
JOURNAL OF ALGORJTHMS 10, 327-351 (1989)

Triangulating a Polygon in Parallel*~i

MICHAELT.GOODRICH

Department of Computer Science, Johns Hopkins Cniversity,
Baltimore, Maryland 21218

Received May 15,1987; accepted May 18,1988

In this paper we present an efficient parallel algorithm for polygon triangulation.
The algorithm we present runs in O(log n) time using O(n) processors, which is
optimal if the polygon is allowed to contain holes. This improves the previous
parallel complexity bounds for this problem by a log n factor. I f we are also given a
trapezoidal decomposition of the polygon as input, then we can triangulate the
polygon in O(log n) time using only 0(n/ log n) processors. This immediately
implies that we can triangulate a monotone polygon in O(log n) time using O(n/
logn) processors, which is optimal. All of our results are for the CREW PRAM
computational model. 0 1989 Academic Press, Inc.

1. INTR~DuCTI~N

The polygon triangulation problem is the following: we are given an
n-vertex simple polygon P, which may contain holes, and we wish to
augment P with diagonal edges so that each interior face of the resulting
subdivision is a triangle (see Fig. 1). This problem arises in many applica-
tions, including computer graphics, image analysis, and robotics, and has
been well studied in sequential computational models (see [3,8,15,16,19,
22,25,28]). Since polygon triangulation had so many applications, it is
natural that we wish to solve it as fast as possible. We are interested in
exploring what kinds of speed-ups can be achieved through parallel process-
ing. More precisely, we are interested in finding an algorithm which
minimizes the product TP, where T is the time and P is the number of
processors used by the algorithm. Given that the product TP is as small as
possible then our secondary goal is to minimize T. If the product TP

*This paper appeared in preliminary form as a portion of the following work: M. .I. Atallah
and M. T. Goodrich, Efficient plane sweeping in parallel, in “Proceedings 2nd ACM Symp. on
Computational Geometry, 1986,” pp. 216-225.

+This research has been supported by National Science Foundation Grant CCR-8810568.

327
0196-6774/89 $3.00

Copyri&t 0 1989 by Academic Press, Inc.
All rights of reproduction in any form resewed.

328 MICHAEL T. GOODRICH

FIG. 1. The polygon triangulation problem.

matches the sequential lower bound for a problem, then we say that the
algorithm is optimal, since a single processor could simulate the algorithm
in O(TP) time. The parallel model we choose for this work is the concur-
rent-read, exclusive-write parallel RAM (or CREW PRAM). Recall that
this is the synchronous parallel model in which processors share a common
memory which allows for concurrent reads from any memory location, but
no two processors may simultaneously write to the same location.

The previous parallel algorithm for polygon triangulation is due to
Aggarwal et al. [I] and runs in O(log’ n) time using O(n) processors in the
CREW PRAM model. In this paper we present a parallel algorithm for
polygon triangulation which runs in O(log n) time using O(n) processors in
the CREW PRAM model. These bounds are optimal if the polygon is
allowed to contain holes, since, as Asano, Asano, and Pinter have shown
[3], polygon triangulation has a sequential lower bound of G(n log n) in
this case (in the comparison model). We divide our polygon triangulation
procedure into three phases, each of which decomposes the polygon into
subpolygons which have a “simpler” structure than the polygons in the
previous phase. With the exception of the first step of the first phase, which
is trapezoidal decomposition [S, 151, our algorithm runs in O(log n) time
using only O(n/ log n) processors. That is, we reduce triangulation to the
problem of decomposing the interior of the polygon into trapezoids parallel
to the y-axis such that each vertical line contains a vertex of the polygon.
This provides a parallel analog of the sequential linear-lime reduction of
triangulation to trapezoidal decomposition by Foumier and Montuno [15],
since our reduction has a linear TP product. Our algorithm also implies
that a monotone polygon can be triangulated in O(log n) time using
0(n/ log n) processors (recall that a polygon is monotone if there is a line L

TRIANGULATING A POLYGON IN PARALLEL 329

such that every perpendicular to L intersects the boundary of the polygon
at most twice).

We recently discovered that Aggarwal et al. have improved their triangu-
lation algorithm in the final version of their paper [2] so that it runs in
O(log n) time using O(n) processors given a trapezoidal decomposition of
the polygon. We have also learned that Yap [29] has a parallel triangulation
method which runs in these bounds and makes two calls to trapezoidal
decomposition. The TP products of both of these algorithms are a log n
factor from our TP product when one is given a trapezoidal decomposition
of the polygon or if the polygon is monotone.

We present an overview of our algorithm in Section 2, and in Sections 3,
4, and 5 we present phases 1, 2, and 3, respectively, of our triangulation
algorithm.

2. OVERVIEW

There are a number of algorithmic techniques which have proven useful
for solving computational geometry problems in this model [l, 2,5,6,9,13,
14,17,18,23,29]. We briefly review three of these techniques. One tech-
nique, as presented in [l, 2,5,6,18], is a variation on the divide-and-con-
quer paradigm. The main idea behind this divide-and-conquer technique is
to divide the problem into many subproblems, say into fi problems of size
O(G) each. One then solves each subproblem recursively in parallel, and
merges all the subproblems quickly in parallel (say in O(log n) time). This
many-way divide-and-conquer technique was used primarily to solve the
well-known planar convex hull problem [l, 2,5,6,18]. This technique pro-
vides a method for achieving a small running time T. If one wants to reduce
the number of processors used by an algorithm, then one may be able to
use another fundamental parallel technique, which we call sequential sub-
sets, in which one “stops” a divide-and-conquer recursion early (say when
the subproblems are all of size O(log n)) and solves all the subproblems
sequentially, one processor per subproblem [7,11]. This often improves the
processor bounds for an algorithm by a factor of log n or log’ n. Finally,
another technique which is useful for reducing the processor count of an
algorithm is the parallel prefix technique, where one reduces one’s problem
to the problem of computing all the prefix sums of a list of n numbers, i.e.,
ck = Cfmiai, for k E {1,2 ,..., n}, given (a,, u2 ,..., a,). Computing all
these prefix sums can be done in O(log n) time using 0(n/ log n) proces-
sors [20,21].

We use the sequential subsets technique and reduction to parallel prefix
in each of the three phases. In fact, we use a generalized version of the

330 MICHAEL T. GOODRICH

(4
(b)

FIG. 2. Simple-structure polygons: (a) illustrates a one-sided monotone polygon; (b)
illustrates a monotone funnel polygon.

sequential subsets technique, in which there can be a large number of
differing sized “small” subproblems (possibly even O(n) of them). In the
most difficult phase, Phase 2, we also make use of the many-way divide-
and-conquer technique. We do not apply these techniques in the standard
way, however, for that would not result in an efficient processor bound.
Instead, we “pipeline” the sequential subsets paradigm through every
recursive call (not just the last one), and use a parallel data structure, which
we call the HQ-tree [17,18], to keep the number of processors small while
still allowing us to quickly merge subproblem solutions.

In the three sections which follow we present phases 1, 2, and 3 of our
algorithm, respectively. In the first phase we decompose P into polygons
which are one-sided and monotone with respect to the x-axis. We say that a
polygon P is one-sided if there is a distinguished edge s on P such that the
vertices of P are all above (or all below) s (except for the endpoints of the
edge). (See Fig. 2a.) This first phase runs in O(log n) time using O(n/ log n)
processors, if we are given the trapezoidal decomposition, and O(n) proces-
sors, otherwise. In the second phase we decompose each of the one-sided
monotone polygons into monotone funnel polygons in parallel. We say that
a polygonal chain is a funnel if its boundary consists of a single edge
followed by a convex chain followed by a single edge followed by another
convex chain (see Fig. 2b). This second phase is the most difficult of the
three phases, and the method we use to implement this step utilizes the
HQ-tree data structure as well as the many-way divide-and-conquer tech-
nique. This phase runs in O(log n) time using O(n/ log n) processors.
Finally, in the third phase we triangulate each of the funnel polygons. We
show that parallel merging can be used to implement this step in O(log n)
time using O(n/ log n) processors. Thus, the entire triangulation computa-

TRIANGULATING A POLYGON IN PARALLEL 331

tion requires O(log n) time using O(n/ log n) processors, if we are given
the trapezoidal decomposition, and O(n) processors, otherwise.

We show how to perform the first phase of our triangulation algorithm
in the following section.

3. DECOMPOSITION INTO ONE-SIDED MONOTONE POLYGONS

Let P be a simple polygon which may contain holes. (One way to
represent P is as a list of vertices and a list of edge segments joining pairs
of vertices.) We assume that for each edge segment s of P we are given
which side of s is in the interior of P. As mentioned above, the first phase
in our triangulation algorithm is to decompose P into subpolygons which
are one-sided and monotone with respect to the x-axis. The algorithm
PHASE-ONE which follows performs this first phase of our triangulation
procedure. Before presenting the algorithm we make the following defini-
tions. If p is a point in the plane, then we let x(p) and y(p) denote the x-
and y-coordinate of p, respectively. Given a vertex u, we say that the edge
segment s is a trapezoidal segment of u if the vertical line segment from u
to s is entirely interior to P (hence, does not cross any other segment of P).
We call the point q on s such that x(q) = x(v) the vertical shadow of u on
s. Note that a vertex can have zero, one, or two vertical shadows. A
trapezoidal decomposition (see Fig. 3) of P is a graph G = (V, E) such that
each vertex of P and its vertical shadows are in V and there is an edge
between u and w in V if (i) there is an edge segment on P which joins u
and w and contains no other vertices in V, (ii) w is a vertical shadow of u,
or (iii) u is a vertical shadow of w. G is called a trapezoidal decomposition
because it partitions the interior of P into trapezoids.

ALGORITHM PHASE-ONE.
Inpur: A simple polygon P which may contain holes. For simplicity, we assume
that the vertices in P have distinct x-coordinates. It is straightforward to generalize
our results to the general case.
output: A decomposition of P into one-sided monotone POlygOnS.

FIG. 3. A trapezoidal decomposition. The figure illustrates the general trapezoidal decom-
position problem, when the n line segments do not necessarily form a simple polygon.

332 MICHAEL T. GOODRICH

Step 1. If the trapezoidal decomposition of P is given, then skip to Step
2. Otherwise, construct a trapezoidal decomposition for P. After perform-
ing this construction we will have an adjacency list representing the
decomposition. That is, we will have a graph G = (V, E) such that each
vertex and vertical shadow is in I/ and there is an edge between u and w in
V if u and w are adjacent in the decomposition (i.e., there is a line segment
in the decomposition which joins u and w and contains no other vertices in
V). This step can be performed in O(log n) time using O(n) processors
[4,181.

Step 2. For each edge segment s in P construct a list V, of the vertices of
P which have a vertical shadow on s, sorted by increasing x-coordinates.
Since the trapezoidal decomposition gives us the adjacencies in V,, i.e., the
vertical shadows on any segment s form a simple linked-list structure in the
trapezoidal decomposition, this step can be implemented by a list-ranking
procedure. More specifically, let G’ be the subgraph of G which is formed
by removing all the nodes in G which correspond to vertices of P. Then the
graph G’ is actually just a collection of linked lists (one for every edge
segment of P which contains vertical shadows). Thus, we can treat G’ as a
single linked list (with many of the pointers being nil) and rank all the
nodes in G’, computing for each node u E G’ the distance from u to the
nearest nil pointer. This ranking procedure can be performed in O(log n)
time using O(n/log n) processors by an algorithm by Cole and Vi&kin
[12], since there are O(n) vertical shadows in all (at most two per vertex).
This will give us for each segment s on P and each vertical shadow u on s
the number of vertical shadows which precede u on s. It is then an easy
matter to construct each V, in parallel from this information in O(log n)
time using 0(n/ log n) processors (using the sequential subsets technique).

Step3. Let V, = (u~,~,u~,~,...,u~,~,) be the list of vertices constructed in
Step 2 for the edge segment s. Augment P by adding an edge from u,,, to
‘s i+l if it is not already an edge of P. (See Fig. 4.) We show below that this
decomposes P into a collection of one-sided monotone polygons P,. It is
possible that an edge may be added twice (once for each side) in this step,
but this does not cause a problem, since redundant edges can easily be
removed by a post-processing parallel prefix computation (data compres-
sion). Thus, this step can be performed for all the J$‘s in parallel in
O(log n) time using 0(n/ log n) processors.

End of Algorithm PHASEONE.

We analyze this algorithm in the following theorem:

THEOREM 3.1. Given a simple polygon P, which may contain holes, we can
decompose P into one-sided monotone polygons in O(log n) time using

TRIANGULATING A POLYGON IN PARALLEL

VS.0 vip

FIG. 4. A one-sided monotone polygon formed by the decomposition. The figure shows a
polygon P, for s = (ui,, ui,) and V, = (ui,, . . . , u,,). The edges in P, but not in P are shown
dotted. Note that the sequence uiO, ui,, ui2,. . , u,~ is monotone in the x-direction.

vs.0 vip

FIG. 4. A one-sided monotone polygon formed by the decomposition. The figure shows a
polygon P, for s = (ui,, ui,) and V, = (ui,, . . . , u,,). The edges in P, but not in P are shown
dotted. Note that the sequence uiO, ui,, ui2,. . , u,~ is monotone in the x-direction.

0(n/ log n) processors, if we are given the trapezoidal decomposition of P,
and 0(n) processors, otherwise, in the CREW PRAM model.

Proof. First, note that the algorithm PHASE-ONE constructs a decom-
position. That is, an edge added to P while performing Step 3 for some
edge segment s1 may coincide with an edge added for some edge segment
s2, but it will not cut across any other edge. This is because we only add an
edge between two vertices v and w when v and w belong to the same
trapezoid in the decomposition. Second, the vertices of V, are all on the
same side of s, because the vertical line segment from any point in V, to the
segment s must be interior to P, and the interior of P can only be on one
side of s. Thus, each P, is one-sided. Finally, each P, is monotone because
we sorted the points in V, by x-coordinate in Step 2.

The complexity for PHASE-ONE follows from observations made above
in the discussion. q

After decomposing P into one-sided monotone polygons, we decompose
P further into a collection of monotone funnel polygons. We describe the
method for doing this efficiently in parallel in the following section.

4. DECOMPOSITION INTO MONOTONE FUNNEL POLYGONS

The second phase of our triangulation algorithm decomposes all the
one-sided monotone polygons P, into monotone funnel polygons in paral-

334 MICHAEL T. GOODRICH

lel. Since we only have 0(n/ log n) processors, we begin by performing an
application of the sequential subsets technique. We divide the collection of
polygons P, into two groups: (i) those polygons with less than log n vertices
and (ii) those polygons with more than log n vertices. Those polygons in
group (i) we triangulate sequentially in O(log n) time [15] and the ones in
group (ii) we decompose into monotone funnel polygons using the method
described later in this section. Before we describe the general method we
must first explain how to solve the processor assignment problem for the
polygons in group (i), since there may be O(n) of them. We group all the
Ps’s with (PSI E [l, 21 into groups containing $ log n polygons, all the Ps’s
with 1 P, 1 E [2,4] into groups of size $ log n, all the Ps’s with I PSI E [4,8]
into groups of size i log n, and so on, so that each group contains O(log n)
vertices. This grouping step can be performed in O(log n) time using
O(n/log n) processors [ll, 261 by reducing it the problem of sorting O(n)
integers in the range [l, log n]. We can then assign a single processor to
each group and triangulate all the polygons in the group sequentially in
O(log n) time [16]. Since this completes the computation for all the poly-
gons in group (i), for the remainder of this section we assume that each P,
has more than log n vertices.

Since the computation which follows is to be performed for each one-sided
monotone polygon P, in parallel, let us concentrate on the problem of
decomposing a single one-sided monotone polygon into monotone funnel
polygons. To simplify the notation, let N denote the number of vertices in
the original polygon, and let P = (ui,uz, . . . , u,, ui) be the one-sided mono-
tone polygon which we wish to decompose, where unu, is the distinguished
edge of P. Without loss of generality, let us assume that P is monotone in
the x-direction and the vertices not on the distinguished edge s = unul are
all above s. We will show how to decompose P into monotone funnel
polygons in O(log N) time using 0(n/ log N) processors.

Before we describe the algorithm we first present the HQ-tree data
structure and study some of its properties. Let C = (q, u2,. . . , u,) be a
simple polygonal chain. The conuex hull of C is defined to be the smallest
convex region containing C. We let CH(C) denote the vertices on C which
are on the boundary of the convex hull of C, listed in clockwise order. The
list CH(C) can be decomposed into two sublists LH(C) and UH(C), where
LH(C) (resp. UH(C)) denotes the maximal subchain C’ of CH(C) such
that all the vertices of C are either on or above (resp. below) C’, relative to
some y-axis. We call LH(C) the lower hull of C and UH(C) the upper hull
of C. If there is a line L such that every line perpendicular to L intersects C
in at most one point, then we say that C is monotone with respect to L. The
chain C is conuex if C can be made into a convex polygon by adding the
edge u,q, i.e., CH(C) = (ul, u2 ,..., u,, ui). We say that C is a lower
hemispheric chain (resp., an upper hemispheric chain) if C = LH(C) (resp.,

TRIANGULATING A POLYGON IN PARALLEL 335

C = UH(C)). Note that if C is a hemispheric chain, then it must be convex
and monotone with respect to the x-axis. Intuitively, C is lower hemi-
spheric if one always make “left turns” when traversing C from left to
right, and upper hemispheric if one always makes “right turns.”

Let B be a binary tree. For each node u in B we define the height of u,
denoted height(u), to be the length of the longest leaf-to-root path in the
subtree rooted at u. We define the height of B, denoted height(B), to be
the height of the root of B. Let 7~ be a leaf-to-root path. We say that a node
u belongs to the left fringe (resp. right fringe) of n if u is not on n and
is the left child (resp. right child) of a node on r. We let lchild(u) and
r&Id(u) denote, respectively, the left child and right child of the node u.

The HQ-tree is a data structure which can be used to efficiently manipu-
late hemispheric chains in parallel. Let C = (ui, u2,. . . , u,) be a convex
chain monotone with respect to the x-axis. Without loss of generality, we
assume that x(uI) < x(uj+i) and that C is an lower-hemispheric chain. We
define the HQ-tree data structure H(C) as follows. It is a binary search tree
which stores the vertices of C in its leaf nodes, all of which are at the same
level in the tree, sorted from left to right by increasing x-coordinates. For
simplicity of expression, for each leaf node u we also let u denote the vertex
in C associated with this node. With each leaf u we store two labels pred(u)
and succ(u) which are, respectively, the predecessor and successor points of
u in C (i.e., pred(uj) = uiwl and succ(ui) = uitl). If the predecessor (resp.,
successor) of u is undefined then we take pred(u) (resp., succ(u)) to be nil.
For each internal node u in H(C) we let Desc(u) denote the set of
descendent leaves of u, and store two labels D(u) and M(u) at u, which
are, respectively, the number of vertices in Desc(u), and a pointer to the
vertex (leaf node) in Desc(u) with minimum x-coordinate. (See Fig. 5.)
These pointers and labels enable us to perform a variety of operations on
hemispheric chains efficiently in parallel.

In the following lemmas we study some of the properties of HQ-trees.
Given two lower hemispheric chains C, and C,, recall that the common
lower tangent of C, and C, is the tangent line T such that none of the
vertices of C, or C, are below T. The next lemma shows that HQ-trees can
be used to efficiently find the common tangent of two lower hemispheric
chains.

LEMMA 4.1 [17,18]. Given HQ-trees H(C,) and H(C,), representing two
lower hemispheric chains C, and C, separable by a vertical line, we can find
the common lower tangent of C, and C, in O(h) time using a single processor,
where h = height(H(C,)) + height(H(C,)).

Proof Sketch. The method is based on the binary search method of
Overmars and Van Leeuwen [24] for finding the common lower tangent
between two lower hemispheric chains. The proof follows from the fact that

336 MICHAEL T. GOODRICH

FIG. 5. An example HQ-tree H(C) for a lower-hemispheric chain C. The D and M labels
are given for each internal node, and the WCC and pred pointers are denoted by arrows at the
leaves.

the binary tree structure of HQ-trees and the labels pred, WCC, D, and A4
can be used to exactly mimic their binary search method in O(h) time. 0

Besides finding common tangents, we need to be able to split hemispheri-
cal chains into smaller chains as well as being able to concatenate chains
together. In the next lemma we show how to quickly perform a k-way split
operation in an HQ-tree. That is, given a hemispheric chain C represented
in some HQ-tree H(C) and k vertical lines, we show how to construct
HQ-tree representations of all the hemispheric chains which would be left if
we “cut” C by the k lines.

LEMMA 4.2. Let H(C) be an He-tree representing some hemispheric
chain C. Given a sorted list (x1, x2,. . . , xk) of real numbers, we can split
H(C) into k + 1 He-trees H(C,,), H(C,), . . . , H(C,) such that all the
vertices of each Ci have x-coordinates in the interval [xi, xi+J for i E
{O,L 2,. . . , k} (define x0 = - 00 and x~+~ = + ao). Moreover, this con-
struction can be done in O(h) time using O(k) processors, where h =
height(H(C)).

TRIANGULATING A POLYGON IN PARALLEL 337

fringe vertices

FIG. 6. The k-way split operation.

Proof. The method is for each processor i E (0, 1, . . . , k + l} to tra-
verse a root-to-leaf path q in H(C) by searching for xi, using the M labels
of internal nodes and the x-coordinates of the vertices pointed to by the M
labels to direct the search. As processor i traverses this path it copies every
node u it visits into a new location in memory. It copies all the pointer
information stored at u, as well, unless the pointer points to a child on the
left fringe of q. That is, it copies u and then tests to see if the next node in
ri is lchild(u) or rchild(u). If next node in q is lchild(u), then processor i
copies both lchild(u) and rchild(u) into the new memory record for u. If the
next node in rri is rchild(u), then processor i only copies rchild(u) into the
new memory record for u and sets lchild(V) of this record to nil. Once
processor i completes this traversal and reaches the leaf level of H(C), it
then repeats this root-to-leaf search procedure, this time traversing a path
q+I by searching for xi+i. In traversing this path it copies all nodes it visits
into a new memory location, as it did while traversing q, except this time it
does not copy pointers to any children on the right fringe. (See Fig. 6.)
Once the processor completes these two traversals it updates the pred and
WCC pointers of the first and last elements in the resulting tree, so that the
pred pointer for the first element and the WCC pointer for the last element
are both nil. Finally, processor i backtracks along each of the paths ri and

Ti+l updating the M and D labels of internal nodes along each of these
paths, so they are based only on the elements left in the (copied) tree.
This method clearly takes at most O(height(H(C))) time using O(k) pro-
cessors. I3

The following lemma shows that we can perform an analogous k-way
concatenate operation efficiently in parallel as well. That is, given a collec-

338 MICHAEL T. GOODRICH

. . . H(cd

FIG. 7. The k-way concatenation operations.

tion of HQ-trees representing hemispherical chains separated by vertical
lines, and such that the concatenation of these chains is itself a hemispheri-
cal chain, then we can efficiently construct in parallel an HQ-tree represent-
ing the concatenation of these chains.

LEMMA 4.3. Let H(C,), H(C,), . . . , H(C,) be a collection of He-trees
such that the vertices in Ci all have x-coordinates less than the vertices in Ci, 1,
and the concatenation C of all the hemispheric chains C,, . . . , C, is itself a
hemispheric chain. Then we can construct an He-tree H(C) representing the
concatenated chain C in 0(h + log k) time using O(k) processors in the
CREW PRAM model. The resulting tree has height at most h + [log k],
where h is the maximum height of any H(C,).

Prooj Let C = C, 63 C, @3 . . * @ C,, where A CB B denotes the concate-
nation of two lists. We construct HQ-tree H(C) by the following method.
We compute the value of h, the maximum height of any H(C,), and
augment each H(C,) by repeatedly adding a parent to the root of H(C,)
until it has height h. We then build a complete binary tree “on top” of the
H(C,)‘s (that is, each leaf of this tree is the root of an H(C,)). (See Fig, 7.)
If we build this tree in parallel level-by-level starting with the leaves
associated with each H(C,), then it is an easy matter to be assigning the M
and D labels for the new internal nodes as we go. This new HQ-tree clearly
has height at most (log kj + h. The total time is clearly O(h + log k) since
we have O(k) processors at out disposal. 0

We define the underside of a chain C monotone with respect to the x-axis
to be the region between C and LH(C), inclusive. Note that the underside
of C need not be connected. We define the topside of C analogously. We
decompose P into funnel polygons using the HQ-tree data structure and
the many-way divide-and-conquer technique. This second phase is the most
complicated of the three phases. In the recursive algorithm which follows

TRIANGULATING A POLYGON IN PARALLEL 339

we show how, given a polygonal chain C monotone with respect to the
x-axis, we can decompose the underside of C (i.e., the regions of the plane
between C and LH(C)) into monotone funnel polygons represented implic-
itly by HQ-trees. We can use HQ-trees in this case because a monotone
funnel polygon is uniquely defined by two hemispheric chains (its left chain
and its right chain). We call this procedure initially with C = (ui, u2, . . . , u,),
i.e., the polygonal chain formed by removing the distinguished edge s = unul
from P. Each funnel polygon of the decomposition is represented by two
HQ-trees-one for the left convex chain and one for the right convex chain
which define the funnel polygon. We also construct the lower hull LH(C)
of C represented by an HQ-tree H(LH(C)). Since we call the procedure
with C = (ui,u2,..., u,,), hence LH(C) is just the line uiu,,, one may ask
why we need to put a representation of the lower hull of C. We do this
because it may be the case that LH(C) is a non-trivial lower hull in a
recursive call. After the procedure returns we construct array representa-
tions of each funnel polygon from the HQ-tree representations in a post-
processing step. The procedure also takes an integer parameter d, which we
set to [log N 1, and never change. We use this parameter to in effect
“pipeline” the sequential subsets technique throughout all levels of the
recursion. We will show later that the algorithm PHASE-TWO presented
below runs in O(log n + d + log d log log n) time using O(n/d) processors
in the CREW PRAM model. Thus, with d = flog N 1 we can implement
PHASE-TWO in CJ(log N) time using 0(n/ log N) processors.

ALGORITHM PHASE-TWO(C, d).

Input: A polygonal chain C = (q, II,, . , v,,) which is monotone with respect to the
x-axis, and integer d > 0.

Outpur: An HQ-tree H(LH(C)) representing the vertices belonging’ to the lower
convex hull of C, sorted by increasing x-coordinate, and a decomposition of the
underside of C (i.e., the region bounded from above by C and from below by
LX(C) into funnel polygons, each one represented by two HQ-trees (one for the left
convex chain and one for the right convex chain defining the funnel).

Method: Since the method is rather involved, we first present a high-level descrip-
tion of the algorithm, and then show how to efficiently implement each of its
constituent parts.

HIGH-LEVEL DESCRIPTION.

Step 0. If n 5 4d then sequentially decompose the polygon into funnel
polygons using a single processor in O(d) time [16]. Also construct the
lower hull LH(C) of C and build an HQ-tree of height [log n] which
represents it. Since this completes the algorithm for this case, we assume for
the remainder of the algorithm that n > 4 d.

Step 1. Divide C into fl subchains C,, C,, . . . , Cm of size O(m)
each, and call PHASE-TWO(C,, d) for each Ci in parallel. When the

340 MICHAEL T. GOODRICH

FIG. 8. The untriangulated portion R.

parallel recursive call returns we will have an HQ-tree H(LH(C,)) repre-
senting the lower hull of Ci for each Ci. We have yet to decompose the
region between the lower hulls returned from the recursive call and the
lower hull LH(C) of C. Let R denote this region. (See Fig. 8.)

Step 2. Build a complete binary tree B such that each leaf is associated
with one of the C;‘s. For each internal node w in B find the common
supporting tangent t, between the hulls which are descendents of lchild(w)
and the hulls which are descendents of rchild(w). (See Fig. 9.) Let T denote
the set of all tangent lines t,.

Comment. We show below that the tw’s decompose R into collection of
funnel polygons. That is, each t, forms the base of a funnel polygon P,,,, all
of whose vertices are above t,. The remainder of the algorithm is dedicated
to constructing the HQ-trees representing these funnel polygons (two
HQ-trees per funnel).

1

FIG. 9. The monotone funnel polygons P, formed by the decomposition. The figure
illustrates the polygon P, for each internal node w E B. Note that the polygon P3 is simply a
triangle and the polygon P, is just a line segment.

TRIANGULATING A POLYGON IN PARALLEL 341

Step 3. For each LH(Ci) construct the sorted list Xi = (xi, xz, . . . , xk,)
of x-coordinates of all intersections of LH(Ci) with tangents in T. Perform
a k,-way split of H(LH(C,)) using X,, constructing HQ-trees
Hi.0 Hi,17 * * * 3 Hi, k; The vertices in Hi,; all have x-coordinates in the
interval [xj,xj+J.

Step 4. For each HQ-tree -Hi,, determine the funnel polygon P, such
that the vertices of Hi, j are on the boundary of P,,,. If the vertices of Hi, j
do not belong to any P,,, (hence are in LH(C)), then we say that Hi, j
belongs to P. For each P,,, in parallel sort the collection of HQ-trees
defining P,,, by the x-coordinates of the vertices they contain. Collect these
HQ-trees into two groups: those belonging to the left convex chain defining
P, and those belonging to the right convex chain defining P,. Finally,
perform a k-way concatenation of the HQ-trees in each of these two groups
for each P, in parallel.

End of High Level Description.

We show below that the algorithm PHASE-TWO can be implemented to
run in O(log n + d + log d log log n) time using @n/d) processors. We
consider each of the four high-level steps in turn. The method for perform-
ing Steps 0 to 1 should be clear from the description given above, so we
begin the discussion with the details for performing Step 2.

Details of Step 2. Recall that at the beginning of this step, we have
already divided C into @ subchains of size O(m) using vertical
dividing lines and recursively called PHASE-TWO(C,, d) on each subchain
C, in parallel. So at this stage in the algorithm we have an HQ-tree
H(LH(C,)) constructed for each subchain Ci, and this HQ-tree represents
the lower hull of Ci. In this step we build a complete binary tree B such
that each leaf i of B is associated with one of the HQ-trees H(LH(C,)).
Since there are w such leaves this can clearly be done in O(log n) time
using O(e) processors [lo]. For each internal node w in B we let L,
denote the vertical line separating the polygonal chains which are descen-
dents of lchild(w) and the polygonal chains which are descendents of
rchild(w). The details for the remaining computions for Step 2 follow:

Step 2.1. For each pair (i, j) with i, j E { 1,2, . . . , @ } and i < j
parb

Compute the common supporting tangent ti, j of Ci and Cj
using the method of Lemma 4.1.

Step 2.2. For each internal node w in B pardo
Construct the set T, of all tangents ti, j such that i E
Desc(lchild(w)) and j E Desc(rchild(w));

342 MICHAEL T. GOODRICH

FIG. 10. The tangent lines in ‘I,. The supporting tangent tines in r, are each tangent to a
hull in lchild(w) and one in r&Id(w). The tangent 1, is shown as a solid line, and the others
are shown dotted.

Find the tangent t, in T, which has the lowest intersec-
tion with L, of all the tangents in T, (See Fig. 10.)

Note that t, must be the common supporting tangent of the lower hull of
the chains which are descendents of lchild(w) and the lower hull of the
chains which are descendents of rchild(w). This is because t, is chosen to
be the “lowest” tangent between C, and 5 with i E Desc(lchild(w)) and
j E Desc(rchild(w)).

Analysis of Step 2. We have already noted that constructing the binary
tree B can be done in O(log n) time using O(m) processors. Lemma 4.1
implies that Step 2.1 runs in 0(/r(m)) time using O(n/d) processors,
where h(m) is the maximum height of any HQ-tree returned by PHASE-
TWO when passed an m-vertex polgonal chain. Since the the essential
computation of Step 2.2 is computing a minimum of IT,\ items for each w
in parallel, and there are a total of O(n/d) items in all the T,‘s, we can
clearly perform this step in O(log n) time using O(n/d) processors (IT,1
processors assigned to each w). Thus, the entire Step 2 can be performed in
O(log n + h(m)) time using O(n/d) processors in the CREW PRAM
model.

Before we continue with the details of Steps 3 and 4 of Algorithm
PHASE-TWO we show that the tangents t, partition R, the region between
LH(C) and the LH(C,)‘s, into a collection of funnel polygons.

LEMMA 4.4. Let r be the planar subdivision determined by the region R
and the tangents t,. Then for any t, the face of I’ immediately above t, is a
funnel polygon.

TRIANGULATING A POLYGON IN PARALLEL 343

Proof. The proof is by induction. Clearly, the claim is true for each
node w in B with height(w) = 1, since t, in this case is the common
tangent between two lower convex chains joined by a single edge. So,
consider any node w with height(w) > 1. Clearly, the face above t, is a
monotone polygon, since C is a monotone chain. Let P, be the polygon
associated with this face. We can write P,,, as (uiJ, . . . , uij, u~,,~, . . . , uik, uil),
where t, = uipil and u. u.
(“il>v--,

‘j rj+l is the edge of C wluch crosses L,. The chain
ui,) must be convex by the induction hypothesis, since if it were not

convex, then either one of the Ci’s is not convex or one of the common
tangents t, for some descendent node t is not actually a tangent. Similarly
for the chain (uij+r,. . . , uik). Thus, P, is a funnel polygon. 0

Having shown that each of the tangents t, determines a funnel polygon
P,,,, we now show how to construct a representation of each P, using
HQ-trees. As mentioned above, we will use two-HQ-trees to represent each
funnel polygon, one for the left convex chain and one for the right convex
chain determining the funnel.

Details of Step 3. Let T denote the set of all t,‘s computed in Step 2.
Recall that in Sep 3 we construct for each C, the sorted list Xi =
(x1, x2, * - -, xk) of the x-coordinates of the intersections of LH(C,) with
the tangents in T, and then perform a k,-way split of the HQ-tree
H(LH(C,)) using this list. Let X be the set of all (i, x) pairs such that there
is a t, that intersects Cj at a vertex with x-coordinate equal to x. We
construct the set X so that it is sorted lexicographically and then construct
each Xi by a simple parallel prefix computation. Using the method of
Lemma 4.2 we split each H(C) in parallel using the set Xi as the splitting
set of x-coordinates. We let Hi,O, I&r,. . . , Hi, k, denote the resulting HQ-
trees, where the vertices in I$,, j all have x-coordinates in the interval
[x,, xi+J, where x,, = - CO and xk +r = + co. Note that if xj = xi+1 then
the HQ-tree Hi, j contains a single vertex (the vertex u in Ci with x(u) = xi).
(See Fig. 11.)

FIG. 11. The splitting step. Each tangent t, in T is denoted by a dashed line.

344 MICHAEL T. GOODRICH

Analy,sis of Step 3. We can determine the elements of the list X in O(1)
time using O(m) processors, and then we can sort those elements
lexicographically to construct X in O(log n) time using O(m) proces-
sors [lo]. (We do not actually need as powerful a sorting routine as Cole’s
[lo] in this case, since we can sort in O(log n) time using O(n/d) proces-
sors by applying a simple “brute-force” sorting scheme.) Once we have
constructed X, constructing each Xi list can be done in O(log n) time using
O(m) processors by a simple parallel prefix computation, since there
are a total of 2@ elements in X. By Lemma 4.2 we can perform the
k,-way split in Oh(m) time using O(ki) processors. Since there are
O(G) tangents in T, and two split operations performed for each one,
there are a total of O(m) split operations. Thus we can perform all the
splits of Step 3 in parallel using only O(Jn/d) total processors, hence, the
entire step can be performed in O(log n f h(m)) time using O(n/d)
processors.

Details of Step 4. In Step 4 we construct an HQ-tree representation of
each funnel polygon P,,,. For each HQ-tree in parallel we search the tree B
in a leaf-to-root fashion starting with the leaf corresponding to C,. We
perform this search to find the first internal node w on this path such that
the tangent t, completely spans the vertices in H,, i. This is clearly the
tangent which determines the funnel polygon containing the vertices in
Hi, j. If there is no such tangent, then the vertices in Hi,, must belong to
LH(C). Let A, be the set of all HQ-trees Hi, j such that t, is the tangent
determining the funnel polygon containing Hi, j. We can construct each A,
so that the member HQ-trees are listed by increasing x-coordinates, using a
method similar to that used to construct the X, lists in Step 3. Divide the
HQ-trees in A, into two lists: A,,i, the ones with vertices to the left of L,
and A,,+ the ones with vertices to the right of L,. We know that the
concatenation of the vertices in HQ-trees in A,,, (resp., A,,,) forms a
covex chain, from Lemma 4.4. We complete the decomposition, then, by
concatenating the HQ-trees in A,,, together, likewise with the HQ-trees in
A ,,,*, to form a representation of P,,,. (See Fig. 12.) Using a similar method
we can collect all the Hj,j’s not spanned by any tangent line together and
concatenate them to form an HQ-tree H(LH(C)) representing the lower
hull LH(C) of C.

Analysis of Step 4. It should be clear that we can construct each of the
sets A,,, and A,,, for each w E B in parallel in O(log n) time using a
total of O(e) processors [lo}, there are O(m) Hi, j’s (again, we
could also use a simple “brute-force” sorting method). We can then
concatenate each of the HQ-trees in the A,,l’s and A,,,*‘s in parallel in
O(log n) time using O(m) p rocessors, by Lemma 4.3. Thus, the entire

TRIANGULATING A POLYGON IN PARALLEL 345

FIG. 12. The concatenation step. Edges of P, which are tangents in T are shown as dashed
lines.

step can be performed in O(log n) time using O(n/d) processors. This
completes the detailed description of the PHASE-TWO algorithm.

We summarize the above discussion in the following lemma.

LEMMA 4.5. Given a polygonal chain C = (q, vz, . . . , v,) which is mono-
tone with respect to the x-axis and integer d > 0, we can construct an He-tree
H(LH(C)), representing the lower hull of C, and a decomposition of the
underside of C into funnel polygons (each one represented by two HG-trees) in
O(log n + d + log d log log n) time using O(n/d) processors.

Proof. The correctness of the PHASE-TWO method follows from the
discussion made above. Let h(n) denote the maximum height of any
HQ-tree returned by Algorithm PHASE-TWO when passed an n-vertex
polygonal chain. Also let T(n) and P(n) denote, respectively, the time and
processor bounds of the procedure PHASE-TWO. We can bound the values
of these three functions by the following recurrence relations:

i

llog n 1 ifns4d

hb) = h(m) + Ilog@] otherwise

i

w ifn<4d

T(n) = T(m) + b,(logn + h(m)) otherwise

P(fl) = :a+,d,, mP(&d)) i

ifns4d
otherwise,

where b, and b, are constants. This implies that h(n) I 2 log n, that T(n)
is O(d + log n + log d log log n), and that P(n) is O[n/dl) [18]. This
completes the proof. 0

346 MICHAEL T. GOODRICH

Thus, by assigning d = (log N] we have that we can perform the PHASE-
TWO procedure in O(log N) time using O(n/ log N) processors in the
CREW PRAM model. We complete the construction for phase two by
constructing an array representation of each funnel polygon P, from its
HQ-tree representation in O(log N) additional time using O(n/ log N)
processors, using the method of the following lemma:

LEMMA 4.6 [17]. We can convert any HQ-tree H representing an m-vertex
hemispheric chain and having height O(d) into a sorted array containing the n
vertices in O(d) time using O(n/d) processors.

Proof. The method is the following. For each processor i E (0, 1, . . . ,
[n/D]} we locate the leaf of H which has rank i/d], using the D label
stored at each node in the tree to direct the search. This takes O(d) time.
We can now for each processor i follow succ pointers from this point to
find the next Id] entries in the hemispherical chain (in parallel for each
processor i). Thus, we can compute for each leaf of H how many vertices
precede it. Thus we can convert the HQ-tree representation to an array
representation by writing each vertex to its position in the array. This all
can clearly be done in O(d) time using O(n/d) processors. q

Thus, we can perform the phase-two computation for each one-sided
monotone polygon in O(log N) time using 0(n/ log N) processors. Since
we perform this step for each polygon in parallel, and the total size of all
the polygons is O(N), we can perform this entire phase in O(log N) time
using O(N/ log N) processors (N is the sum of all the n’s). Now that we
are done with the description of the second phase, let us go back to our
convention of letting n denote the number of vertices in the original
polygon. We summarize this section in the following theorem.

THEOREM 4.7. Given a collection of one-sided monotone polygons P,, with
a total of n vertices, we can decompose each P, into a collection of monotone
funnel po@gons P, in O(log n) time using 0(n/ logn) processors in the
CREW PRAM model, where each monotone funnel pobgon P,,, is represented
by two arrays, each listing the vertices of the convex chains defining P,,,.

The final phase of our algorithm is to triangulate each of the funnel
polygons P,,,. We present our method for performing the final phase of our
algorithm in the following section.

5. DECOMPOSITION INTO TRIANGLES

The final phase of our triangulation algorithm is to decompose all the
monotone funnel polygons P, into triangles in parallel. Since we only have

TRIANGULATING A POLYGON IN PARALLEL

FIG. 13. Trangulating a monotone funnel polygon.

O(n/ log n) processors at our disposal, we must first perform an applica-
tion of the sequent&I subsets technique. The details of this sequential
subsets method are essentially the same as those of the method performed
in the previous section. It allows us to triangulate all the polygons P, with
less than log n vertices in O(log n) time using O(n/ log n) processors. So
for the remainder of this section we assume that each P,,, has more than
log n vertices.

Let P,,, be the monotone funnel polygon which we wish to triangulate,
where t, is the distinguished edge of P,,,. Without loss of generality, let us
assume that P, is monotone in the x-direction and the vertices not on t,
are all above t,. We will show how to triangulate P, in O(log n) time using
0(n ,,,/ log n) processors, where n w = 1 P,I .

Let A be an array listing the vertices in the left convex chain and let B
be an array listing the vertices in the right convex chain. Merge the lists A
and B using the method of Shiloach and Vi&kin [27], basing comparisons
on the distance of the points to the segment t,. This can be done in
O(log n) time using O(nJ log n) processors. Augment P, by adding an
edge from each vertex in A (resp., B) to its predecessor in B (resp., A).
This also can be done in O(log n) time using 0(n ,,,/ log n) processors. We
show in the following lemma that this in fact triangulates P,,,. (See Fig. 13.)

LEMMA 5.1. Suppose we are given a funnel polygon P, with base t,, left
chain A, and right chain B. Zf we add an edge from each vertex v in A (resp.,
B) to its predecessor in B (resp., A), where comparisons are based on the
distance of vertices to the segment s, then we form a triangulation of P,,,.

348

Q

.A

\
e ‘\ \

U \
\ \

\
‘\\ \

\ \
\ .

. ‘1
’ .’

MICHAEL T. GOODRICH

(4 (4
FIG. 14. The triangulated portion defined by the edge uq: (a) and (b) illustrate the two

cases for proving that the portion of P,,, between uu and qz is triangulated.

Proof: Consider any edge e in P,,,, other than t,, with endpoints v and
q, i.e., e = vq. Without loss of generality, v and q are in A. Let u (resp. z)
be the predecessor of v (q) in B. It is enough to show that the slice of P,,,
between VU and qz is triangulated correctly. Without loss of generality, t,
is parallel to the x-axis, y(u) < y(q), and the edge e has positive slope. If
u = z, then in adding the edges vu and qz we construct the triangle vqz
(See Fig. 14a). On the other hand, If u # z, then there must be a chain of
vertices (U = vi, v2,. . . , v, = z) in P, such that I < v(u) < J&) <
Y(Ud < -- - < y(u,,,) -=z y(q) (See Fig. 14b). Thus, in Step 5.2 we will add
an edge from each vertex u2,. . . , v, to v. Therefore, the portion of P,
between VU and qz consists of the triangle vqz and a series of triangles
~v~+~v~, for i E (1,. . . , m - l} (See Fig. 14b). This completes the proof. q

This completes the final phase of our triangulation algorithm. We sum-
marize the previous three sections in the following theorem:

THEOREM 5.2. We can triangulate an n-vertex simple polygon P in
O(log n) time using O(n/log n) processors in the CREW PRAM model, if
we are given the trapezoidal decomposition of P, and this is optimal. If we are
not given the trapezoidal decomposition of P we can triangulate P in O(log n)
time using O(n) processors in the CREW PRAM model, and this is optimal
if the polygon is allowed to contain holes.

Proof: We have already established the correctness and complexity
bounds of our triangulation procedure in the previous three sections, The

TRIANGULATING A POLYGON IN PARALLEL 349

first optimality claim follows immediately from the fact that the algorithm
has a linear TP product. The second optimality claim follows from the
proof by Asano, Asano, and Pinter [3] that the problem of triangulating a
simple polygon which may contain holes has a lower bound of Q(n log n)
(the TP product of our algorithm in this case), in the comparison model, by
a linear-time reduction from sorting. 0

Our algorithm also implies that a monotone polygon can be triangulated
in O(log n) time using O(n/log n) processors, which is optimal. This is
because one can form a trapezoidal decomposition of a monotone polygon
P (monotone, say, with respect to the x-axis) by merging the vertices of the
upper chain of P with the vertices of the lower chain of P, basing
comparisons on x-coordinates. This can be done in O(log n) time using
0(n/ log n) processors using the algorithm by Shiloach and Vi&kin [27].

6 CONCLUSION

We have given an efficient parallel algorithm which triangulates a simple
polygon. This algorithm consists of three phases. In the first phase we
decompose a simple polygon into a collection of one-sided polygons with
respect to the x-axis in O(log n) time using O(n) processors in the CREW
PRAM model. If we are given a trapezoidal decomposition of the polygon,
then this phase runs in O(log n) time using only 0(n/ log n) processors. In
the second phase we decompose each one-sided monotone polygon into a
collection of funnel polygons in O(log n) time using 0(n/log n) processors.
Finally, in the third phase we triangulate each funnel polygon in O(log n)
time using O(n/log n) processors. Thus, we have shown how to triangulate
a simple polygon in O(log/n + n log n/p) time using p processors in the
CREW PRAM model, which is optimal for p I n if we allow the polygon
to contain holes, since polygon triangulation has a sequential Q(n log n)
lower bound [3]. If we are given a uniform trapezoidal decomposition of the
polygon as input then we can triangulate the polygon in O(log n + n/p)
time using p processors, which is optimal for p I n/log n. Our algorithm
also implies that a monotone polygon can be triangulated in O(log n + n/p)
time using p processors, which is optimal for p I n/log n.

ACKNOWLEDGMENTS

We thank M&hail Atallah, Greg Shannon, and Richard Cole for stimulating discussions
involving topics related to this paper.

350 MICHAEL T. GOODRICH

REFERENCES

1. A. AGGARWAL, B. CHAZELLE, L. GU~BAS, C. G’D~TNLAING, AND C. YAP, Parallel computa-
tional geometry, in “Proceedings, 25th IEEE Symp. on Foundations of Computer Science,
1985,” pp. 468-477.

2. A. AGGARWAL, B. CHAZELLE, L. GUIBAS, C. ~D~~NLAING, AND C. YAP, Parallel computa-
tional geometry, Algorithmica 3, No. 3 (1988), 293-328.

3. T. ASANO, T. ASANO, AND R. PINTEX, Polygon triangulation: Efficiency and minimahty,
J. Algorirhms 7 (1986), 221-231.

4. M. J. ATALLAH, R. COLE, AND M. T. GOODRICH, Cascading divide-and-conquer: A
technique for designing parallel algorithms, in “Proceedings, 28th IEEE Symp. on Foun-
dations of Computer Science, 1987,” pp. 151-160.

5. M. J. ATALLAH AND M. T. GOODRICH, Efficient parallel solutions to some geometric
problems, J. Parallel D&rib. Comput. 3 (1986) 492-507.

6. M. J. ATALLAH AND M. T. GOOD~UCH, Parallel algorithms of some functions of two
convex polygons, Afgorithmica 3, (1988), 535-548.

7. R. P. BRENT, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput.

Mach. 21, No. 2 (1974), 201-206.
8. B. CHAZELLE AND J. INCERPI, Triangulating a polygon by divide-and-conquer, in “Pro-

ceedings 21st Allerton Conference on Communication, Control, and Computing, 1983,”
pp. 447-456.

9. A. CHOW, “Parallel Algorithms for Geometric Problems,” Ph.D. dissertation, Comput.
Sci. Dept., Univ. of Illinois at Urbana-Campaign, 1980.

10. R. COLE, Parallel merge sort, SIAM J. Comput. 17, No. 4 (1988), 770-785.
11. R. COLE AND U. VISHKIN, Deterministic coin tossing and accelerating cascades: Micro and

macro techniques for designing parallel algorithms, in “Proceedings, 18th ACM Symp. on
Theory of Computation, 1986,” pp. 206-219.

12. R. COLE AND U. VISHKIN, Approximate and exact parallel scheduling with applications to
list, tree, and graph problems, in “Proceedings, 27th IEEE Symp. on Foundations of
Computer Science, 1986,” pp. 478-491.

13. H. ELGINDY, A parallel algorithm for triangulating simplical point sets in space with
optimal speed-up, Znternaf. J. Parallel Programm. 15, No. 5 (1986), 389-398.

14. H. ELGINDY AND M. T. GOODRICH, “Parallel Algorithms for Shortest Path Problems in
Polygons,” The Visual Computer 3, No. 6 (1988), 371-378.

15. A. FOURNIER AND D. Y. MONTUNO, “Triangulating Simple Polygons and Equivalent
Problems,” AMC Trans. Graphics 3, No. 2 (1984), 153-174.

16. M. R. GAREY, D. S. JOHNSON, F. P. PREPARATA, AND R. E. TARJAN, Triaugulatiug a simple
polygon, Inform. Process. Lett. 7, No. 4 (1978), 175-179.

17. M. T. GOODRICH, Finding the convex hull of a sorted point set, Znform. Process. Left. 26
(1987). 173-179.

18. M. T. GOODRICH, “Efficient Parallel Techniques for Computational Geometry,” Ph.D.
thesis, Dept. of Computer Science, Purdue University, 1987.

19. L. GUIBAS, J. HERSHBERGER, D. LEVEN, M. SHARIR, AND R. TARJAN, Linear time
algorithms for visibility and shortest path problems inside simple polygons, in “Proceed-
ings, Second Symposium on Computational Geometry, 1986,” pp. 1-3.

20. C. KRUSKAL, L. RUDOLPH, AND M. SNIR, The power of parallel prefix in “Proceedings,
1985 IEEE Int. Conf. on Parallel Proc.,” pp. 180-185.

21. R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. Assoc. Cornput. Mach.,
October (1980), 831-838.

22. D. T. LEE AND F. P. PREPARATA, Computational geometry-A survey, IEEE Trans.
Comput. C-33, No. 12 (1984), 872-1101.

TRIANGULATING A POLYGON IN PARALLEL 351

23. E. WRKS, An optimal parallel algorithm for triangulating a set of points in the plane,
Internat. J. Parallel Programm. 15, No. 5 (1986), 399-411.

24. M. H. OVERMAW, AND J. VAN LEEUWEN, Maintenance of Configurations in the plane,
J. Comput. System Sci. 23 (1981), 166-204.

25. F. P. PREPARATA AND M. I. SHAMOS, “Computational Geometry: An Introduction,”
Springer-Verlag, New York/Berlin, 1985.

26. J. H. REIF, An optimal parallel algorithm of integer sorting, in “Proceedings, 26th IEEE
Symp. on Foundations of Computer Science, 1985,” pp. 496-504.

27. Y. SHILOACH AND U. VISHKIN, Finding the maximum, merging, and sorting in a parallel
computation model, J. Algorithms 2 (1981), 88-102.

28. R. E. TARJAN AND C. J. VAN WYK, “Au O(n log log n)-Tie Algorithm for Triangulating
Simple Polygons,” Technical Report CS-TR-052-86, Dept. of Computer Science, Princeton
University, 1986.

29. C. K. YAP, Parallel triangulation of a polygon in two calls to the trapezoidal map,
manuscript, 1987.

