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a b s t r a c t

This paper studies pipelined algorithms for protecting distributed grid computations from
cheating participants, who wish to be rewarded for tasks they receive but don’t perform.
We present improved cheater detection algorithms that utilize natural delays that exist in
long-term grid computations. In particular, we partition the sequence of grid tasks into two
interleaved sequences of task rounds, and we show how to use those rounds to devise the
first general-purpose scheme that can catch all cheaters, even when cheaters collude. The
main idea of this algorithmmight at first seem counter-intuitive—we have the participants
check each other’s work. A naive implementation of this approach would, of course, be
susceptible to collusion attacks, but we show that by, adapting efficient solutions to the
parallel processor diagnosis problem,we can tolerate collusions of lazy cheaters, even if the
number of such cheaters is a fraction of the total number of participants. We also include
a simple economic analysis of cheaters in grid computations and a parameterization of the
main deterrent that can be used against them—the probability of being caught.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

One of the success stories of parallel and distributed algorithms is the computational grid paradigm for solving
large computational problems. In this paradigm, a supervisor distributes a set of independent tasks to a community of
participants, who perform those tasks and send back the results. Examples of well-known on-going grid computations
include SETI@home, which claims over 7 million participants who have collectively performed over 1.5 billion tasks aimed
at finding intelligent patterns in extraterrestrial signals, and Grid.org, which claims over 3 million computers being used to
solve large scientific problems related to medicine.
The participants in grid computing environments are typically volunteers rewarded with recognitions of their service.

For example, SETI@home regularly posts the names of its top 1000 users. Unfortunately, even with such modest rewards,
grid computations must deal with cheaters. Indeed, the director for SETI@home is quoted [15] as saying that their project
spends half of their resources dealing with cheaters, who comprise roughly 1% of their users. He mentioned that some users
have modified the SETI@home software to make it look like they have performed more work than they actually did. To deal
with such cheaters, the SETI@home director mentioned that their system duplicates every task and sends it to two different
participants for confirmation. If the two resultsmatch, they accept the computation; if the results don’tmatch, they send the
computation to a third participant for determination of which of the original two cheated. Such duplication creates waste in
the system, of course, and, evenwith this extra cost, it still allows for cheating if participants collude. Thus, wewould ideally
like to find more efficient cheater deterrents that significantly discourage cheating users even if they collude. The problem
of dealing with cheaters in a grid computation becomes even more serious, of course, when the rewards for participation
become more tangible. Therefore, an important challenge is the efficient detection and deterrence of colluding users who
wish to be rewarded for grid tasks they don’t actually perform.
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1.1. Previous related work

The research area of designing grid protocols for detecting cheating users is known as uncheatable grid computing [10,
11,13,14,22]. Roughly speaking, previous approaches have relied either on the general-purpose approach of replicating
tasks, which creates multiplicative overheads (as in the SETI@home approach), or on special-purpose ad hoc solutions.
Golle and Mironov propose a special-purpose ringer scheme [13], which is restricted to the inversion of one-way functions.
Szada, Lawson, and Owen extend their scheme somewhat [22], but their solutions still are not general purpose. Du and
Goodrich [10] show how to utilize chaff-injection techniques to reduce the ability of lazy cheaters to collude on outlier-
search computations. Likewise, Du et al. [11] propose ad hoc checking algorithms for cheater detection in grid computations.
In their approach, the supervisor randomly selects and verifies for himself some samples from the task domain D assigned
to a participant. This approach places a significant computational burden on the supervisor in addition to his management
role, since in this scheme he must redo some of each participant’s tasks himself. Unfortunately, none of these solutions
are general enough for all grid computations. In addition, we are not aware of any previous solutions to uncheatable grid
computing that are correct in the worst case if cheating users collude.
Task duplication, which is used by SETI@home [15], is a general method for dealing with cheating users, albeit

with computational overheads, since duplicating every task cuts the efficiency of the grid computation. Golle and
Stubblebine [14] propose a more efficient duplication scheme, using economic disincentives for cheating. Their scheme
is still not immediately applicable to most grid computations, however, as it assumes explicit payments for computations
and it requires users to place a large number of unrewarded tasks on ‘‘deposit’’ with the supervisor prior to being paid.
There are also cryptographic protocols, such as Private Information Retrieval [8] and Probabilistically Checkable

Proofs [23], that can be used to achieve uncheatable grid computing. Although such heavy machinery can provide possible
theoretical uncheatable grid computing constructions, their expensive computational costs make them inappropriate
choices for grid computing in practice.
Replication of tasks can be used to check arbitrary tasks, but there is also a rich body of work on ad hoc methods for

checking specific kinds of computations. For example, the concept of certification trails for certain kinds of data structures
and algorithms was introduced in [21,20]. These are used to verify if the responses from a data structure to a sequence of
operations were correct or not. Important requirements of a certification trail are that (1) generating the trail should not
cause any significant overhead and (2) verifying the trail should be asymptotically faster than executing the operations on
the data structure. Efficient certification trails for basic data structures, such as union-find structures and priority queues
are presented in [12,20]. An important observationmade in [20] is that, in a sequence of operations, it is oftenmore efficient
to allow latency in detection. Namely, if an answer is incorrect, it is not necessary to detect it immediately, as long as it can be
eventually detected at some later timeduring the verificationprocess. Such latencyhas not been exploited previously for grid
computations, however. Work on certification trails for graph and geometric algorithms appears in [9,17]. Likewise, Blum
and Kannan [5,6] developed a theoretical framework for program checkers. This work, in turn, inspired a number of related
papers [4,7,16,18,19]. An important distinction between this work and grid computation checking is that in the former we
have a static programwith possible bugs, while in the latterwe have an active, possiblymalicious, set of adversarial cheating
participants.

1.2. Our results

In this paper, we provide algorithms for cheater detection in grid computations that are based on the partition of the
sequence of tasks into inter-leaved sequences of rounds, such that the computations in one round complete (or are timed
out) beforewe assign the computations for the next round. Such delays are an inherent part of grid computing environments
anyway, so we feel they should be exploited to thwart cheaters.
By exploiting such grid delays, we are able to achieve the first general-purpose scheme that can catch all cheaters, even

when cheaters collude. Themain idea of this algorithm,whichwepresent in Section 2,might at first seemcounter-intuitive—
we have the participants check each other’s work. A naïve implementation of this approach would, of course, be susceptible
to collusion attacks, but we show that, by adapting efficient solutions to the parallel processor diagnosis problem, we can
tolerate collusions of lazy cheaters, even if the number of such cheaters is a fraction of the total number of participants. This
scheme is admittedly sophisticated, however, and is practical only when the cost of even one undetected cheater is too high
to tolerate. In particular, this approach requires the use of constant-degree graphs that possess a property we call (α, β)-
resilience, which can be constructed probabilistically, with high probability, with a linear-time Monte Carlo algorithm. In
addition, while this approach requires that each task be replicated only a constant number of times (and these constants are
fairly small, being only 6 or 12 in specific instances we give), such replication reduces the efficiency of a grid computation
by the reciprocal of the replication constant.
Therefore, we also include, in Section 3, a simple economic analysis of cheaters in grid computations and a

parameterization of themain deterrent that can be used against them—the probability of being caught. We show that, again
by exploiting the rounds in a grid computation, we can provide simple and efficient ways of using grid delays to achieve
probabilities of being caught that are arbitrarily close to .95, using schemes that are quite practical. This approach allows us
to achieve equivalent probabilistic levels of security as previous schemes, but with lower computational overheads for the
computation supervisor (the latter of which is, of course, the main goal of grid computing). These solutions could therefore
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Fig. 1. An example assignment of tasks to participants over time. This example illustrates how some tasks are duplicated to check previous responses.
It also illustrates how time can be divided into two sequences of rounds so that tasks can start in a given round and end before the next round in that
sequence begins.

improve the practical performance for the vastmajority of grid computations. In particular, we provide an economic analysis
of uncheatable grid computing, studying the incentives and costs for cheating in a way that avoids the use of explicit
payments. Unlike the Golle and Stubblebine [14] approach, our economic model allows for implicit incentives for user
participation, such as top-user recognition. In addition, our analysis includes the cost of cheating even when a user is not
caught. We show that reasonably-motivated cheaters can be deterred using fewer resources than previous schemes, by
making use of the rationality of cheaters and task distribution across the rounds of a grid computation.

2. Uncheatable grid computing

A grid supervisor in a long-term grid computation takes a large scientific problem, subdivides it into independent tasks,
and iteratively sends tasks out to participants over the course of months or years. Each time an active participant completes
one task, and remains available to perform tasks, he is given another task so as to continue the grid computation until it
completes. (See Fig. 1.)
Given this scenario and an upper bound on the time a supervisor iswilling towait for a task to be performed,we can easily

partition a sequence of tasks and task responses (which have similar completion speeds) into two inter-leaved sequences
of independent tasks, as shown in Fig. 1. This allows us to view tasks as being performed in a series of rounds, so that the
results of a previous round are completed, or are timed out, before the tasks for the next round are assigned. If there are
multiple scales of completion speeds, e.g., when a grid includes supercomputers and laptops, then this separation into two
sequences of tasks done in rounds can be done for each time scale (we assume, in this case, that there is a sufficient number
of participants in each time scale for this separation tomake sense). So, for the remainder of this paper, we assume there is a
single time scale and that tasks can be distributed in a series of rounds at this scale. This ability of processing tasks in rounds,
which is ubiquitous in grid computing but has not been previously exploited for uncheatable grid computing, allows us to
assign replicated (result-checking) tasks in an adaptive fashion.
There are some scenarios, such as in medical grid computations, when even a small chance of undetected cheating is

unacceptable. In this section, we study uncheatable grid computing, which allows us to achieve perfect cheater detection,
even if all cheating users collude. Our approach involves an interesting adaptation of a parallel fault diagnosis algorithms of
Beigel et al. [2,3] to uncheatable grid computing.
The main challenge to designing an algorithm to identify all cheating users in a grid computation is that colluding users

can produce equal answers on replicated tasks, making it look like they are cooperating (‘‘good’’) users. Let us, therefore,
formally define the participants in a grid computation.

• The supervisor. This agent has a collection {t1, t2, . . . , tn} of tasks, such that the supervisor would like to receive the result
of a function, g(ti), performed on each task ti, for i = 1, 2, . . . , n. The function g is assumed to be expensive, so that the
supervisor desires not to compute g(ti), for any task ti, himself.
• Good participants. Simply put, good participants do not cheat. Given a task ti, a good participant computes a response
ri = g(ti) in a timely manner and returns this result to the supervisor.
• Cheating participants. Given a task ti, a cheating participant p computes a false function, fp(ti), on ti. For example, fp may
be much cheaper than g for p to compute, which provides an incentive for p to prefer to perform fp. Alternatively, fp may
hide valuable information that g would otherwise report back to the supervisor. In any case, the only assumption we
make about these functions is that fp(ti) 6= g(ti), for otherwise there is no actual occurrence of cheating on the task ti.

Note that cheating users may sometimes produce identical results. The goal of uncheatable grid computing, then, will be to
detect each instance of cheating. That is, we want to detect each time there is a response ri for a task ti such that ri 6= g(ti),
even if cheating participants try to ‘‘cover each other’s tracks’’.
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We assume in this section that there is no traitor p in the group of participants, who would correctly compute g(ti) for
a task ti initially assigned to p but who also would replicate the response of a false function fq(ti) on ti if the task ti were
initially assigned to a cheating participant q. That is, there are no users who produce correct responses themselves but are
willing to corroborate incorrect responses from cheaters.1 In fact, it is easy to show that if there are k > 0 traitors, out of
n participants in a grid computation, then a testing algorithm that is 100% correct in the worst case requires at least Ω(k)
rounds, and even a probabilistic algorithm that is correct with high probability requires at leastΩ(logn/k n) rounds.
We begin our checking protocol by having each user i commit to a response ri to a task ti in a preliminary round. Then, in

subsequent rounds, the supervisor mixes in testing tasks, which are replications of ti sent to other participants. Recall that
we assume that a false response ri from a cheating user will not match the correct response r ′i = g(ti) when the task ti is
performed by an honest user. But if the task ti is assigned to another cheating user, we allow for these users to collude so
that the second respond matches the first (incorrect) one. That is, two colluding cheating users p and q could arrange for
fp(ti) = fq(ti) = ri. Since the only means the supervisor has to detect a false response is when two responses on the same
task differ, he can not immediately detect a collusion such as this.

2.1. A reduction to parallel fault diagnosis

This response semantic provides a relationship of this problem to the parallel fault diagnosis problem. In this related
problem, we are given a set of n processors, each of which is either ‘‘good’’ or ‘‘bad’’. In a single round, a processor can test
another processor or be tested itself by another processor. If a good processor tests another processor, it correctly returns
to a central supervisor whether the tested processor is good or bad. On the other hand, if a bad processor tests another
processor, it returns an arbitrary (or even deliberately false) identification of the other processor as being good or bad. The
fault diagnosis problem is to determine all the good and bad processors using a small number of parallel testing rounds,
assuming some upper bound on the number of bad processors (the problem cannot be solved if there are more than half as
many bad processors as good).
We can adapt a parallel fault diagnosis solution to become a solution to the problem of checking the results from a grid

computation performed for n tasks. For a test in our case corresponds to a supervisor distributing the task ti performed by
a participant p, resulting in the answer ri, to another participant q (with q 6= p) and receiving a result r ′i from q. If both
responses are good, the results will match, i.e., we will have ri = r ′i . If one of them is good and the other is false, the results
will not match, i.e., we will have ri 6= r ′i . But if both participants are cheaters, however, the results can match, even if they
both cheat, just by having the two participants collude, so we may have ri = r ′i in this case.
To use a parallel fault tolerance algorithm in this context, then, we can proceed as follows. After a preprocessing round,

which distributes the n tasks to participants and receives their results, we can then simulate the parallel fault tolerance
algorithm by replacing each test of a processor i by a processor j with a replication of the task sent to participant p with a
copy sent to a participant q and then have the supervisor simply test the equality of the results for each such pair and use
the fault-detection protocol to partition the results into sets.
For example, the 10-round algorithm of Beigel et al. [2] immediately translates into a 10-round checking algorithm

(after the preprocessing round that commits the results of the tasks). As we show below, however, we can improve this
performance by being more careful in how we distribute duplicated tasks.

2.2. Improved protocols for uncheatable grid computing

There are some improvements that we can make to the above approach, however, for uncheatable grid computing. First,
in any round, we can allow a participant q to test another task p even if q’s task is also being tested in that round (such
tests are not allowed in the parallel fault diagnosis problem). This observation lets us immediately reduce the number of
rounds in our simulation to 9, since the first round in the algorithm of Beigel et al. involves the symmetric testing of n/2
pairs of processors (which requires two rounds in their algorithm but only one in our simulation). Even so, this simulation
algorithm is probabilistic and only guaranteed to succeed with high probability if n is very large. Thus, we would like to
reduce further the number of rounds and make this algorithm work with high probability for reasonable values of n. To
achieve these goals, let us make a simplifying assumption, which is well-motivated for grid computing but not for parallel
fault diagnosis: namely, let us assume that the number of cheating participants is much less than n/2. The motivation for
this assumption is that the pipelined nature of grid computing allows the supervisor to prune away cheating participants as
soon as they are discovered (by our testing algorithm); hence, it is unlikely for large numbers of cheaters to be in the grid.
We use constant-degree directed graphs in our pipelined algorithms, where we define the degree of a directed graph

to be the maximum in-degree or out-degree of its vertices. Say that an n-vertex directed graph G is (α, β)-resilient if any
subgraph of size at least αn has an induced strongly-connected component of size at least βn. We show later in this section
there is an n-vertex, degree-4 directed graph H4 that is (15/16, 7/16)-resilient.

1 In our more practical algorithm given later, in Section 3, we can allow for traitors as well as cheating users and still have efficient performance, albeit
at the expense of uncheatability.
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Let us illustrate how to use the existence of such a graph, H4, in a 3-round testing algorithm, which will catch all cheaters
so long as atmost 5% of our participants are colluding cheaters (which is certainly achievable for a supervisor who is actively
removing cheaters). In particular, our algorithm is based on the existence of a directed graph, H4, such that no matter how
an adversary might distribute ‘‘bad’’ vertices in H4, there is a large connected component consisting exclusively of good
vertices. Our protocol for catching all forged answers using H4 in a set of n tasks is as follows.

(1) View each participant (and his task) as a vertex, and divide the set of these n vertices into n/4 directed cycles of 4
vertices each. In one round have each vertex test the next one in the cycle, using task replication. Discard for now all
the vertices in any cycle with a detected bad vertex (there can be at most 4n/20 = n/5 such discarded vertices). Let
N ≥ (n−n/5)/4 = n/5 denote the number of remaining cycles, whichwe view as super-vertices, since all the remaining
cycles each consist entirely of good vertices or bad vertices.

(2) There can be at most (n/20)/4 = n/80 such all-bad cycles, that is, at most 5N/80 = N/16 bad super-vertices. Let us
now assume we have a degree-4, N-vertex directed graph, H4, that is (15/16, 7/16)-resilient. Apply the tests dictated
by the edges of H4 in one round, viewing the N super-vertices as the vertices in H4. (This testing is done by having the
four participants in the origin super vertex repeat the tasks for the four respective participants in the destination super
vertex.) Note that, by the definition of H4 and the fact the number of bad super-vertices is small enough, there will
be a strongly connected component of (7/16)N super-vertices in H4 (which must necessarily be all good, since there
are not so many bad vertices). That is, we will have at most (9/16)N ≤ (9/16)n/4 = (9/64)n super-vertices whose
classification may be in doubt.

(3) Note that at this point there are at least (7/16)4N ≥ (7/4)n/5 = (7/20)n identified good vertices. Divide these vertices
into two groups: one group of size n/5 = (4/20)n vertices, which are used in one round to test the previously-discarded
vertices, and another group of (3/20)n = (9/60)n vertices, each of which can test a single super-vertex in one round
(since 9/60 > 9/64).

Thus, we have the following

Theorem 1. Given amethod for finding anN-vertex, degree-4 directed graphH4 that is (15/16, 7/16)-resilient, for N ≥ n/5, one
can identify in three rounds all false replies among n tasks in a grid computation, so long as there are at most 5% bad participants.

Note, as well, that the replication factor of any task in the above algorithm is six.

2.3. Finding resilient graphs

In completing the details of our grid computing testing algorithm above, we obviously need to have a method for finding
(15/16, 7/16)-resilient directed graphs of degree-4. To help us perform this important step, we utilize the following lemma
from Beigel et al.:

Lemma 2 ([2]). Let G = (V , E) be a directed graph on n vertices. Let 0 < λ, γ < 1. Suppose, for every pair of subsets A and B of
V such that A ∩ B = ∅, |A| + |B| = λn, and |A|, |B| ≤ 1+γ

2 λn, that there are edges in E directed from A to B and B to A. Then G
induces a strongly connected component of size γ λn on any subgraph with λn vertices.

This lemma may at first seem obscure, but it is useful for proving the following theorem, which extends a theorem from
an earlier work of Beigel et al. [3].

Theorem 3. Let V be a set of n vertices, and let 0 < γ , λ < 1. Let Hd = (V , E) be a directed graph defined by the union of d
independent randomly-chosen2 Hamiltonian cycles on V (with all such cycles equally likely). Then, for all subsets W of V of λn
vertices, Hd induces at least one strongly connected component on W of size greater than γ λn, with probability at least

1− en[(1+λ) ln 2+d(α lnα+β lnβ−(1−λ) ln(1−λ))]+O(1),

where α = 1− 1−γ
2 λ and β = 1−

1+γ
2 λ.

Proof. The proof is an adaptation and correction of a proof of a weaker theorem from Beigel et al. [3]. By Lemma 2, it is
sufficient to show that with the exponentially small probability mentioned in Theorem 3, there is a subsetW of V of size
λn that has a partition (A, B), with |A|, |B| ≤ 1+γ

2 λn, such that there is no edge from A or B or no edge from B to A. Let us
consider first the probability that there is no edge from A to B (as the other case is identical). Beigel et al. [3] show that, for
a single randomly-chosen Hamiltonian cycle H on V (and two disjoint subsets A and B of V ), the probability that there is no
edge from A to B is

(n− |A|)!(n− |B|)!
n!(n− |A| − |B|)!

.

2 That is,Hd is defined by the union of cycles determined by d random permutations of the n vertices in V , soHd is, by definition, a simple directed graph.
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Thus, the probability that there is no edge from A to B or no edge from B to A in Hd is at most

2
(
(n− |A|)!(n− |B|)!
n!(n− |A| − |B|)!

)d
.

There are at most 2n choices forW and at most 2λn possible ways of partitioningW into subsets A and B (actually, there are
fewer, but these bounds will suffice for our purposes). Thus, the probability that there is a subsetW of λn vertices that has
a partition (A, B), with |A|, |B| ≤ 1+γ

2 λn, such that there is no edge from A or B or no edge from B to A is at most

2(1+λ)n+1
(
(n− |A|)!(n− |B|)!
n!(n− |A| − |B|)!

)d
.

This is maximized when n− |A| = αn and n− |B| = βn. Applying Stirling’s formula, we can bound this probability by
en[(1+λ) ln 2+d(α lnα+β lnβ−(1−λ) ln(1−λ))]+O(1). �

Applying this to our testing problem, we need to set the parameters so that we are guaranteed to have at least λn good
testers, for using a directed graph Hd for sufficiently large d will guarantee with high probability that the subgraph of good
testers will induce a strongly connected component of size at least γ λn. For example, we have the following:
Corollary 4. If γ = 7/15, λ = 15/16, d = 4, and n ≥ 20, then any subgraph of (15/16)n vertices of a random directed graph
Hd, defined as above, induces a strongly connected component of size (7/16)n with probability at least

1− e−n/4.
Thus, we have the following:

Theorem 5. There exists a linear-time Monte Carlo algorithm that constructs, for any n ≥ 20, an n-vertex, degree-4 directed
graph, H4, that is (15/16, 7/16)-resilient with high probability.

2.4. Coping with larger colluding groups

If more than 5% of the participants are colluding, the above algorithm is not guaranteed to succeed. Nevertheless, we
can adapt our solution to tolerate such large coalitions, albeit at a greater expense of replicating tasks. Let us, for example,
consider a case where we could have as many as 10% of the participants being colluding users.
For example, we have the following additional corollaries to Theorem 3.

Corollary 6. If n ≥ 20, γ = 1/2, λ = 7/8, and d = 8, then any subset of (7/8)n vertices induces a strongly connected subgraph
of Hd, defined as above, of size (7/16)n with probability at least

1− e−n.
Corollary 7. There exists a linear-time Monte Carlo algorithm that constructs, for any n ≥ 20, an n-vertex, degree-8 directed
graph, H8, that is (7/8 , 7/16)-resilient with high probability.
If we can safely assume that the number of cheating participants is at most 10% of the total (which is ten times higher

than the SETI@home experience), then we can use this corollary to design the following five-round testing strategy:
(1) Pair up participants and have them test each other. Discard for now any pairs that have an identified bad test (for one
of them must be bad). The remaining pairs must each consist of two good participants or two bad ones.

(2) Pair up pairs of participants from the first round and have them test each other with one test per participant. Discard
for now any groups that have an identified bad test (for two of the four must be bad).

(3) Pair up groups of participants from the previous round and have them test each other. Discard for now any super-groups
that have an identified bad test (since four of the eight must be bad). Let N be the number of super-groups.

(4) Note that there can be at most n/5 discarded nodes; hence,N ≥ (n−n/5)/8 = n/10. Moreover, since each super-group
has all good nodes or all bad nodes, the number of all bad super-groups is at most n/80 ≤ N/8. Apply the H8 strategy
to the super-groups, where H8 is constructed as in Corollary 7. This results in a strongly connected component (which
must be all good nodes) of size at least (7/16)N , which is at least (7/16)(n/10)8 = (7/20)n. Moreover, there are at
most (9/16)N unresolved super-groups, which is at most (9/128)n super-groups.

(5) Split the (7/20)n proven good nodes into two groups: one group of size n/5 = (4/20)n, which is sufficient to have each
test a discarded node, and another group of size (3/20)n, which is sufficient to have each test a representative member
of an unresolved super-group (since 3/20 = 9/60 > 9/128).

Thus, we have the following:
Theorem 8. Given a method for finding an N-vertex, degree-8 directed graph H8 that is (7/8, 7/16)-resilient, for N ≥ n/10, one
can identify in five rounds all false replies among n tasks in a grid computation, so long as there are at most 10% bad participants.
Or, put another way, we have the following:

Theorem 9. There is an algorithm for identifying in five rounds all false replies among n tasks in a grid computation, so long
as there are at most 10% bad participants. Moreover, this algorithm can be defined by a linear-time Monte Carlo process that is
correct with high probability.
Note that the replication factor of any task in the above algorithm is 12.
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3. The economics of cheating in grid computations

In some cases, a grid supervisor can tolerate a moderate amount of cheating, provided he or she can be confident that
cheaters will be caught and removed from the group of grid participants. This perspective allows us to economically model
the problem of eliminating cheaters in a grid computation and use simpler testing schemes to catch cheaters in a small
number of rounds.
Following the example of Becker [1] of applying economic analysis to human behavior, we can derive a simple economic

model for a potential cheater. We assume that users are rational, wishing to maximize their expected utility return for
participating in a grid computation. Such users will cheat on a computational task only if the expected return for cheating
is at least the expected return for cooperating (risk-preferring users will cheat even when these values are equal). Viewed
economically, the goal of a supervisor, then, is to deter cheating by setting (and advertising) the mechanism of the grid
computation so that rational users will have little, if any, incentive to cheat. Important parameters that reflect on this task
include the following:

• P , the probability of a cheater being caught cheating on a task.
• B, the net economic benefit for cooperatively performing a task. This benefit can include positive factors, such as the
personal satisfaction derived fromhelping in the project goal and explicit rewards, such aswebsite recognition. It can also
include negative factors, such as the computational cost for performing a task. The ‘‘currency’’ with which we measure
B (and the parameters that follow) is not critical; what is critical is that we have a way of measuring benefits (and costs)
accurately. In any case, we may safely assume B > 0, for otherwise, no user will ever perform any task.
• U , the net economic utility for cheating on a given task and not getting caught. This utility can include the personal
satisfaction derived from hurting the project goal as well as explicit rewards, such as website recognition for (false) task
completion. We also assume that U is net any costs of cheating irrespective of whether the user is caught. Furthermore,
we assume that if a cheater is caught, then his task is reassigned to another user; hence, the positive components of U
are realized only if a cheater is not caught.
• C , the cost of cheating and being caught. This cost includes any explicit fines or implicit penalties, such as being removed
from the group of participants. It also includes the costs for cheating irrespective of whether the user is caught.

Given these parameters, we can easily characterize the condition that causes a rational user to avoid cheating, which
occurs when her expected return for cooperating is greater than her expected return for cheating, that is, when

B > U(1− P)− CP.

Note that, since U is a net utility, and C is an all-inclusive cost, this equation fully captures the cost of cheating irrespective
of whether the user is caught.
We can express the optimization condition for the supervisor as that of ensuring

P >
U − B
U + C

.

Notice that if B ≥ U , the rational userwill never cheat, even if he can get awaywith it. This is the same economic disincentive,
for example, for photocopying a book that is cheaper to buy than to copy. If a supervisor can set up his grid computation
so that this condition holds, then he need not concern himself with the detection of rational cheaters or the penalties for
cheating. Unfortunately, given the experience of SETI@home, it is unrealistic to assume that B ≥ U , so let us suppose the
more typical scenario occurs—namely, that B < U . Thus, to create a disincentive for cheating it is sufficient for

P >
1

1+ C/U
.

One conclusion we can immediately draw from this is that, if C ≥ U , then it is sufficient for P = 1/2 in order for us to deter
cheating. For example, if the utility for cheating is based only on a user seeing his name appear on a list of top participants,
then removing a cheating user from the group of participants guarantees C ≥ U for him. Of course, since most sets of
participants in grid computations are volunteers and cheating is not a criminal act, the removal of a rogue participant is
probably the main component of C . Thus, we might not necessarily be able to assume that C ≥ U , but even in such cases
the supervisor can probably find a lower bound for the ratio C/U , which will give a non-trivial effective bound for P even in
such cases. Therefore, the main focus of efficient cheater deterrence in grid computations can in most cases be reduced to
the problem of setting a good value for P .

3.1. Applying economics to the supervisor in a computational grid

So far we have addressed the costs and utilities of potential cheaters. Let us now introduce some parameters for the
supervisor:

• L, the loss incurred if a task is not done.
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• S, the cost to ship, monitor, and receive a task.
• r(P), the replication factor needed in order to achieve a given value of P .

The goal of the supervisor should be to balance the expected loss for a task not being done with the cost for replicating
tasks so as to achieve a given value of P . That is, the supervisor should strive to achieve

L · Pr
(
U ≥

B+ CP
1− P

)
= (1+ r(P))S,

where we view B and C as being fixed values. Thus, the problem of determining an effective value for r(P) can be reduced
to that of estimating the probability distribution on U , which should be a reasonable calculation for the supervisor based on
polling and prior experience. Thus, the remainder of this paper studies various efficient ways of achieving values for P with
small replication factors.

4. Efficient task replication

Asmentioned in the introduction, to testwhether a task is performed correctly, a commonway that some grid supervisors
deal with cheating is to send the same task to multiple users. In such applications the supervisor typically accepts a result
as correct if the results match.

4.1. The drawback with simple replication

Unfortunately, as we explored in the Section 2 on uncheatable grid computing, if users collude, this assumption may be
false, since colluding users assigned the same task can both return the same (wrong) result. For example, if 5% of participants
are colluding cheaters or traitors, all tasks are replicated once, and replicated tasks are sent out in the same round as the tasks
they duplicate, then an expected 0.25% of all tasks could have forged results (for the probability of being caught cheating on
these tasks is 0). Moreover, this forgery occurs even with the full duplication of all tasks. Golle and Stubblebine [14] propose
a more efficient scheme, where tasks are duplicated according to an exponential distribution, but their solution still allows
colluders to tell with high probability whether they will be caught cheating or not.
We propose here a simple remedy—if a task is to be duplicated, then a supervisor should send out the ‘‘sanity-check’’

duplicate only after he has received the result from the original, using the same partitioning of tasks into rounds used in
the algorithm of Section 2. This simple solution forces a cheater to commit to whether she will cheat prior to knowing if a
duplicate task will be assigned to a co-conspirator. In the case of 1% colluding participants (i.e., cheaters and traitors), with
full duplication of all tasks, this approach implies a probability of being caught of P = .99. Indeed, if the supervisor has an
upper bound, G, on the fraction of non-colluding participants, then we can set a replication probability of P/G and achieve
a probability P of catching cheaters, provided P ≤ G.
As mentioned above, under the reasonable assumption3 that C ≥ U , we can deter cheating by setting P = 1/2. Using

a reasonable factor of G = .95, which would imply a level of cheating that is potentially five times greater than that
experienced by SETI@home, setting P = 1/2 implies we can deter cheating with a replication probability of only 52.6%.
And this is on a per-task basis. If we make the natural assumption that a user’s cheating utility remains constant during
all rounds of a grid computation, then repeat cheating is likely, and each cheating attempt would be caught with equal
probability, P . Thus, with P = 1/2, the supervisor is likely to catch (and remove) a cheating user with 99.9% probability after
ten cheating attempts.
Having said that, we note that there still is a risk to a ‘‘Sybil’’ attack, whereby a user creates many pseudonyms and uses

each to cheat (indeed, it might be a Sybil attack that allows ‘‘different’’ users to be colluding on their task responses). To help
mitigate such attacks, a supervisor can use a higher replication factor for tasks given to newusers, with that replication factor
converging to P/G as the user commits more and more correct results. For example, the supervisor could use a replication
probability of

max
{
1−

t
20
,
P
G

}
,

where t is the number of completed tasks. Such a replication probability allows one to gradually go from a cheating detection
rate of G to one equal to P . In addition, note that this is different than requiring users to deposit unrewarded tasks, since in
the supervisor can reward task performance immediately. Even so, there still may be some computations with a high loss
cost or high cheating utility, for which a cheating detection rate of G is still not high enough. For such scenarios, we may
have to fall back to our worst-case solution, given in Section 2, which achieves P = 1 under the reasonable assumption that
G ≥ .95.

3 If the supervisor can only provide a non-trivial lower bound for C/U , then we should replace the ‘‘1/2’’ in this discussion with the value for P implied
by this lower bound.
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5. Conclusion and future directions

We have shown how to use pipelining to allow participants in a grid computation to check each other’s work, even in
the presence of arbitrary collusion among lazy cheaters (provided the number of cheaters is not too high). Note, in addition,
that since the failure probability of Corollary 4 and, hence, Theorem 5, is exponentially small, our approach for uncheatable
grid computing yields efficient Monte Carlo algorithms that are correct with high probability, which, in turn, implies the
existence of efficient deterministic testing schemes. Nevertheless, it is not clear how to deterministically test if a graph is
(α, β)-resilient in polynomial time for constants α and β; hence, a different approach would have to be used if one desires
a deterministic polynomial-time testing scheme.
For futurework, it would be interesting to design learningmodels and probabilistic weights to score participants on their

likelihood of cheating and then tailor uncheatable grid computing schemes to these scores.
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