
level in the tree, sorted from left to right by increasing x-coordinates. For 
simplicity of expression, for each leaf node u we also let u denote the vertex 
in C associated with this node. With each leaf u we store two labels pred( u) 
and succ( u) which are, respectively, the predecessor and successor points of 
u in C (i.e., pred(uj) = uiwl and succ(ui) = uitl). If the predecessor (resp., 
successor) of u is undefined then we take pred( u) (resp., succ( u)) to be nil. 
For each internal node u in H(C) we let Desc( u) denote the set of 
descendent leaves of u, and store two labels D(u) and M(u) at u, which 
are, respectively, the number of vertices in Desc( u), and a pointer to the 
vertex (leaf node) in Desc(u) with minimum x-coordinate. (See Fig. 5.) 
These pointers and labels enable us to perform a variety of operations on 
hemispheric chains efficiently in parallel. 

In the following lemmas we study some of the properties of HQ-trees. 
Given two lower hemispheric chains C, and C,, recall that the common 
lower tangent of C, and C, is the tangent line T such that none of the 
vertices of C, or C, are below T. The next lemma shows that HQ-trees can 
be used to efficiently find the common tangent of two lower hemispheric 
chains. 

LEMMA 4.1 [17,18]. Given HQ-trees H(C,) and H(C,), representing two 
lower hemispheric chains C, and C, separable by a vertical line, we can find 
the common lower tangent of C, and C, in O(h) time using a single processor, 
where h = height( H(C,)) + height( H( C,)). 

Proof Sketch. The method is based on the binary search method of 
Overmars and Van Leeuwen [24] for finding the common lower tangent 
between two lower hemispheric chains. The proof follows from the fact that 
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FIG. 5. An example HQ-tree H(C) for a lower-hemispheric chain C. The D and M labels 
are given for each internal node, and the WCC and pred pointers are denoted by arrows at the 
leaves. 

the binary tree structure of HQ-trees and the labels pred, WCC, D, and A4 
can be used to exactly mimic their binary search method in O(h) time. 0 

Besides finding common tangents, we need to be able to split hemispheri- 
cal chains into smaller chains as well as being able to concatenate chains 
together. In the next lemma we show how to quickly perform a k-way split 
operation in an HQ-tree. That is, given a hemispheric chain C represented 
in some HQ-tree H(C) and k vertical lines, we show how to construct 
HQ-tree representations of all the hemispheric chains which would be left if 
we “cut” C by the k lines. 

LEMMA 4.2. Let H(C) be an He-tree representing some hemispheric 
chain C. Given a sorted list (x1, x2,. . . , xk) of real numbers, we can split 
H(C) into k + 1 He-trees H(C,,), H(C,), . . . , H(C,) such that all the 
vertices of each Ci have x-coordinates in the interval [xi, xi+J for i E 
{O,L 2,. . . , k} (define x0 = - 00 and x~+~ = + ao). Moreover, this con- 
struction can be done in O(h) time using O(k) processors, where h = 
height( H( C)). 
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fringe vertices 

FIG. 6. The k-way split operation. 

Proof. The method is for each processor i E (0, 1, . . . , k + l} to tra- 
verse a root-to-leaf path q in H(C) by searching for xi, using the M labels 
of internal nodes and the x-coordinates of the vertices pointed to by the M 
labels to direct the search. As processor i traverses this path it copies every 
node u it visits into a new location in memory. It copies all the pointer 
information stored at u, as well, unless the pointer points to a child on the 
left fringe of q. That is, it copies u and then tests to see if the next node in 
ri is lchild(u) or rchild(u). If next node in q is lchild(u), then processor i 
copies both lchild( u) and rchild( u) into the new memory record for u. If the 
next node in rri is rchild(u), then processor i only copies rchild(u) into the 
new memory record for u and sets lchild( V) of this record to nil. Once 
processor i completes this traversal and reaches the leaf level of H(C), it 
then repeats this root-to-leaf search procedure, this time traversing a path 
q+I by searching for xi+i. In traversing this path it copies all nodes it visits 
into a new memory location, as it did while traversing q, except this time it 
does not copy pointers to any children on the right fringe. (See Fig. 6.) 
Once the processor completes these two traversals it updates the pred and 
WCC pointers of the first and last elements in the resulting tree, so that the 
pred pointer for the first element and the WCC pointer for the last element 
are both nil. Finally, processor i backtracks along each of the paths ri and 

Ti+l updating the M and D labels of internal nodes along each of these 
paths, so they are based only on the elements left in the (copied) tree. 
This method clearly takes at most O(height(H(C))) time using O(k) pro- 
cessors. I3 

The following lemma shows that we can perform an analogous k-way 
concatenate operation efficiently in parallel as well. That is, given a collec- 
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. . . H(cd 

FIG. 7. The k-way concatenation operations. 

tion of HQ-trees representing hemispherical chains separated by vertical 
lines, and such that the concatenation of these chains is itself a hemispheri- 
cal chain, then we can efficiently construct in parallel an HQ-tree represent- 
ing the concatenation of these chains. 

LEMMA 4.3. Let H(C,), H(C,), . . . , H(C,) be a collection of He-trees 
such that the vertices in Ci all have x-coordinates less than the vertices in Ci, 1, 
and the concatenation C of all the hemispheric chains C,, . . . , C, is itself a 
hemispheric chain. Then we can construct an He-tree H(C) representing the 
concatenated chain C in 0( h + log k) time using O(k) processors in the 
CREW PRAM model. The resulting tree has height at most h + [log k], 
where h is the maximum height of any H(C,). 

Prooj Let C = C, 63 C, @3 . . * @ C,, where A CB B denotes the concate- 
nation of two lists. We construct HQ-tree H(C) by the following method. 
We compute the value of h, the maximum height of any H(C,), and 
augment each H(C,) by repeatedly adding a parent to the root of H(C,) 
until it has height h. We then build a complete binary tree “on top” of the 
H(C,)‘s (that is, each leaf of this tree is the root of an H(C,)). (See Fig, 7.) 
If we build this tree in parallel level-by-level starting with the leaves 
associated with each H(C,), then it is an easy matter to be assigning the M 
and D labels for the new internal nodes as we go. This new HQ-tree clearly 
has height at most (log kj + h. The total time is clearly O(h + log k) since 
we have O(k) processors at out disposal. 0 

We define the underside of a chain C monotone with respect to the x-axis 
to be the region between C and LH(C), inclusive. Note that the underside 
of C need not be connected. We define the topside of C analogously. We 
decompose P into funnel polygons using the HQ-tree data structure and 
the many-way divide-and-conquer technique. This second phase is the most 
complicated of the three phases. In the recursive algorithm which follows 
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we show how, given a polygonal chain C monotone with respect to the 
x-axis, we can decompose the underside of C (i.e., the regions of the plane 
between C and LH( C)) into monotone funnel polygons represented implic- 
itly by HQ-trees. We can use HQ-trees in this case because a monotone 
funnel polygon is uniquely defined by two hemispheric chains (its left chain 
and its right chain). We call this procedure initially with C = (ui, u2, . . . , u,), 
i.e., the polygonal chain formed by removing the distinguished edge s = unul 
from P. Each funnel polygon of the decomposition is represented by two 
HQ-trees-one for the left convex chain and one for the right convex chain 
which define the funnel polygon. We also construct the lower hull LH(C) 
of C represented by an HQ-tree H(LH(C)). Since we call the procedure 
with C = (ui,u2,..., u,,), hence LH(C) is just the line uiu,,, one may ask 
why we need to put a representation of the lower hull of C. We do this 
because it may be the case that LH(C) is a non-trivial lower hull in a 
recursive call. After the procedure returns we construct array representa- 
tions of each funnel polygon from the HQ-tree representations in a post- 
processing step. The procedure also takes an integer parameter d, which we 
set to [log N 1, and never change. We use this parameter to in effect 
“pipeline” the sequential subsets technique throughout all levels of the 
recursion. We will show later that the algorithm PHASE-TWO presented 
below runs in O(log n + d + log d log log n) time using O( n/d) processors 
in the CREW PRAM model. Thus, with d = flog N 1 we can implement 
PHASE-TWO in CJ(log N) time using 0( n/ log N) processors. 

ALGORITHM PHASE-TWO( C, d ). 

Input: A polygonal chain C = (q, II,, . , v,,) which is monotone with respect to the 
x-axis, and integer d > 0. 

Outpur: An HQ-tree H(LH(C)) representing the vertices belonging’ to the lower 
convex hull of C, sorted by increasing x-coordinate, and a decomposition of the 
underside of C (i.e., the region bounded from above by C and from below by 
LX(C) into funnel polygons, each one represented by two HQ-trees (one for the left 
convex chain and one for the right convex chain defining the funnel). 

Method: Since the method is rather involved, we first present a high-level descrip- 
tion of the algorithm, and then show how to efficiently implement each of its 
constituent parts. 

HIGH-LEVEL DESCRIPTION. 

Step 0. If n 5 4d then sequentially decompose the polygon into funnel 
polygons using a single processor in O(d) time [16]. Also construct the 
lower hull LH(C) of C and build an HQ-tree of height [log n] which 
represents it. Since this completes the algorithm for this case, we assume for 
the remainder of the algorithm that n > 4 d. 

Step 1. Divide C into fl subchains C,, C,, . . . , Cm of size O(m) 
each, and call PHASE-TWO(C,, d) for each Ci in parallel. When the 
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FIG. 8. The untriangulated portion R. 

parallel recursive call returns we will have an HQ-tree H(LH(C,)) repre- 
senting the lower hull of Ci for each Ci. We have yet to decompose the 
region between the lower hulls returned from the recursive call and the 
lower hull LH(C) of C. Let R denote this region. (See Fig. 8.) 

Step 2. Build a complete binary tree B such that each leaf is associated 
with one of the C;‘s. For each internal node w in B find the common 
supporting tangent t, between the hulls which are descendents of lchild( w) 
and the hulls which are descendents of rchild( w). (See Fig. 9.) Let T denote 
the set of all tangent lines t,. 

Comment. We show below that the tw’s decompose R into collection of 
funnel polygons. That is, each t, forms the base of a funnel polygon P,,,, all 
of whose vertices are above t,. The remainder of the algorithm is dedicated 
to constructing the HQ-trees representing these funnel polygons (two 
HQ-trees per funnel). 

1 

FIG. 9. The monotone funnel polygons P, formed by the decomposition. The figure 
illustrates the polygon P, for each internal node w E B. Note that the polygon P3 is simply a 
triangle and the polygon P, is just a line segment. 
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Step 3. For each LH(Ci) construct the sorted list Xi = (xi, xz, . . . , xk,) 
of x-coordinates of all intersections of LH(Ci) with tangents in T. Perform 
a k,-way split of H(LH(C,)) using X,, constructing HQ-trees 
Hi.0 Hi,17 * * * 3 Hi, k; The vertices in Hi,; all have x-coordinates in the 
interval [xj,xj+J. 

Step 4. For each HQ-tree -Hi,, determine the funnel polygon P, such 
that the vertices of Hi, j are on the boundary of P,,,. If the vertices of Hi, j 
do not belong to any P,,, (hence are in LH(C)), then we say that Hi, j 
belongs to P. For each P,,, in parallel sort the collection of HQ-trees 
defining P,,, by the x-coordinates of the vertices they contain. Collect these 
HQ-trees into two groups: those belonging to the left convex chain defining 
P, and those belonging to the right convex chain defining P,. Finally, 
perform a k-way concatenation of the HQ-trees in each of these two groups 
for each P, in parallel. 

End of High Level Description. 

We show below that the algorithm PHASE-TWO can be implemented to 
run in O(log n + d + log d log log n) time using @n/d) processors. We 
consider each of the four high-level steps in turn. The method for perform- 
ing Steps 0 to 1 should be clear from the description given above, so we 
begin the discussion with the details for performing Step 2. 

Details of Step 2. Recall that at the beginning of this step, we have 
already divided C into @ subchains of size O(m) using vertical 
dividing lines and recursively called PHASE-TWO(C,, d) on each subchain 
C, in parallel. So at this stage in the algorithm we have an HQ-tree 
H( LH( C,)) constructed for each subchain Ci, and this HQ-tree represents 
the lower hull of Ci. In this step we build a complete binary tree B such 
that each leaf i of B is associated with one of the HQ-trees H( LH(C,)). 
Since there are w  such leaves this can clearly be done in O(log n) time 
using O(e) processors [lo]. For each internal node w  in B we let L, 
denote the vertical line separating the polygonal chains which are descen- 
dents of lchild(w) and the polygonal chains which are descendents of 
rchild( w). The details for the remaining computions for Step 2 follow: 

Step 2.1. For each pair (i, j) with i, j E { 1,2, . . . , @ } and i < j 
parb 

Compute the common supporting tangent ti, j of Ci and Cj 
using the method of Lemma 4.1. 

Step 2.2. For each internal node w  in B pardo 
Construct the set T, of all tangents ti, j such that i E 
Desc(lchild( w)) and j E Desc(rchild( w)); 
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FIG. 10. The tangent lines in ‘I,. The supporting tangent tines in r, are each tangent to a 
hull in lchild(w) and one in r&Id(w). The tangent 1, is shown as a solid line, and the others 
are shown dotted. 

Find the tangent t, in T, which has the lowest intersec- 
tion with L, of all the tangents in T, (See Fig. 10.) 

Note that t, must be the common supporting tangent of the lower hull of 
the chains which are descendents of lchild( w) and the lower hull of the 
chains which are descendents of rchild(w). This is because t, is chosen to 
be the “lowest” tangent between C, and 5 with i E Desc(lchild(w)) and 
j E Desc(rchild(w)). 

Analysis of Step 2. We have already noted that constructing the binary 
tree B can be done in O(log n) time using O(m) processors. Lemma 4.1 
implies that Step 2.1 runs in 0(/r(m)) time using O(n/d) processors, 
where h(m) is the maximum height of any HQ-tree returned by PHASE- 
TWO when passed an m-vertex polgonal chain. Since the the essential 
computation of Step 2.2 is computing a minimum of IT,\ items for each w  
in parallel, and there are a total of O(n/d) items in all the T,‘s, we can 
clearly perform this step in O(log n) time using O(n/d) processors (IT,1 
processors assigned to each w). Thus, the entire Step 2 can be performed in 
O(log n + h(m)) time using O(n/d) processors in the CREW PRAM 
model. 

Before we continue with the details of Steps 3 and 4 of Algorithm 
PHASE-TWO we show that the tangents t, partition R, the region between 
LH( C) and the LH( C,)‘s, into a collection of funnel polygons. 

LEMMA 4.4. Let r be the planar subdivision determined by the region R 
and the tangents t,. Then for any t, the face of I’ immediately above t, is a 
funnel polygon. 
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Proof. The proof is by induction. Clearly, the claim is true for each 
node w  in B with height( w  ) = 1, since t, in this case is the common 
tangent between two lower convex chains joined by a single edge. So, 
consider any node w  with height(w) > 1. Clearly, the face above t, is a 
monotone polygon, since C is a monotone chain. Let P, be the polygon 
associated with this face. We can write P,,, as ( uiJ, . . . , uij, u~,,~, . . . , uik, uil), 
where t, = uipil and u. u. 
(“il>v--, 

‘j rj+l is the edge of C wluch crosses L,. The chain 
ui,) must be convex by the induction hypothesis, since if it were not 

convex, then either one of the Ci’s is not convex or one of the common 
tangents t, for some descendent node t is not actually a tangent. Similarly 
for the chain (uij+r,. . . , uik). Thus, P, is a funnel polygon. 0 

Having shown that each of the tangents t, determines a funnel polygon 
P,,,, we now show how to construct a representation of each P, using 
HQ-trees. As mentioned above, we will use two-HQ-trees to represent each 
funnel polygon, one for the left convex chain and one for the right convex 
chain determining the funnel. 

Details of Step 3. Let T denote the set of all t,‘s computed in Step 2. 
Recall that in Sep 3 we construct for each C, the sorted list Xi = 
(x1, x2, * - -, xk ) of the x-coordinates of the intersections of LH(C,) with 
the tangents in T, and then perform a k,-way split of the HQ-tree 
H( LH(C,)) using this list. Let X be the set of all (i, x) pairs such that there 
is a t, that intersects Cj at a vertex with x-coordinate equal to x. We 
construct the set X so that it is sorted lexicographically and then construct 
each Xi by a simple parallel prefix computation. Using the method of 
Lemma 4.2 we split each H(C) in parallel using the set Xi as the splitting 
set of x-coordinates. We let Hi,O, I&r,. . . , Hi, k, denote the resulting HQ- 
trees, where the vertices in I$,, j all have x-coordinates in the interval 
[x,, xi+J, where x,, = - CO and xk +r = + co. Note that if xj = xi+1 then 
the HQ-tree Hi, j contains a single vertex (the vertex u in Ci with x(u) = xi). 
(See Fig. 11.) 

FIG. 11. The splitting step. Each tangent t, in T is denoted by a dashed line. 
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Analy,sis of Step 3. We can determine the elements of the list X in O(1) 
time using O(m) processors, and then we can sort those elements 
lexicographically to construct X in O(log n) time using O(m) proces- 
sors [lo]. (We do not actually need as powerful a sorting routine as Cole’s 
[lo] in this case, since we can sort in O(log n) time using O(n/d) proces- 
sors by applying a simple “brute-force” sorting scheme.) Once we have 
constructed X, constructing each Xi list can be done in O(log n) time using 
O(m) processors by a simple parallel prefix computation, since there 
are a total of 2@ elements in X. By Lemma 4.2 we can perform the 
k,-way split in Oh(m) time using O(ki) processors. Since there are 
O(G) tangents in T, and two split operations performed for each one, 
there are a total of O(m) split operations. Thus we can perform all the 
splits of Step 3 in parallel using only O(Jn/d) total processors, hence, the 
entire step can be performed in O(log n f h(m)) time using O(n/d) 
processors. 

Details of Step 4. In Step 4 we construct an HQ-tree representation of 
each funnel polygon P,,,. For each HQ-tree in parallel we search the tree B 
in a leaf-to-root fashion starting with the leaf corresponding to C,. We 
perform this search to find the first internal node w  on this path such that 
the tangent t, completely spans the vertices in H,, i. This is clearly the 
tangent which determines the funnel polygon containing the vertices in 
Hi, j. If there is no such tangent, then the vertices in Hi,, must belong to 
LH(C). Let A, be the set of all HQ-trees Hi, j such that t, is the tangent 
determining the funnel polygon containing Hi, j. We can construct each A, 
so that the member HQ-trees are listed by increasing x-coordinates, using a 
method similar to that used to construct the X, lists in Step 3. Divide the 
HQ-trees in A, into two lists: A,,i, the ones with vertices to the left of L, 
and A,,+ the ones with vertices to the right of L,. We know that the 
concatenation of the vertices in HQ-trees in A,,, (resp., A,,,) forms a 
covex chain, from Lemma 4.4. We complete the decomposition, then, by 
concatenating the HQ-trees in A,,, together, likewise with the HQ-trees in 
A ,,,*, to form a representation of P,,,. (See Fig. 12.) Using a similar method 
we can collect all the Hj,j’s not spanned by any tangent line together and 
concatenate them to form an HQ-tree H( LH(C)) representing the lower 
hull LH(C) of C. 

Analysis of Step 4. It should be clear that we can construct each of the 
sets A,,, and A,,, for each w  E B in parallel in O(log n) time using a 
total of O(e) processors [lo}, there are O(m) Hi, j’s (again, we 
could also use a simple “brute-force” sorting method). We can then 
concatenate each of the HQ-trees in the A,,l’s and A,,,*‘s in parallel in 
O(log n) time using O(m) p rocessors, by Lemma 4.3. Thus, the entire 
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FIG. 12. The concatenation step. Edges of P, which are tangents in T are shown as dashed 
lines. 

step can be performed in O(log n) time using O(n/d) processors. This 
completes the detailed description of the PHASE-TWO algorithm. 

We summarize the above discussion in the following lemma. 

LEMMA 4.5. Given a polygonal chain C = (q, vz, . . . , v,) which is mono- 
tone with respect to the x-axis and integer d > 0, we can construct an He-tree 
H( LH( C)), representing the lower hull of C, and a decomposition of the 
underside of C into funnel polygons (each one represented by two HG-trees) in 
O(log n + d + log d log log n) time using O(n/d) processors. 

Proof. The correctness of the PHASE-TWO method follows from the 
discussion made above. Let h(n) denote the maximum height of any 
HQ-tree returned by Algorithm PHASE-TWO when passed an n-vertex 
polygonal chain. Also let T(n) and P(n) denote, respectively, the time and 
processor bounds of the procedure PHASE-TWO. We can bound the values 
of these three functions by the following recurrence relations: 

i 

llog n 1 ifns4d 

hb) = h(m) + Ilog@] otherwise 

i 

w  ifn<4d 

T(n) = T(m) + b,(logn + h(m)) otherwise 

P(fl) = :a+,d,, mP(&d)) i 

ifns4d 
otherwise, 

where b, and b, are constants. This implies that h(n) I 2 log n, that T(n) 
is O(d + log n + log d log log n), and that P(n) is O[n/dl) [18]. This 
completes the proof. 0 
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Thus, by assigning d = (log N] we have that we can perform the PHASE- 
TWO procedure in O(log N) time using O(n/ log N) processors in the 
CREW PRAM model. We complete the construction for phase two by 
constructing an array representation of each funnel polygon P, from its 
HQ-tree representation in O(log N) additional time using O(n/ log N) 
processors, using the method of the following lemma: 

LEMMA 4.6 [17]. We can convert any HQ-tree H representing an m-vertex 
hemispheric chain and having height O(d) into a sorted array containing the n 
vertices in O(d) time using O(n/d) processors. 

Proof. The method is the following. For each processor i E (0, 1, . . . , 
[n/D]} we locate the leaf of H which has rank i/d], using the D label 
stored at each node in the tree to direct the search. This takes O(d) time. 
We can now for each processor i follow succ pointers from this point to 
find the next Id ] entries in the hemispherical chain (in parallel for each 
processor i). Thus, we can compute for each leaf of H how many vertices 
precede it. Thus we can convert the HQ-tree representation to an array 
representation by writing each vertex to its position in the array. This all 
can clearly be done in O(d) time using O(n/d) processors. q 

Thus, we can perform the phase-two computation for each one-sided 
monotone polygon in O(log N) time using 0( n/ log N) processors. Since 
we perform this step for each polygon in parallel, and the total size of all 
the polygons is O(N), we can perform this entire phase in O(log N) time 
using O(N/ log N) processors (N is the sum of all the n’s). Now that we 
are done with the description of the second phase, let us go back to our 
convention of letting n denote the number of vertices in the original 
polygon. We summarize this section in the following theorem. 

THEOREM 4.7. Given a collection of one-sided monotone polygons P,, with 
a total of n vertices, we can decompose each P, into a collection of monotone 
funnel po@gons P, in O(log n) time using 0( n/ logn) processors in the 
CREW PRAM model, where each monotone funnel pobgon P,,, is represented 
by two arrays, each listing the vertices of the convex chains defining P,,,. 

The final phase of our algorithm is to triangulate each of the funnel 
polygons P,,,. We present our method for performing the final phase of our 
algorithm in the following section. 

5. DECOMPOSITION INTO TRIANGLES 

The final phase of our triangulation algorithm is to decompose all the 
monotone funnel polygons P, into triangles in parallel. Since we only have 
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FIG. 13. Trangulating a monotone funnel polygon. 

O(n/ log n) processors at our disposal, we must first perform an applica- 
tion of the sequent&I subsets technique. The details of this sequential 
subsets method are essentially the same as those of the method performed 
in the previous section. It allows us to triangulate all the polygons P, with 
less than log n vertices in O(log n) time using O(n/ log n) processors. So 
for the remainder of this section we assume that each P,,, has more than 
log n vertices. 

Let P,,, be the monotone funnel polygon which we wish to triangulate, 
where t, is the distinguished edge of P,,,. Without loss of generality, let us 
assume that P, is monotone in the x-direction and the vertices not on t, 
are all above t,. We will show how to triangulate P, in O(log n) time using 
0( n ,,,/ log n) processors, where n w  = 1 P,I . 

Let A be an array listing the vertices in the left convex chain and let B 
be an array listing the vertices in the right convex chain. Merge the lists A 
and B using the method of Shiloach and Vi&kin [27], basing comparisons 
on the distance of the points to the segment t,. This can be done in 
O(log n) time using O(nJ log n) processors. Augment P, by adding an 
edge from each vertex in A (resp., B) to its predecessor in B (resp., A). 
This also can be done in O(log n) time using 0( n ,,,/ log n) processors. We 
show in the following lemma that this in fact triangulates P,,,. (See Fig. 13.) 

LEMMA 5.1. Suppose we are given a funnel polygon P, with base t,, left 
chain A, and right chain B. Zf we add an edge from each vertex v in A (resp., 
B) to its predecessor in B (resp., A), where comparisons are based on the 
distance of vertices to the segment s, then we form a triangulation of P,,,. 
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FIG. 14. The triangulated portion defined by the edge uq: (a) and (b) illustrate the two 

cases for proving that the portion of P,,, between uu and qz is triangulated. 

Proof: Consider any edge e in P,,,, other than t,, with endpoints v and 
q, i.e., e = vq. Without loss of generality, v and q are in A. Let u (resp. z) 
be the predecessor of v (q) in B. It is enough to show that the slice of P,,, 
between VU and qz is triangulated correctly. Without loss of generality, t, 
is parallel to the x-axis, y(u) < y(q), and the edge e has positive slope. If 
u = z, then in adding the edges vu and qz we construct the triangle vqz 
(See Fig. 14a). On the other hand, If u # z, then there must be a chain of 
vertices (U = vi, v2,. . . , v, = z) in P, such that I < v(u) < J&) < 
Y(Ud < -- - < y( u,,,) -=z y(q) (See Fig. 14b). Thus, in Step 5.2 we will add 
an edge from each vertex u2,. . . , v, to v. Therefore, the portion of P, 
between VU and qz consists of the triangle vqz and a series of triangles 
~v~+~v~, for i E (1,. . . , m - l} (See Fig. 14b). This completes the proof. q 

This completes the final phase of our triangulation algorithm. We sum- 
marize the previous three sections in the following theorem: 

THEOREM 5.2. We can triangulate an n-vertex simple polygon P in 
O(log n) time using O(n/log n) processors in the CREW PRAM model, if 
we are given the trapezoidal decomposition of P, and this is optimal. If we are 
not given the trapezoidal decomposition of P we can triangulate P in O(log n) 
time using O(n) processors in the CREW PRAM model, and this is optimal 
if the polygon is allowed to contain holes. 

Proof: We have already established the correctness and complexity 
bounds of our triangulation procedure in the previous three sections, The 
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first optimality claim follows immediately from the fact that the algorithm 
has a linear TP product. The second optimality claim follows from the 
proof by Asano, Asano, and Pinter [3] that the problem of triangulating a 
simple polygon which may contain holes has a lower bound of Q( n log n) 
(the TP product of our algorithm in this case), in the comparison model, by 
a linear-time reduction from sorting. 0 

Our algorithm also implies that a monotone polygon can be triangulated 
in O(log n) time using O(n/log n) processors, which is optimal. This is 
because one can form a trapezoidal decomposition of a monotone polygon 
P (monotone, say, with respect to the x-axis) by merging the vertices of the 
upper chain of P with the vertices of the lower chain of P, basing 
comparisons on x-coordinates. This can be done in O(log n) time using 
0( n/ log n) processors using the algorithm by Shiloach and Vi&kin [27]. 

6 CONCLUSION 

We have given an efficient parallel algorithm which triangulates a simple 
polygon. This algorithm consists of three phases. In the first phase we 
decompose a simple polygon into a collection of one-sided polygons with 
respect to the x-axis in O(log n) time using O(n) processors in the CREW 
PRAM model. If we are given a trapezoidal decomposition of the polygon, 
then this phase runs in O(log n) time using only 0( n/ log n) processors. In 
the second phase we decompose each one-sided monotone polygon into a 
collection of funnel polygons in O(log n) time using 0( n/log n) processors. 
Finally, in the third phase we triangulate each funnel polygon in O(log n) 
time using O(n/log n) processors. Thus, we have shown how to triangulate 
a simple polygon in O(log/n + n log n/p) time using p processors in the 
CREW PRAM model, which is optimal for p I n if we allow the polygon 
to contain holes, since polygon triangulation has a sequential Q(n log n) 
lower bound [3]. If we are given a uniform trapezoidal decomposition of the 
polygon as input then we can triangulate the polygon in O(log n + n/p) 
time using p processors, which is optimal for p I n/log n. Our algorithm 
also implies that a monotone polygon can be triangulated in O(log n + n/p) 
time using p processors, which is optimal for p I n/log n. 
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