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Abstract

In this paper, we study the algorithmic complexity of the Mastermind game, where results

are single-color black pegs. This differs from the usual dual-color version of the game, but

better corresponds to applications in genetics. We show that it is NP-complete to determine

if a sequence of single-color Mastermind results have a satisfying vector. We also show how

to devise efficient algorithms for discovering a hidden vector through single-color queries.

Indeed, our algorithm improves a previous method of Chvátal by almost a factor of 2.

1 Introduction

Mastermind [2,4] is a game played between two players—a codemaker and a codebreaker—using

colored pegs. Viewed mathematically, Mastermind is abstracted as a game where the codemaker

selects a plaintext vector, V , of length N , whose elements are selected from an alphabet of size K.

For consistency with the board game, the members of this alphabet are often referred to as “colors.”

The codemaker and codebreaker both know the values of N and K, and game play consists of the

codebreaker repeatedly making guesses, V1, V2, . . ., about the identity of V . For each guess Vi, the

codemaker provides a score on how well Vi matches V . In double-count Mastermind, which is the

standard version based on the board game, this score consists of a pair of two numbers:
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• A black count, b(Vi), which is the number of elements in Vi and V that match in both value

and location. That is,

b(Vi) = |{j: Vi[j] = V [j]}|.

• A white count, w(Vi), which is the number of elements in Vi that appear in V but in different

locations than their locations in Vi. That is, letting π denote an arbitrary permutation,

w(Vi) = max
π
|{j: Vi[π(j)] = V [j]}| − b(Vi).

In single-count Mastermind, which has been less studied, the codebreaker is given only the black-

peg count, b(Vi), for each guess, Vi. (Note that it is impossible to solve the problem given only

white-count scores.) The goal is for the codebreaker to discover V using a small a number of

guesses.

1.1 Previous Related Work

The original Mastermind game was invented in 1970 by Meirowitz, as a board game having holes

for sequences of length N = 4 and K = 6 colored pegs. Knuth [4] subsequently showed that

this instance of the Mastermind game can be solved in five guesses or less. Chvátal [2] studied

the combinatorics of general Mastermind, showing that it can be solved in polynomial time, in the

K ≥ N case, using 2NdlogKe+ 4N guesses, and Chen et al. [1] showed how this bound can be

improved, in this case, to 2NdlogNe+2N+dK/Ne+2 guesses. Stuckman and Zhang [6] showed

that it is NP-complete to determine if a sequence of guesses and responses in general double-count

Mastermind is satisfiable.

1.2 Our Results

In this paper we study the single-count (black-peg) version of Mastermind. Such a scenario is

motivated from genomic data, where a genomic database owner, Dave, can “play” a type of Mas-

termind game with a genomic query string Q–for which a querier thinks that he is querying Dave

in a privacy-preserving manner—but instead Dave is discovering the full identity of Q. That is,

Q is iteratively compared with strings provided by Dave (assumed to be from his database, D),

with each done in a privacy-preserving online manner, so that all is learned from each comparison

is the score measuring the similarity of the two strings, with the (black-peg) score for each string

comparison being revealed to the database owner (and possibly also the owner of Q) before the

next comparison begins.
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We begin our discussion by showing that, in fact, the problem of determining whether a se-

quence of Mastermind responses has a valid solution is NP-complete, even if each response is a

single-count response. In addition to the NP-completeness result, we show that an arbitrary query

string, Q, of length N from an alphabet of size K, can be discovered with NdlogKe + d(2 −
1/K)Ne+K guesses, each of which is a single-count response. This improves the Chvátal upper

bound by almost a factor of 2.

2 Black-Peg Mastermind is NP-Complete

As mentioned above, Stuckman and Zhang [6] show that double-count Mastermind satisfiability

is NP-complete. Unfortunately, their proof, which is based on a reduction from the well-known

Vertex Cover problem, does not translate into a proof that single-count Mastermind satisfiability

is NP-complete. So we provide such a proof in this section. The implications of this fact are

that satisfying an arbitrary sequence of Mastermind queries should be considered computationally

infeasible.

In the single-count Mastermind satisfiability problem, we are given a sequence of Mastermind

queries, V1, V2, . . . , VN , and the responses, b(V1), b(V2), . . . , b(VN), each of which is said to report

the number of indices such that the characters in a Vi and an unknown vector, V , at these locations

match. We are asked to determine if there indeed exists a vector V that satisfies all of these

responses.

Theorem 1: Single-count Mastermind satisfiability is NP-complete.

Proof: It is easy to see that single-count Mastermind satisfiability is in NP. For example, we could

nondeterministically guess a vector V and then test in polynomial time whether it satisfies all the

responses, b(V1), b(V2), . . . , b(VN).

To prove that single-count Mastermind satisfiability is NP-hard, we provide a reduction from

3-Dimensional Matching (3DM), which is a well-known NP-complete problem (e.g., see [3]). In

the 3DM problem, we are given three sets,

X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and Z = {z1, . . . , zn},

of n elements each. In addition, we are given a set T ofm triples, {(xi1 , yj1 , zk1), . . . , (xim , yjm , zkm)},
whose elements are respectively taken from the three sets, X , Y , and Z. The problem is to deter-

mine if there is a subset of triples such that each element in X , Y , and Z appears in exactly one

triple in this subset.
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Suppose, then, that we are given an instance of the 3DM problem, as described above. We

consider the unknown vector, V , to consist of the following sequence of variables:

(X1, . . . , Xn; Y1, . . . , Yn; Z1, . . . , Zn; T1, . . . , Tm),

where the semi-colons are used for the sake of notation to separate the four sections in the unknown

vector, V . We perform our reduction by constructing a sequence of guess vectors, V1, V2, . . . , VN ,

together with their responses, b(V1), b(V2), . . . , b(VN), so that there is a satisfying vector V for

these responses if and only if there is a solution to the given instance of the 3DM problem. Our

construction begins by setting the number of colors, K, to be m + 1. Intuitively, there is a color

associated with each triple in T , plus a “null” color, φ, which is guaranteed not to appear in our

unknown vector, V . We begin our sequence of queries with three special “enforcer” queries:

V1 = (φ, . . . , φ; φ, . . . , φ; φ, . . . , φ; φ, . . . , φ),

which has response b(V1) = 0,

V2 = (φ, . . . , φ; φ, . . . , φ; φ, . . . , φ; 1, 1, . . . , 1),

which has response b(V2) = n, and

V3 = (φ, . . . , φ; φ, . . . , φ; φ, . . . , φ; 0, 0, . . . , 0),

which has response b(V3) = m − n. Intuitively, V1 enforces the fact that the null color, φ, cannot

appear in the unknown vector, V2 enforces a counting rule that exactly n of the Ti’s will be set to

1, and V3 enforces a counting rule that the remaining m − n of the Ti’s will be set to 0. For each

triple, Ts = (xis , yjs , zks), we construct three query vectors, as follows.

Vs,1 = (φ, . . . , φ, s, φ, . . . , φ; φ, . . . , φ; φ, . . . , φ; φ, . . . , φ, 0, φ, . . . , φ),

where the s is in position is in the first group and the 0 is in position s in the fourth group. This

vector has response, b(Vs,1) = 1. Next, we construct

Vs,2 = (φ, . . . , φ; φ, . . . , φ, s, φ, . . . , φ; φ, . . . , φ; φ, . . . , φ, 0, φ, . . . , φ),

where the s is in position js in the second group and the 0 is in position s in the fourth group. This

vector has response, b(Vs,2) = 1. Finally, we construct

Vs,3 = (φ, . . . , φ; φ, . . . , φ; φ, . . . , φ, s, φ, . . . , φ; φ, . . . , φ, 0, φ, . . . , φ),
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where the s is in position ks in the third group and the 0 is in position s in the fourth group. This

vector has response, b(Vs,3) = 1. Intuitively, these three responses collectively form a “chooser”

gadget, where we will either have Ts = 0 or the three variables Xis , Yjs , and Zks , will each be set

to have color s (and Ts = 1).

This reduction can clearly be done in polynomial time. So all that remains is for us to show

that it works. Suppose, then, that there is a possible solution to the given instance of 3DM. Then

for each chosen triple, Ts = (xis , yjs , zks), we can assign colors Ts = 1, Xis = s, Yjs = s, and

Zks = s, which will satisfy each of the Vs,1, Vs,2, and Vs,3 vector responses for this value of s.

Likewise, setting Ts = 0 will satisfy each of the Vs,1, Vs,2, and Vs,3 vector responses for a triple

Ts that is not chosen. Finally, given that there are n chosen vectors, we will satisfy the three

preliminary vector responses as well.

Suppose, alternatively, that we have a vector V that satisfies all of our vector responses. We

know that each Xi, Yj , and Zk must be assigned a color other than φ. Since there are only m + 1

colors, this implies each Xi, Yj , and Zk must be assigned a color corresponding to a triple number,

s. If this Ts = 1, then in order to have satisfied the vectors Vs,1, Vs,2, and Vs,3, we must have

set Xis = s, Yjs = s, and Zks = s, which implies we can include the triple (Xis , YjsZks) in our

matching. If Ts = 0, then we do not include this triple in our matching. By the vector responses V2

and V3, we know that the number of triples chosen in this way is exactly n. Thus, we have found a

value 3-dimensional matching.

Thus, it is extremely unlikely that we will be able to find a polynomial-time algorithm that

can solve arbitrary Mastermind query sequences, even if they are single-count results. Note that

this is not the same as a guarantee that discovering a string Q requires a long query sequence,

however. For we show, in the section that follows, that such query strings, Q, can be discovered

fairly efficiently using a single-count Mastermind algorithm.

3 A Mastermind Algorithm for Single-Count Match Queries

In this section, we explore an algorithm for the single-count Mastermind game, where the code-

breaker, Dave, engages in a series of guesses against the unknown string, Q, each of which reveals

only the single-count score between the query string Q and strings provided by Dave, in an it-

erative online fashion. Here, we show that Dave can learn Q with a sequence of NdlogKe +

d(2− 1/K)Ne+K guesses, where N is the length of Q and K is the size of the alphabet (whose

members we call “colors”).
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We begin the algorithm for Dave by having him performK queries, each of which is a vector of

elements that are all the same color. This allows us to initially know the cardinality, c1, c2, . . . , cK ,

of every color in the unknown vector, Q. If any ci = 0, then we remove the color i from our

alphabet of colors, and update the value of K accordingly. The remainder of Dave’s computation

proceeds as a recursive divide-and-conquer algorithm, which is similar in structure to the approach

of Chvátal [2], but improves his bound by almost a factor of 2, even though his algorithm was for

the general two-color case, by reusing knowledge gained in previous reclusive calls.

The generic problem is to determine the values of all the elements in a range Q[l..r], which

initially is the entire vector Q = Q[0..N − 1], assuming we know the values of c1, c2, . . . , cK , of

every color in Q[l..r], and each ci > 0. If K ≤ 1, we are done; so let us assume without loss of

generality thatK ≥ 2. In addition, we assume inductively that we know d, the number of instances

of color 1 outside of the range Q[l..r]. Initially, of course, d = 0.

Given this initial setup, we splitQ[l..r] intoQ[l..m] andQ[m+1..r], wherem is in the middle of

the interval [l, r]. The main challenge, then, is to provide forQ[l..m] andQ[m+1..r] the same setup

we had forQ[l..r]. This setup can be accomplished by determining the cardinalities, x1, x2, . . . , xK

and y1, y2, . . . , yK , of every color that respectively appears in Q[l..m] and Q[m+ 1..r]. We do this

with a series of K − 1 additional queries, where we guess that the elements in Q[l..m] are of color

i, for i = 2, 3, . . . , K, and that the rest ofQ is of color 1. Let the values of these queries be denoted

as b2, b3, . . . , bK , and note that, at this point, we know the following:

xi + yi = ci, for i = 1, 2, . . . , K (1)

xi + y1 = bi − d, for i = 2, 3, . . . , K (2)

x1 + x2 + · · ·+ xK = m− l + 1. (3)

Thus, we can determine y1, as

y1 =
c1 +

∑K
i=2(bi − d)− (m− l + 1)

k
,

for y1 is counted k times in the sum of c1 and all the (bi−d)’s, and the sum of the xi’s ism−l+1, by

Equation (3). Given the value of y1, we can then determine all the xi values, by using Equation (1)

for x1 and Equation (2) for x2, x3, . . . , xK . Moreover, once we have all these xi values, we can

determine the values, y2, y3, . . . , yK , using Equation (1). Finally, we can determine the values

d′ = d + y1 and d′′ = dx1 and use these respectively for the role of d in Q[l..m] and Q[m + 1..r].

This gives us all the values necessary to then recursively determine Q[l..m] and Q[m+ 1..r].

Let us, therefore, analyze the number,G(N,K), of vector guesses performed by this algorithm.

Ignoring for the time being the initial set of K guesses, we can bound this parameter using the
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following recurrence:

G(N,K) = 2G(N/2, K) + min{N,K − 1}.

Thus, adding the initial K queries back in, we get that the total number of guesses is at most

NdlogKe+ d(2− 1/K)Ne+K.

Therefore, we have the following.

Theorem 2: Given an unknown length-N string Q, defined on an alphabet of size K, a Master-

mind algorithm can discover Q in polynomial time using NdlogKe + d(2 − 1/K)Ne + K tests

against Q, each of which reveals only the number of positions where Q and the test string match.

4 Conclusion

We have shown that, even though the single-count and sequence-alignment Mastermind satisfiabil-

ity problems are NP-complete, one can effectively construct single-count Mastermind algorithms

on arbitrary character strings just by knowing basic information about the length of the strings and

the number of characters in the alphabet used to construct those strings.
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