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1 Introduction

The proliferation of many types of inexpensive personal
devices — such as PDAs, cellphones, smart watches, and
MP3 players — has been accompanied by the need to secure
their communication with the “outside world”. Common
applications involve securely connecting one’s personal
device to an unfamiliar printer, fax machine, wireless
projector, network access point or another personal device.
One of the main challenges is the problem referred to
as: Secure First Connect, Secure Initialisation or Secure
Device Pairing. Regardless of the name, this problem
entails the establishment of a secure communication
channel between previously unassociated devices.

Traditional cryptographic means of establishing
secure communication channels (e.g., authenticated key
exchange protocols) are generally unsuitable for secure
device pairing. This is because mutually unfamiliar
devices have no prior context and no common point
of trust: no online Trusted Third Party (TTP), no
offline Certification Authority (CA), no Public Key
Infrastructure (PKI) and, of course, no common
secrets.

Lack of any prior security context makes it necessary
to involve the user in the device pairing process.
This is because of the very real threat of so-called
Man-in-the-Middle (MiTM) attacks (Kugler, 2003).
A MiTM attack can occur whenever unauthenticated
communication is involved. One of the best-known
examples is the textbook Diffie-Hellman Key Exchange
protocol (Diffie and Hellman, 1976). In it, an attacker can
easily masquerade as either party such that, at the end of
the protocol, one party (Alice) thinks that she is talking
to the other party (Bob), whereas, she is actually talking to
the adversary.

A number of techniques have been proposed, varying
greatly in the assumptions about device features, degree
and nature of user involvement as well as environmental
factors. (See Section 9 for an overview of related work.)

In this paper, we investigate the use of the audio channel
to securely pair devices. We view the audio channel as
one of the most ubiquitous communication channels:
audio-in or audio-out interfaces are present on the
majority of personal devices (e.g., cell-phones, music
players, cameras, wireless headsets) and cost very little.
We introduce two novel techniques: one based on
vocalisable data representation, and the other — on
pure audio. Both methods offer interesting and viable
alternatives to prior device pairing proposals.

Audio-based two-channel secure pairing uses spoken
natural language for human-assisted authentication and
requires either a display or a speaker on each device,
as well as another common communication channel
(e.g., 802.11 or Bluetooth). First, devices exchange
their respective public keys over an un-authenticated
human-imperceptible wireless channel. Then, the process
is authenticated via a syntactically correct English sentence
that can either be played through the device speaker or
shown on its display. The user matches the sentences

produced by the two devices to validate the secure
context/channel establishment.

Our second technique avoids the need for a common
wireless interface and human-aided data comparison.
If both devices have audio-in and audio-out interfaces,
solely the audio channel itself can be used to transmit
device public keys directly. Since audio is human-
perceivable, the user can validate the actual transmitting
devices during communication. Using a single (audio)
channel spares the user from the need to set up a wireless
connection beforehand, which is often complex and
time-consuming for non-specialist users (e.g., Bluetooth
in-range device discovery or 802.11 ad-hoc network
configuration).

In this paper, our main goal is to investigate the design
space of audio-based secure device pairing. Our motivation
is two-fold:

e  While some devices may include a built-in photo
(and/or even video) cameras, accelerometers, laser
or infra-red transceivers, such interfaces are more
expensive and not as common as audio.

e Despite its ubiquity and low cost, the audio channel
provides sufficient bandwidth for the purposes of
key agreement. Being inherently human-perceivable,
the audio channel can be used as the only channel in
secure device pairing and thus eliminate the need for
an auxiliary wireless channel.

To investigate the use of audio as a limited authenticated
channel (to secure a higher bandwidth insecure channel),
we introduce an approach to represent data in meaningful
human-audible manner. In it, we use recently proposed
Short Authenticated String (SAS) key agreement protocols
(Vaudenay, 2005; Pasini and Vaudenay, 2006; Laur et al.,
2006; Cagalj et al., 2006). A SAS protocol result (a short
string) is mapped to a robust-sounding and syntactically-
correct (English-like) sentence. Such a sentence can be
either be vocalised or displayed (depending on the device’s
features) for user comparison. Then, to explore the full
potential of using audio, we consider the audio channel
as the only means of data transfer between devices.
We establish a bi-directional audio-based communication
channel and use it for sending the actual public keys. Since
audio is human-perceivable and the user can identify its
source (Pickles, 1982; Stevens and Davis, 1938; von Békésy
and Wever, 1960), this approach eliminates the need for
the user-aided second verification phase. Later in the
paper, we discuss the use cases, security properties and
implementation issues of both approaches as well as their
usability later in the paper.

The rest of the paper is organised as follows: the next
section presents our classification of the communication
channels used in secure device pairing. Section 3 provides a
brief overview of SAS protocols. Sections 4 and 5 introduce
our approaches with two-channel and single-channel
pairing, respectively. We analyse their security in Section 6,
and provide a brief implementation description in
Section 7. We discuss advantages and limitations of our
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proposals in Section 8. Finally, we overview related work
in Section 9.

2 Communication channels

In this section, we define the communication channels
involved in our secure pairing solutions.

Securing a communication channel between two
devices requires establishing a common secret key.
The channel to be secured, hereafter referred to as
main channel, is typically wireless and not perceivable
by human user (e.g., a visible wired channel between
devices would be immune to MiTM attacks (Stajano and
Anderson, 2000)). Prominent examples include Bluetooth
and 802.11. Due to lack of prior history between devices
and the threat of MiTM attacks (Kugler, 2003), the
main communication channel alone is insufficient for
establishing secure communication.

However, another channel — referred to as the auxiliary
channel — can be used to address this problem. If the
auxiliary channel is human-perceivable, the user can
verify (authenticate) the actual communicating devices.
If both main and auxiliary channels are available, the
former can be used to transfer cryptographic protocol
messages and the latter —to authenticate message source(s).
This approach is practical with many realistic scenarios,
since the auxiliary channel is usually more constrained
in terms of bandwidth and can not always be used
for transferring (potentially long) protocol messages.
Alternatively, if the main channel is not available or is
difficult for the user to set up, the auxiliary channel can
play both roles, i.e., it can be used for authenticated
transmission of protocol messages and/or for automated
configuration of the main channel.

3 Short Authentication String protocols

We now introduce the SAS protocol whereupon one of our
device pairing protocols is based.

Early strawman solutions to the device pairing
problem required between 80 and 160 bits of data to
be transmitted over the auxiliary (human-perceivable)
channel. One early protocol (Maher, 1995) involved
two devices exchanging their respective public keys over
the wireless channel and users authenticating them by
comparing truncated t¢-bit hashes of the agreed-upon
session key. The pitfall of hash truncation has to do with
the number of digits to be examined by the user. Drastically
truncating the hash (e.g., to first 16 or 32 bits) enables
an attacker to replace the user’s public key with second
pre-images of the hash.

Assuming typical adversarial capabilities, t =50
(13 hex digits) and ¢t = 80 provide sufficient security when
ephemeral public keys and one-year-term keys are used,
respectively. However, examining 13 hex digits is an
error-prone and cumbersome task for a human user.
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Recently proposed SAS protocols (Vaudenay, 2005;
Pasini and Vaudenay, 2006; Laur et al., 2006; Cagalj
et al., 2006) reduce the length of verification to only
16-20 bits. Below, we describe a representative SAS
protocol, called DH-SC (Cagalj et al., 2006). Like all
other SAS protocols, it uses a commitment scheme
which transforms an initially secret input value m into a
commitment/opening pair (¢, d). In this pair, ¢ reveals no
information about m (e.g., ¢ is the public key encryption
of m) but ¢ and d together (e.g., if d is the decryption
key) reveal m. In an ideal commitment scheme, it is
infeasible to find d’ such that (¢,d') yield m’ # m.
The DH-SC protocol requires communicating parties to
compare a string derived from the XOR of two per-session
random bit-sequences contributed to by each of the
two parties. DH-SC thus effectively reduces the length
of the compared values for a given level of security.
For example, 20-bit random sequences provide a level
of security almost equivalent to that of a 50-bit hash of
ephemeral Diffie-Hellman public keys.

DH-SC operates as follows: both Alice and Bob
(A and B) generate their respective public keys g¢¢
and ¢°. Then, A and B each generate a t-bit random
string N4 and Np. They use these strings to generate
commitment/opening pairs for the concatenations:
0/lg*|| N4 and 1||g°|| Nz, where 0 and 1 are fixed values used
to prevent reflection attacks. In the first message, A sends
B its commitment ¢4 and B responds with its own cg.
Then, A sends B her commitment key d4 which B uses
to open c4 and obtain a pair: [¢%, N4']. B verifies the
commitment pair: c4,d and makes sure that ‘0’ appears
at the start of the message. If verification succeeds, B sends
A the value d g, which A uses to open ¢ and obtain a pair:
[¢", N5']. Next, A checks correctness of this commitment
and, if it is valid, both parties proceed with generating
respective verification strings for iy = Ny © Ng' and
ipg = Ng® N4'. Finally, the human user(s) simply
compare the two strings and formally accept exchanged
public keys if there is a match.

4 Two-channel secure pairing

We describe our device pairing solution when the main
channel, as defined in Section 2, is available and already
configured. This channel is used for the exchange of SAS
messages.

We assume that the identification of communicating
devices is performed visually by the user. The two
devices engage in SAS protocol over a wireless channel
(e.g., Infrared, 802.11, Bluetooth) and an audio or visual
representation is then used as a means of authenticating
the public keys.

4.1 Requirements

The specifics of target device authentication depend on
several factors, such as the public-key-based key agreement
algorithm, directionality, the number of human users, and
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the device equipment. The following basic requirements
are common to all use cases:

e There is at least one human user present with
a personal device.

e At least one device has an audio-out interface,
e.g., a speaker or a headphone plug (for the sake of
completeness, the protocol also supports the case of
both devices having displays but no audio).

e The two devices must be able to communicate via
some multiple-access broadcast medium, e.g.,
802.11a/b/g/n, Bluetooth.

Figure 1 depicts some use scenarios.

4.2 Use cases

We now consider in more detail the factors that distinguish
uses of audio-based secure pairing when both main and
auxiliary channels are available.

The first such factor is the directionality of
authentication, i.c., whether authentication is one-way
(unidirectional from target to personal device) or mutual
(bidirectional between the two devices). For example, in
the former, the personal device may need to authenticate
the target device’s public key and, in the latter, each device
may need to authenticate the other’s public key. Since
the bi-directional use scenario is a trivial extension of the
uni-directional one, we focus on one-way authentication.

Equipment available on each device influences the
specifics of authentication. Some devices have both a
display and a speaker, while others may have only one of
these.

We consider four possible use cases for verifiable
authentication of the public key when using the insecure
main channel:

Figure 1 Sample use scenarios (see online version for colours)

Personal Device

Cellphone:
speaker &
small display

Handheld/PDA: /4
speaker &
display

SmartWatch: =
tiny speaker& |
tiny display

MP3 player:
audio out &

no display

Mutual
authentication
possibly
required

TYPE I: Hear and compare two audible sequences, one
from each device.

TYPE 2: Hear an audible sequence from the target device
and compare it to text displayed by the personal device.

TYPE 3: Hear an audible sequence from the personal
device and compare it to text displayed by target device.

TYPE 4: Compare text displayed by the personal device to
text displayed by target device.

TYPE 1 might appear as the most difficult for the human
user. However, previous work (Soriente et al., 2007)
shows that even this more taxing case is acceptable to
users.

TYPE 2 and TYPE 3 use cases are very similar, while
TYPE 4 does not involve any use of the audio channel.!
Nevertheless, we include it among our supported cases,
since it is an alternative or a fall-back method if TYPES 1,
3 or 3 are not viable. This could happen when both devices
only have displays, in noisy environments (e.g., during a
concert) or when silence is required (e.g., in a library).

Of course, the equipment factor ultimately determines
the burden our solution places on the human user. Table 1
shows the types of user requirements corresponding to
possible personal-target device combinations. Looking at
rows 3 and 6, the choice between TYPE 3 or 1 and
TYPE 2 or 1, respectively, can be dictated by the certain
properties of the environment. For example, insufficient
light, smoke or fog can make TYPE 1 the only viable
choice. A visually-impaired user is also likely to choose
TYPE 1 over TYPE 3 or 2, unless one of the two devices
has a Braille display. Likewise, the TYPE 4 use case is
infeasible for a visually-impaired user, unless both devices
have Braille displays. In row 7, the choice between TYPE 3
or 4 is less clear.

Target Device

8"2») Printer or FAX:
‘ % speaker &

small display

Handheld/PDA:
speaker &
display

Laptop/Desktop:
speaker &
display
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Table 1 User requirements for various device configurations.
The ‘Use Type’ column indicates allowed use cases,
depending on device characteristics. We use ‘*’ to
denote a ‘do not care’ condition, We allow the
‘Speaker’ condition to include any audio-out interface
that can vocalise human speech

Personal device Target device

Row  Usetype Display  Speaker  Display  Speaker
1 1 No Yes No Yes
2 3 No Yes Yes No
3 3,1 No Yes Yes Yes
4 2 Yes No No Yes
5 4 Yes No Yes No
6 2,1 Yes Yes No Yes
7 34 Yes Yes Yes No
8 1,2,3,4 Yes Yes Yes Yes
9 n.a. No No * *
10 n.a * * No No

4.3 Vocalisable and readable representations

In our scheme, exchanged device public keys must
be verified by the user. Comparing hexadecimal
representations of hashes is a cumbersome task for the
average user. In order to make the process faster and less
tedious, a hash must be represented in a more convenient
form. We represent the output of the SAS protocol as a
syntactically correct English-like sentence.

Generated sentences are based on the MadLib puzzles
commonly used by children.> That is, we generate a
syntactically correct (but usually non-sensical) sentence
from a string of bits.

The string of bits our scheme uses is the yield
of the SAS protocol. This 16-20-bit string is then
used to compute phrase-words similar to those used in
the S/KEY One-Time Password System (Haller, 1995).
Our scheme divides the string into two 8-10-bit parts.
Each part is mapped to one word in a two-word
MadLib sentence. The text is generated from a template,
which consists of a grammatical sentence (or group of
sentences) with missing words, each word of a various
type, such as: noun, adjective, adverb, verb, boy-name,
girl-name, or animal. Each missing word is replaced
with a word from a dictionary of appropriate words.
The word replacing the MadLib keyword is determined
by converting the 8-10-bit part of the short string
into an integer and using that as the index into the
internal dictionary database. For example, the following
is a MadLib sentence produced by our prototype, for
encoding a 20-bit string (filled-in words/word-phrases
are shown in all caps):

PAUL wants a BYTE.

A user can easily compare two such displayed or vocalised
sentences. Still, we need to ensure that the text sequences
are auditorially robust. For example, we need to avoid a
situation in which a MiTM attacker manages to interfere
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with the public key transmissions so that one device
outputs the above sentence, while the other device outputs:

PAUL wants a BITE.

To construct auditorially robust text sequences, we need
to produce a number of word lists of appropriate parts of
speech, with words in each list being as phonetically distant
from each other as possible.

Using a metric for phonetic distance similar to that in
PGPfone (Juola and Zimmermann, 1996) (but restricted to
words of appropriate type) allows us to create auditorially
robust word lists for each word category in MadLib
sequences, as follows:

e Construct a large set C' of candidate words of
appropriate type. These should be common English
words that can all be used in the same place within a
MadLib sequence.

e Select a random subset W of 2* words from C,
where £ is the number of bits needed to represent
this word type (e.g., 8 bits for a noun).

e Repeatedly find the closest pair (p, ¢) of words in W
(using the phonetic distance metric) and replace ¢
with a word from C' — W for which the distance to
any word in W is more than d(p, ¢), if such a word
exists. The resulting set will be a collection of
phonetically well-spread words.

e  Order W such that each pair of consecutive words
are as far from each other as reasonably possible.
Doing this optimally is NP-hard (Garey and
Johnson, 1990), however, we use a heuristic
algorithm based on pair-wise word swapping to
come up with a good order.

e  Assign integer values to words in W according to
Gray Code, so that consecutive integers differ in
exactly one bit while their respective code words are
distant.

Having described use types and the generation of MadLib
text sequences from authentication objects, we now show
some sample use cases.

4.4 Usage scenarios

We provide two representative usage examples.

In the first example, we consider a public printer
as the target device. Low-end printers are not usually
equipped with displays. However, a printer is capable of
output using its normal printing functionality. The user
can initiate output by pressing a button that prompts the
device to print the MadLib sentence yielded by the SAS
protocol. The other device (communicating to the printer
via a wireless main channel) vocalise or display the same
MadLib sentence thus allowing the user to authenticate
exchange by comparing the two sentences.

We note that audio also enables visually impaired users
to interact with devices. In this context, our solution can be
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used to aid visually such users not only to establish a secure
communication channel between trusted devices, but also
to determine whether the device itself'is trusted. One sample
usage scenario involves the authentication of a bank ATM.
A visually impaired user could be given a MadLib sentence
when opening a bank account. This MadLib sentence is
originally generated from the user’s unique account/card
number and its expiration date, via a keyed hash with the
bank’s secret key. When the user inserts the card into an
ATM machine, the latter re-generates and vocalises the
MadLib sentence corresponding to the account number,
thus authenticating itself to the user.

5 Single-channel pairing

We now describe device pairing when a wireless channel
is not available or its set up poses a burden to the user.
In this case, we use audio to exchange all protocol messages
between devices. Audio channel’s innate properties allow
the user to authenticate the actual communicating devices.
Consequently, the direct exchange of device public keys
over the audio channel suffices for secure device pairing
and obviates the need for the second phase.

5.1 Discovery and setup issues

The general pairing protocol introduced earlier in the
paper, as well as most prior related work, assume
the existence of a common, ready-to-use wireless
communication channel. Of course, many modern
personal devices tend to have at least one wireless interface.
However, there are realistic scenarios where two devices
do not — at least at the time of pairing — have a common
wireless interface. For example, one might only have
Bluetooth and the other — 802.11. Why pair such devices?
One reason could be because they would later connect to
the internet using their respective interfaces and would still
need to communicate securely.

Even if devices are equipped with a common wireless
interface, setting up the communication channel might
take both time and effort even for an expert user.
Non-technical users would consider common channel
set-up to be a real challenge. For example, with
802.11-equipped devices, each must be placed into ad
hoc mode and a new ad hoc network (complete with
an SSID) must be manually configured. Infrared (IrDA)
would typically need to activated manually on both
devices. It also requires line-of-sight alignment between
transceivers. In the Bluetooth case, one device needs to be
explicitly made discoverable and the other must discover
it. These can be tricky steps for ordinary users, especially, if
there are many Bluetooth-enabled devices in proximity: the
list of available devices can be long and confusing. In fact,
this may turn into a real headache if multiple devices share
the same (e.g., ‘default’) name. This is likely to happen
when pairing popular models of personal devices, such as
Motorola RZR phones.

5.2 Audio as the main channel

We now introduce an approach that relies only on
the audio channel. A speaker and a microphone are
the only device interfaces required. We consider both
uni-directional and bi-directional key exchange protocol
flavours. For the latter, both devices must be equipped
with an audio-in and audio-out interfaces. Whereas, for
the former, one device must have an audio-out, and the
other — an audio-in, interface.

The protocol consists of a single phase. In its
unidirectional flavour, the target device sends the object
to be authenticated (i.e., its public key) to the personal
device: to do so, the target device encodes its public
key using an audio codec and plays the resulting audio
sequence. The personal device records the audio sequence
and decodesiit, using the corresponding decoder, to retrieve
the target device’s public key. In the bidirectional flavour,
the transfer is repeated with the devices automatically
switching roles.

The user is responsible for triggering the protocol
execution, i.e., pushing a button on each device and
identifying the playing device(s). At the very end of the
protocol, the user is asked whether there was any audible
interference (e.g., from some other, perhaps malicious,
device). If so, the exchanged public keys are discarded and
the protocol is aborted.

Since the encoded version of a public key can be
fairly large (several hundred bits), encoding must be
done using a fast codec, which provides relatively
high throughput. Our prototype implementation encodes
240 bits into a 3.4-s audio sequence. Nevertheless, the
high transmission rate has the undesirable side-effect of
producing rather unpleasant-sounding audio, similar to
that of old-fashioned phone modems.

The audio channel is inherently less resistant to noise
than wireless radio channel discussed in the previous
section. To improve protocol robustness, the hash of the
public key is encoded as well and appended to the audio
sequence. The personal device uses it as a checksum to
detect transmission errors.

Due to the inherent properties of the audio channel,
if an attacker tries to play the encoding of its own
public key in order to launch an MiTM attack, the
user can easily identify the audio source and abort the
protocol. In case of audible interference (e.g., a DoS
attack) the user can similarly abort the protocol. MiTM
attacks that try to transfer public keys to the personal
device using non-human-audible frequencies are not taken
into account: the application is tuned to use and record
only the range of frequencies that can be recognised
by the human ear. The audio channel also provides
some form of protection against DoS attacks, since the
user can easily identify the attacker’s audio source and
disable it. (Of course, we recognise that this rules out
hearing-impaired users.)

The single-channel protocol can also be used in
scenarios where devices share a common wireless
interface. Our approach is still useful since it can
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dramatically improves usability by eliminating the need
to configure such interfaces. Audio, as a broadcast
medium, does not need any initial configuration or
discovery phase, as do 802.11 or Bluetooth. Whenever
devices share another common interface (which they can
use for communication after pairing is performed), the
single-channel protocol can be easily modified to transfer
the necessary information for automatic configuration
of such interfaces. In our prototype implementation,
we experimented with including the Bluetooth physical
addresses into the exchanged messages. This added less
than 1 s of extra transmission time. After successful
termination, devices are able to automatically initiate
secure communication over their Bluetooth interface
without any further user involvement.

6 Security analysis

We now discuss security properties for the proposed
approaches.

6.1 Two-channel pairing

In this case, the communication model includes two
channels:

e common bi-directional wireless channel

e auni-directional auxiliary audio channel (from
devices to the user).

In our adversarial model, the attacker has full control
over the wireless channel, but, over the auxiliary audio
channel, its ability is limited to eavesdropping. In other
words, communication over the auxiliary channel is
authenticated. Although various Denial of Service (DoS)
attacks are possible on the wireless channel, we do not
address them, since there are simply no practical solutions,
even for the very basic attacks, such as jamming the wireless
signal.

As described earlier in Section 3, this approach uses
a 3-round SAS protocol. A SAS protocol provides
authenticated Diffie-Hellman public key exchange by
transmitting only a short k-bit (in our case k = 20) string
over the authenticated channel. Assuming that other
primitives, i.e., cryptographic hash functions and public
key algorithms are secure, attacker’s chances of success are
only negligibly higher than 27%(2720),

Since we assume that the attacker’s power over
the auxiliary channel is limited to eavesdropping, this
channel satisfies the authenticated property needed to
transfer a short string. If the devices themselves are not
compromised, this is a reasonable assumption, since the
only option for the attacker is to interfere with either the
audio or the visual channel. Such interference can not go
unnoticed. On the other hand, if any device is already
compromised, the secure pairing becomes pointless, since
the adversary can always extract the agreed-upon key from
the compromised device once the pairing process is over.
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6.1.1 Single-channel pairing

This approach requires a single channel: bi-directional
audio. In our model, the attacker can eavesdrop on this
channel but can not delay, replay, drop or modify messages
without being detected. This is a realistic assumption, since
the audio channel is human-perceivable and the user hears
any extraneous party that is loud enough to interfere with
legitimate communication between paired devices. Since
devices are also assumed to be not compromised, the
attacker can not delay or drop messages.

Because the user is aware of any interference on the
audio channel and cancels the protocol once an attack is
detected, the channel is always authenticated provided the
secure pairing protocol completes successfully. Note that,
if the protocol is cancelled, the exchanged public keys are
discarded and no shared key is ever generated. On the other
hand, if the attacker allows the protocol to complete by
not interfering with communication then the channel is
authenticated and attacker’s success probability depends
on its ability to solve the Computational Diffie-Hellman
(CDH) problem, which is believed to be computationally
infeasible.

DoS attacks are still possible, however, our protocol
has a clear advantage against such attacks, as compared
to previous work. Any DoS attack on the audio channel
can be immediately noticed and even traced back to
its source (in this case, a loud-enough audio source).
In summary, audio-based single-channel pairing is secure
against MITM attacks as long as the user can positively
identify active attacks on the communication channel.
Overall, it is the most resilient pairing solution against DoS
attacks.

7 Implementation

In this section we describe the prototype implementations
of the proposed methods.

7.1 Two-channel

Since this method is intended for a variety of mobile
computing platforms, portability is a key requirement.
We built the prototype using the highly portable Ewe
Programming System (Brereton, 2005) which facilitates the
development of Java applications.> Our implementation
runs on any Pocket PC (iPAQ in our experiments) as well
as on most Windows PCs.

We use 802.11 as the common wireless channel and run
the 3-round SAS-based protocol (described in Section 3)
after the user initialises the protocol on both devices. After
the 3-round exchange is over, the SAS string is converted
to the corresponding MadLib sentence. Depending on the
hardware, the user(s) have the option to vocalise or display
the sentence on either devices. Recall that there are four
types of user requirements or settings. Under the TYPE 1
setting, the user hears the same MadLib vocalised by both
devices. Under the TYPE 2 and TYPE 3 settings, the user
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reads the MadLib from one device and compares it to
the same MadLib vocalised by the other devices. Finally,
TYPE 4 involves the user reading and comparing two
Madlibs, one displayed by each device.

Owing to its modular software design, our solution can
utilise a variety of Text-to-Speech (TTS) engines. However,
most C/C++ speech engines are platform-dependent, while
those written for mobile devices are mostly proprietary.
Furthermore, Java-based TTS engines are available for
specific JVM-s that are unsuitable for resource-constrained
devices, such as smartphones and iPAQ-s. Specifically,
Sun offers the JSAPI and FreeTTS Java TTS engine
implementations. However, these run only on Java 1.4.
We employed an existing TTS application, Digit by
Digalo,* which is a simple lightweight clipboard reader that
uses the Elan Speech Engine.’ Our application copies the
text to-be-vocalised onto the system clipboard and Digit
speaks it out automatically or when the user presses a
button on the application window. Digit is initialised and
terminated from within the Ewe program.

Ewe does not provide a complete API for low-level
cryptographic primitives. Thus, we added a lightweight
cryptographic API to Ewe’s Java libraries for our needs.
For this purpose, we ported the Bouncy Castle crypto
package (bou, 2006) for JDK 1.3. For hashing we used
Ewe’s built-in SHA-1.

The FreeTTS and Bouncy Castle crypto package
are written solely in Java and do not link to
native platform-specific libraries, thus providing platform
independence. So far, we tested our system on Pocket
PC and Windows PC; it can also be used with other
Ewe-supported platforms by simply changing the TTS
engine.

7.2 Single-channel implementation

In this implementation, choosing the right codecis a crucial
step. The two main requirements are: reliability (low error
rate) and high throughput. In this respect, we can use
any fast and reliable codec that can cope with reasonable
amount of background noise.

Our codec is based on the results of the Digital Voices
project at PARC (Lopes, 2001). 240 bits are encoded
in a 3.4-second MIDI audio sequence where the first
160 bits represent the actual public key (in the EC-DSA
cryptosystem) and the last 80 bits correspond to a folded
hash of the public key, for error checking. The Bouncy
Castle (bou, 2006) crypto package is used for hash
computation. The length of the audio sequence represents
a reasonable trade-off between speed and robustness for
this codec: raising the tempo (throughput) of the encoder
would result in a shorter sequence, but the recording would
be less robust against background noise. As mentioned
earlier, the resulting sound is unpleasant for the human
ear, however, its duration is blessedly short. Alternative
implementations produce more pleasant sound at a cost of
longer duration: the same number of bits can be encoded
in a 15-second audio sequence reproducing a piano score
that is more pleasant for the human ear.

8 Discussion and limitations

Because audio is probably the most common interface
across all personal devices, we believe that proposed
approaches can accommodate pairing in for a wide range
of scenarios and devices. Most devices equipped with
some form of a wireless interface also have at least an
audio out interface. Nevertheless, embedding audio-in/out
interfaces on devices that do not already possess them
would require very little in terms of extra costs. Moreover,
audio interfaces tend to take small amounts of packaging
and surface area.

Despite many advantages, proposed approaches clearly
have some notable limitations. Both of them are
a poor choice for users who are hearing-impaired.
Also, visually-impaired users would not be able to read
text displayed by one or both devices. Furthermore, they
are unsuitable for noisy environments, such as factories,
convention floors or stadiums. They are also not viable
in places where playing loud audio is forbidden, such as
movie theaters, libraries, and certain areas in hospitals.
If two channels are used, both devices must be within
hearing range of the user. If only the audio channel is used
to transfer data, sufficient proximity is required so that the
personal device can hear its counterpart.

Our experiments were conducted with devices
separated by 1-2 feet (30-60 cm) with the user standing
between them. In noise-free settings, larger distances
are possible. However, we do not expect to exceed 5-6
feet (1.5-1.8 m) with commodity devices, such as PDAs
or cellphones. We also note that many prior methods
(Stajano and Anderson, 2000; McCune et al., 2005; Feeney
et al., 2002; Holmquist et al., 2001; Balfanz et al., 2002;
Kindberg and Zhang, 2003b) have the same proximity
limitations. In contrast, we expect that the Blinking-Lights
method (Saxena et al., 2006) and the laser-based (Kindberg
and Zhang, 2003a) techniques are somewhat better in this
regard, allowing distances upwards of 20 feet (6 m).

In addition to protection against impersonation and
MiTM attacks, proposed approaches offer users the ability
to detect some on-going DoS attacks in real time. Other
techniques can do little against DoS attacks that aim to
jam device interfaces used for the human-imperceivable
communication. (Digital jamming is not readily detectable
by humans.) Our single-channel approach allows a user to
detect the presence of extraneous noise and perhaps even
to identify its source.

Although we did not yet conduct any formal usability
studies for the methods described here, some prior work
analysed the usability of user comparison of MadLib
sentences (Soriente et al., 2007). Based on previous
results, we can confidently say that this more efficient
implementation of the two-channel authentication method
is equally usable and places relatively low burden on the
user.

On the other hand, we are unaware of any
previous work that analyses the human ability to detect
audio sources in the context of secure device pairing.
However, there is extensive literature in other fields
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(such as Pickles, 1982; Stevens and Davis, 1938; von Békésy
and Wever, 1960), which clearly confirms that a healthy
human is quite capable to identify the source of a
sound (i.e., perform sound localisation). Since sound
localisation is exactly what we are asking from the user
in the single-channel pairing, we argue that an average
human being with no hearing impairment can successfully
determine whether the sound originates from the intended
device(s).

We have performed a small-scale (five-person) test
trial where an extraneous remote-controlled device was
hidden in varying locations near the genuine devices during
the pairing protocol execution: behind the user, under
the user’s chair or under the desk in front of the user.
We triggered the remote-controlled device to transmit
data, while the genuine devices were exchanging their
public keys. All five participants easily detected the third
(extraneous) device. Although previous work and our
initial studies suggest that the security based on human
sound localisation ability is robust, a formal study with a
much bigger participant group is needed to determine the
error rate and exact security of this specific application.

9 Related work

As mentioned earlier, PKI-oriented solutions involve
rigid hierarchies and require the existence of trusted
offline Certification Authorities (CAs) (Kohnfelder, 1978).
Unstructured certification techniques such as PGP
(Zimmermann, 1995) assume a certain small degree of
separation among certified entities (i.e., a web of trust).
An alternative is an online TTP, such as Kerberos (Miller
et al., 1987; Steiner et al., 1998). However, such solutions
require constant presence and availability of an online TTP
which is not realistic in our envisaged scenarios. For this
reason, the remainder of this section focuses on closely
related prior research.

Stajano and Anderson (2000) made a seminal
contribution by bringing the problem into the spotlight.
The proposed techniques, however, required the use of
standardised physical interfaces and cables. The follow-on
work by Balfanz et al. (2002) and Feeney et al. (2002) made
progress by suggesting the use of infrared communication
as the human-verifiable side-channel. Though timely in its
day, this approach is no longer viable since:

e few modern devices are equipped with IrDA
interfaces

e the infrared channel itself is not fully immune to
DoS and MiTM attacks.

Capkun et al. (2003) proposed a further extension to allow
two previously unassociated devices to establish a key
utilising one-hop transitive trust.

Another approach involves graphical visualisation
of the hash of the exchanged cryptographic material.
The user needs to compare the visual output on
both devices. In order to make the comparison
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easier, researchers devised visual metaphors to represent
the hash. Levien a proposed a ‘snowflake’ mechanism
(Levien, 1996). Relyinh on the user’s ability to recognise
pictures (Perrig and Song, 1999) proposed wvisual
hashes — the output of an algorithm capable of mapping
random strings to fixed-sized images with properties
similar to that of a hash function. Their work demonstrated
how visual hashes can be used to authenticate the root
key of a CA with human assistance: the CA publishes the
visual hash of its key in a newspaper and each user can
easily verify whether the output of their local HVA with
the CA key as input, received through another channel
(e.g., the internet) matches the one in the newspaper.
Since relatively high-resolution displays are required, this
approach is suitable only for certain types of devices, such
as laptops, digital cameras, PDAs or high-end phones.
Last, Dohrmann and Ellison devised a colourful ‘flag’
representation (Ellison and Dohrmann, 2003).

The Seeing-is-Believing technique by McCune et al.
(2005) uses the visual channel to perform secure device
pairing. One device sends its public key to the other
through a human-imperceivable channel (such as 802.11)
and, at the same time, displays a visual encoding of the
public key in the form of a bar code. (If there is no display,
the use of barcode stickers is suggested). The receiver
device, with the help of the user, takes a picture of the bar
code and compares it with the one computed locally, using
the received public key as input. The protocol does not
rely on human visual ability, i.e., the user is not required
to recognise pictures, but it requires at least one device
to have a photo camera, and the quality of the picture,
either printed or displayed, to be quite good. If both devices
must send their cryptographic material, then each requires
a photo camera and the above sequence must be repeated
twice, thus increasing user burden.

Recently, Saxena et al. (2006) considered a variation
of Seeing-is-Believing (McCune et al., 2005) method by
showing how to achieve secure pairing if one device is
equipped with a camera, while the other has at least a
single LED. As before, the two devices exchange public
keys via some wireless channel, such as 802.11. Then, the
device equipped with an LED uses its blinking capability
to transmit the hash. The device with a camera records the
blinking pattern, extracts the hash and compares with the
hash computed as a result of the protocol. If they match,
it asks the user to accept on the other device; otherwise it
asks the user to abort. This protocol requires less in terms
of device features, but not all devices have a light detector
or a camera. Moreover, the comparative usability study
in Uzun et al. (2007) indicates that users are generally not
adept in following the prescribed order of interaction if it
involves more than one device.

Manual peer device authentication has also been
studied in Maher (1995), Gehrmann et al. (2004),
Gehrmann and Nyberg (2004) and Larsson (2001).
The common element of these solutions is that the user is
required to compare short numerical check values, which
are generated by hashing or taking the MAC of the
authentication object. Their limitation is that sufficient
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security dictates that the check values need to be relatively
lengthy (substantially more than the 4-digit hex vector
(Maher, 1995) suggests) rendering their comparison a
cumbersome and error-prone task for humans. Gehrmann
et al. (2004) improves on Maher (1995) by shortening
the required length of the check value, yet the user is
burdened with the task of typing a short 2-4 hex digit key
using the non-user-friendly input interface of a personal
device. Larsson (2001) also proposes a solution to reduce
the length requirement for the check values. However,
it requires a temporary shared secret between the two
peers, thus it is not applicable for devices with no prior
association. More recently, Cagalj et al. (2006) tackled
the problem of user-friendly mutual authentication with
three commitment-based (Vaudenay, 2005) techniques.
The first requires the user to compare approximately
half the number of bits of the previous solutions.
The other two techniques rely on the specifics of the
radio channel; they use distance bounding and integrity
codes.

There have been other proposals suggesting the use of
technologies that are more expensive and less common.
Kinberg et al. suggested an approach requiring RF and
ultrasound receiver /transmitters on both devices in their
earlier work (Kindberg and Zhang, 2003b) and laser
technology (requires each device to be equipped with a laser
transceiver) in their more recent proposal (Kindberg and
Zhang, 2003a). Holmquist et al. Smart-Its-Friends system
(Holmquist et al., 2001), proposed the use of a common
movement pattern as the security initiator when the
two devices are shaken together. In addition, Mayrhofer
et al. proposed ‘Shake well before use’ (Mayrhofer and
Gellersen, 2007). Both approaches require the devices to
be equipped with two-axis accelerometers. Since a user is
required to shake both devices together, they are unsuitable
for physically large/bulky devices. A more recent proposal
(Mayrhofer et al., 2007) also uses ultrasound to verify the
location of the transmitting devices and as the auxiliary
channel for message transfer as part of a key verification
protocol.

Several standardisation bodies also recognised the
importance of the problem and have begun working
on specifying more usable and more secure procedures
for device association. Wi-Fi Alliance is working on
specifications for Wi-Fi Protected Setup (Alliance,
2007). Microsoft has released specifications for Windows
Connect Now-NET (Microsoft, 2006), which is closely
related to Wi-Fi Protected Setup. Bluetooth Special
Interest Group has released specifications on Simple
Pairing (Group, 2006). The Universal Serial Bus (USB)
forum has recently released the specifications for
Wireless USB Association Models (Specification, 2006)
which specifies the procedures for pairing two Wireless
USB devices. Unlike research proposals, standards
specifications have to consider devices with a wide range of
hardware capabilities. Consequently, specifications do not
dictate a single pairing method. All of them support the
use of at least one type of auxiliary channel. For example,
Bluetooth Simple Pairing supports the use of Near Field

Communication (NFC) and Wireless USB Association
Models support the use of USB cables.

In summary, the aforementioned techniques and
specifications require particular hardware and/or
interfaces that may not be available on many devices.
There are common pairing scenarios, such as a wireless
printer and a laptop, an access point and a PDA, or a
wireless headset and a desktop, which are not supported
by any of the previously mentioned protocols. Even in
some pairing scenarios where the previous schemes seem
to apply, one would still need a combination of several
such schemes to accommodate a considerable fraction of
possible pairing scenarios. Moreover, the usability of such
a combination would be very questionable, especially since
no comprehensive usability study has been performed
for many of these complex schemes. Moreover, even
the very basic pairing methods have not fared very well
when employed by ordinary (technically non-savvy) users
(Uzun et al., 2007).
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Notes

'However, note that TYPES 2-4 use cases all require
non-visually-impaired users.

2In a MadLib puzzle, a funny story is created by having blanks in
a text filled in with syntactically-appropriate words chosen by
the player or an opponent. Mad Libs is a registered trademark
of Penguin Group (USA) Inc.

3Ewe is currently available for the following platforms:
Pocket PC (Windows CE), MS SmartPhone, Casio BE-300,
HandHeldPC Pro, Sharp Zaurus, Linux PC, Windows PC and
any Java 1.2 VM.

4See: www.digalo.com

®See: www.elantts.com



