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Abstract In this paper, we study the problem of approxi-
mate topological matching for quadrilateral meshes, that is,
the problem of finding as large a set as possible of match-
ing portions of two quadrilateral meshes. This study is mo-
tivated by applications in graphics that involve the modeling
of different shapes that have results needing to be merged
in order to produce a final unified representation of an ob-
ject. We show that the problem of producing a maximum ap-
proximate topological match of two quad meshes is NP-hard
and that its decision version is NP-complete. Given these
results, which make an exact solution extremely unlikely,
we show that the natural greedy algorithm derived from
polynomial-time graph isomorphism can produce poor re-
sults, even when it is possible to find matches with only a
few nonmatching quads. Nevertheless, we provide a “lazy-
greedy” algorithm that is guaranteed to find good matches
when mismatching portions of mesh are localized. Finally,
we provide empirical evidence that this approach produces
good matches between similar quad meshes.
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1 Introduction

Quadrilateral meshes represent polyhedral surfaces in such
a way that each face is a quadrilateral, which is quite useful
in computer graphics applications. The usefulness of these
meshes comes in part from the fact that rectangular texture
images are easily mapped without clipping into quadrilater-
als (which we sometimes refer to as “quads”). Thus, quad
meshes are desirable for surface modeling.

Quad meshes are also useful in finite-element analysis,
where one desires adaptive refinement into regions of in-
terest, since quadrilaterals are easily partitioned into finer
quadrilateral grids. Indeed, several mesh generation algo-
rithms, such as that of Schonfeld and Weinerfelt [37] and
others [2, 30, 40], begin with a coarse quadrilateral mesh
and then refine each quad of interest into a regular grid of
sub-quads.

In order to best utilize the time of people working with
a given quad mesh, it is common for a single mesh to be
used in a number of different processing paths in parallel.
For example, a single mesh might be processed simultane-
ously for texture mapping, feature mapping, finite-element
analysis for physical simulation purposes, and morphing for
object animation. Unfortunately, the software systems that
perform multiple simultaneous tasks on a given mesh M of-
ten use different internal representations of M , which in turn
result in different representations of M in the output of each
task. For example, different mesh processing software sys-
tems could be developed by different vendors, each with its
own proprietary way of storing of meshes.
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Fig. 1 Illustrating the symmetry in anthropomorphic models. Being
able to approximately match the left and right sides of these models
can speed up painting and animation tasks. Note that these models have
similar, but not exact, left-right reflective symmetry

More importantly, many of the computational tasks per-
formed on meshes are likely to slightly change their struc-
ture in places. For example, a physical simulation or anima-
tion task may introduce a “rip” in a surface, or a modeler
may detach a model feature (such as a hand or eyebrow),
modify it to reflect a new pose, and reattach it to the original
model. In addition, models that possess significant symme-
tries, such as biological characters and architectural models,
often have their texturing and feature mapping tasks per-
formed on a single portion with the desire that this work
be mapped to the symmetric portion(s), even if there are a
few localized asymmetries to deal with during this mapping
process. (See Fig. 1.)

For the above applications, we are interested in matching
pairs of quad meshes in a way that is as independent of geo-
metric features as possible. That is, we would like matches
that align the topological structure between two given quad
meshes as best as possible, matching the orientations of each
paired-up vertex and quad in the two meshes. Therefore, we
are interested in this paper in the approximate topological
matching problem, which takes two given quad meshes and
finds the best matching between them based on topological
information alone. (See Fig. 2.)

1.1 Prior related work

Before presenting our results, let us review prior related
work on quad meshes and mesh matching.

1.1.1 Quad mesh generation and remeshing

This is not a paper on mesh generation, but let us never-
theless mention some of the modeling approaches that give
rise to quad meshes. There are several quad mesh generation
methods that involve starting from a coarse quad mesh and
subdividing each coarse quad into a finer structured mesh
[2, 30, 37, 40]. Of course, there are also methods that do not
create structured submeshes as a refinement step [5, 7, 9,
32, 38]. Although this is not a paper on mesh generation,

Fig. 2 The Approximate Topological Matching Problem. Quads in
(dark) red denote mismatched regions. In spite of there being major
pieces of the first mesh missing from the second, the parts of similarly
are still matched (the two right hands actually do not match topologi-
cally, as the hand of the second model is attached differently)

we note that the mesh generation process often provides us
with properties we can exploit in our algorithms. For exam-
ple, many mesh generation and remeshing algorithms create
large patches of structured submeshes, each having degree 4
(e.g., see [1, 14, 33, 35, 42]). Such submeshes are still rela-
tively common, of course, even if not directly constructed,
since, by an easy argument that follows directly from Euler’s
formula, the vertices in any quad mesh of bounded genus
have average degree equal to 4.

1.1.2 Mesh compression

One tool we use in our approximate topological matching
algorithm is to compress the original quad mesh so as to re-
duce the number of candidate starting points for our match-
ing process. The problem of mesh compression has histori-
cally been studied in the classic sense of data compression,
where one wishes to produce a concise representation of a
mesh for the sake of reduced transmission and storage costs
[10, 22, 24, 25, 41, 43]. Our reason for using mesh com-
pression instead is based on the desire to speed up the com-
putation time in an algorithm that operates on quad meshes.
Thus, our approach actually fits the spirit of other algorithms
(e.g., see [18, 19, 39, 45]) that perform data compression so
as to improve algorithmic performance.
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1.1.3 Graph isomorphism

In the classic graph isomorphism problem, we are given a
graph G = (V ,E) and a graph H = (W,F ) with |V | = |W |
and |E| = |F |, and we are asked if there is a mapping
f : V −→ W such that edge e = (v,w) is an edge in E if
and only if (f (v), f (w)) is an edge in F . Applied to the
mesh matching problem, graph isomorphism corresponds
to the problem of finding an exact topological match with
no edges, vertices, or faces unmatched between the two in-
put meshes. Much work has been done on the graph iso-
morphism problem for general classes of graphs (e.g., see
[11, 21, 28]), for which it is not known whether graph iso-
morphism can be solved in polynomial time or if the graph
isomorphism problem is NP-complete. For the special case
of planar graphs, or more generally for models of bounded
genus, isomorphism can be solved in linear time [23, 27],
but these algorithms are fairly complex.

The problem of solving graph isomorphism for meshes
can be solved in polynomial time, even for models of high
genus. The reason is that, in addition to their graph structure,
meshes possess structure derived from the fact that they are
embedded in manifold surfaces. In particular, such embed-
dings impose a specific, given ordering on the edges around
each vertex, v, which corresponds to a clockwise or counter-
clockwise listing of the edges incident to v. Thus, given a
mapping of an edge in G to an edge in H , it is a simple mat-
ter to “grow out” the respective corresponding matching be-
tween G and H so long as such matches are possible. That
is, there is a simple O(m2) algorithm for finding an exact
topological match between two m-edge meshes (or deter-
mining that no such matching exists)—attempt to grow out
a possible match between G and H starting from each possi-
ble matching of edges in G to a given edge e in H . In practi-
cal applications, such algorithms are still too slow, however,
and we address practical algorithms for the graph isomor-
phism problem on quad meshes in a different paper [16].
Our approach in this other paper is based on a technique
that is inappropriate for solving the approximate topological
matching problem.

1.1.4 Graph edit distance

The approximate topological matching problem is related to
the problem of computing the edit distance between two
graphs [6, 8, 17, 31]. The concept of graph edit distance
was first introduced by Eshera and Fu [17]. It involves the
computation of a measure of similarity between two graphs
based on the minimum number of edit operations, such
as edge insertions/deletions and vertex insertions/deletions,
that would be needed to convert one graph into another,
which is a problem shown to be NP-hard. Subsequent work
has focused on heuristic methods for computing graph edit

distance. For example, Berretti et al. [6] describe a distance
metric on graphs and apply it to content retrieval for color
images, and Neuhaus and Bunke [31] use automatic learning
methods to compute the functions for graph edit distance.

The approximate topological matching is not the same
as graph edit distance, however. Graph edit distance is con-
cerned with minimizing the number of edit operations to
convert one graph to another, whereas approximate topolog-
ical matching is concerned with maximizing the amount of
common matching quads between two quad meshes, even
if there are large portions of one of the two meshes that
might not match with any part of the other. Thus, the ap-
proximate topological matching problem is an adaptation
of the maximum common subgraph problem [26] to quad
meshes, where we wish to match oriented quad faces as well
as vertices and edges. The distinction between edit distance
and approximate topological matching is important in object
modeling applications, for instance, where one mesh could
be an early version of a model, such as a character’s face,
before new facial features are added, such as eyebrows, eye
lashes, and warts, and we want to match the earlier version
as best as possible against the current version. In such cases,
it is better to ignore the mismatching parts rather than weigh
them negatively in an edit distance value.

1.2 Our results

In this paper, we study the approximate topological match-
ing problem for quadrilateral meshes. We show that this
problem is NP-hard and that it has a decision version that is
NP-complete. Together, these results imply that it is very un-
likely that there is a polynomial-time algorithm for approxi-
mate topological matching. Thus, we develop a heuristic al-
gorithm for approximate topological mesh matching, based
on the use of a skeleton graph that is a well-defined, robust
subgraph of the mesh. This skeleton is then used to identify
anchors to begin a matching process similar to the way the
medial axis is visualized for a polygon (e.g., see [12, 34]).
If we imagine that the plane is made of a combustible ma-
terial and we start a fire starting from each boundary edge
of the polygon, then the medial axis is defined by the places
where two waves of fire meet. In our case, we apply this ap-
proach to quad meshes, viewing the quads as “combustible
material” and the anchors as the starting points for our fires.
We grow regions in the two input meshes simultaneously,
matching similar topological substructures as we go.

Such a fire-propagation approach to matching the two in-
put meshes has an unfortunate complication, however. In
particular, if we use the natural greedy approach to propa-
gate matching portions of the wavefront, then this process
can lead to poor matches. Specifically, we show that even if
one small portion of one mesh is shrunk relative to a por-
tion in the other, this greedy algorithm can produce globally
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poor matches. Nevertheless, we show that our fire-growing
approach to approximate matching can be made to work ef-
fectively even in these cases, by growing the wavefronts in a
“lazy-greedy” fashion. In addition, we provide experimental
results that show that the lazy-greedy algorithm can produce
good matches quickly in practice.

2 Preliminaries

Before we discuss our results, let us give some preliminary
definitions and observations about quadrilateral meshes.

2.1 The topology of quad meshes

Any graph drawn on the sphere S0 in three-dimensional
space partitions the surface of S0 into cells such that each
is homeomorphic to a disk (we will always assume in this
paper that graphs are drawn without edge crossings). Each
such cell is called a face in the embedding. Adding g “han-
dles” to S0 gives the surface Sg , which is said to have
genus g. For example, a traditional coffee cup is of genus 1.
Likewise, the dog toy shown in Fig. 3 has genus 16.

A cellular embedding of a graph on Sg is a drawing that
partitions Sg into cells such that each is homeomorphic to a
disk. We define a quadrilateral mesh to be a cellular embed-
ding of a graph G = (V ,E) onto a surface Sg such that each
face is a quadrilateral. We say that the genus of the mesh
is g in this case. We therefore view a quad mesh as a triple
(V ,E,Q) where V is a set of vertices, E is a set of edges,
and Q is a set of quadrilaterals. In addition, we assume that
quad meshes are represented with a data structure, like the
“winged edge” structure [4], that supports the following op-
erations:

– List the incident edges around a given vertex (in clock-
wise or counter-clockwise order) in time proportional to
the degree of that vertex.

– List the bounding edges around a given face (in clock-
wise or counter-clockwise order) in time proportional to
the size of that face.

– List the two vertices that are the endpoints of a given edge
in constant time.

Fig. 3 A dog toy, which has
genus 16

The simplest form of quad mesh is a structured mesh, where
every vertex has degree four. The average degree of vertices
in a bounded-genus quad mesh is 4, and it is common for
the majority of vertices in a quad mesh to have degree 4. For
this reason, if a vertex in a quad mesh is an interior vertex
with degree different than 4, or an exterior (boundary) vertex
with degree different than 3, then we refer to that vertex as
an extraordinary vertex.

2.2 The size of a quad mesh

Traditionally, an algorithm operating on a graph G is charac-
terized in terms of n = |V |, the number of vertices of G, and
m = |E|, the number of edges in G. We have these measures
in quad mesh algorithms as well, but we also have q = |Q|,
the number of quads, so it is useful to relate these quantities.

Observation 2.1 In a quad mesh with m edges and q faces,
2q ≤ m ≤ 4q .

Proof If we sum up the number of edges on every face, we
will count each edge at least once and at most twice. Since
each face is a quadrilateral, 4q ≤ 2m and m ≤ 4q . �

Observation 2.2 The number of edges and faces in a quad
mesh can be arbitrarily larger than the number of vertices.

Proof We can place two vertices at opposite poles of a
sphere and add as many edges as we like joining them. Now
remove the sphere and enlarge each edge to be a thin tube.
Next, take each original vertex and split into two points sep-
arated by the width of a tube, with one on top and one on the
bottom. This creates a shape similar to the dog toy shown in
Fig. 3. Now, for each tube, run an edge between the two top
vertices, an edge between the two bottom vertices, and an
edge joining top to bottom at each pole. This creates a quad
mesh with four vertices and an arbitrary number of faces and
edges. �

Although it is not uncommon in the solid modeling lit-
erature to allow for such multiple edges and even self loops
in the graph defined by a quadrilateral mesh, we will restrict
ourselves in this paper to simple meshes, where we disallow
multiple edges (between the same pair of vertices) and self
loops. Likewise, we disallow multiple edges and self loops
in the dual graph, which is formed by placing a vertex in
each quad and joining two quads Q and R with an edge any
time Q and R have an edge of the mesh in common. Like-
wise, we require that the mesh be well formed, meaning that
it satisfy the following:

1. For each vertex v, the set of quads containing v is con-
nected in the dual graph.
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2. The boundary of a quadrilateral mesh M consists of all
edges of E that belong to exactly one quadrilateral in M

and all vertices incident to an edge of this type. For every
cyclic portion C of the boundary of M on Sg (that is, a
“hole” in the mesh), the interior of C is homeomorphic
to a disk. That is, each hole in M is contractible.

3. Every edge in M is adjacent to at least one and at most
two quadrilateral faces of M .

4. Any two quadrilaterals in Q intersect in a single edge, a
single vertex, or the empty set.

Observation 2.3 In a simple, connected, well-formed quadri-
lateral mesh M of genus g, with n vertices and m edges,

m ≤ 2n + 4g − 4.

Proof Since M is a simple, cellularly embedded graph in
Sg , the Euler characteristic implies that

n − m + q = 2 − 2g.

Specifically, the Euler characteristic (which is also known
as “Euler’s formula” or the “Euler–Poincaré characteristic”)
states that, in such embeddings, the number of vertices mi-
nus the number of edges plus the number of faces is equal
to 2 − 2g. That is, in our case, m = n + q + 2g − 2. By
Observation 2.1, q ≤ m/2. Thus, m ≤ 2n + 4g − 4. �

In almost all practical applications of quadrilateral meshes,
the genus g of a given mesh is bounded by constant and is
almost certainly O(n). Thus, the above lemma implies that
in almost every practical application using a mesh M with
n vertices and m edges, m is O(n). Thus, for example, the
time complexity of the simple wave-growing exact graph
isomorphism algorithm on such meshes is O(n2). We also
have the following.

Lemma 2.1 In a simple, connected, well-formed quadrilat-
eral mesh M of genus g, with n vertices and m edges,

m ≤
(√

4

3
g + 2

)
n − 4.

Proof The proof follows that of a similar lemma of Wood
and Telle [44] but is adapted to quad meshes. From Obser-
vation 2.3 we know that

m ≤ 2n + 4g − 4.

So we need to show that 4g ≤ (

√
4
3g)n. That is, we need to

show that g ≤ n2/12. This follows from the fact that M is
simple and the complete graph on n vertices, Kn, has genus
at most n2/12 (e.g., see [29]). �

3 On the difficulty of approximate topological matching
of quad meshes

As mentioned above, the problem of finding a best approx-
imate topological match between two quad meshes has sev-
eral uses in object representation and rendering applica-
tions. Unfortunately, as we show in this section, the prob-
lem of finding an optimal approximate topological match is
NP-hard.

In order to be precise, let us formalize the approximate
topological matching problem for quad meshes. Suppose
that we are given two quadrilateral meshes, M1 and M2.
A matching submesh S1 of M1, with respect to M2, is a con-
nected set of quads in M1 that is mapped one-to-one to a
connected set of quads in M2 by a function μ that maps
quads in S1 to quads in M2 such that q1 and q2 are adja-
cent in S1 if and only if μ(q1) and μ(q2) are adjacent in
M2 (using adjacency across edge boundaries). The approx-
imate topological matching problem is to find a matching
submesh S1 of M1, with respect to M2, and the correspond-
ing mapping function μ such that S1 has the largest number
of quads over all such submeshes. Unfortunately, we have
the following.

Theorem 3.1 The approximate topological matching prob-
lem for quad meshes is NP-hard.

Proof We will give a reduction from the known NP-
complete problem of determining if a given cubic planar
graph is Hamiltonian [20]. Suppose then that we are given
an n-vertex cubic planar graph G as input, that is, a graph
G that has degree 3 and which can be drawn in the plane
without crossings. Our proof is based on showing that we
can construct two meshes M1 and M2 in polynomial time
such that all but n quads of M1 can be matched with part of
M2 if and only if G is Hamiltonian, that is, G contains as a
cycle that visits each vertex in G exactly once. We begin our
construction by using any existing polynomial-time method
(e.g., see [3, 13, 36]) to produce an embedding of G in an
O(n)×O(n) integer grid, where n is the number of vertices
in G. This embedding allows us to associate integer coordi-
nates in the plane to the vertices of G, from which we will
build a quad mesh, M2. Before we perform this construc-
tion, however, let us first build the mesh M1 that we want to
match completely to M2.

In particular, let C be a simple cycle with n vertices, say,
embedded at regular intervals around the boundary of a suf-
ficiently large circle in the plane (separate from the grid G

is embedded in). We construct a mesh M1 from C by ex-
panding each edge of C into a connected sequence of four
quads, linked in a “chain,” and expanding each vertex of C

according to the replacement submesh of four quads shown
in Fig. 4a. That is, if we have an edge (u, v) in C connecting
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Fig. 4 Gadgets used to prove that approximate topological matching
is NP-hard: (a) the vertex replacement submesh for C, (b) the vertex
replacement submesh for G

u to v that is followed by an edge (v,w), we replace (u, v)

by a chain of four quads that connect to v’s four quads as
in the lower-right part of Fig. 4a, and we have the chain of
four quads for (v,w) connected as in the upper-left part of
Fig. 4a.

We convert G into a second quad mesh M2 by expanding
each edge into a chain of four quads, as in our construc-
tion of M1, but we connect them to vertices in a different
way. Specifically, each vertex in G has degree 3, so we in-
stead connect each edge chain of four quads according to
the replacement mesh shown in Fig. 4b. The dashed lines
in the figure show all the possible ways that a maximum
number of quads in a vertex submesh from M1 can match
a maximum number of quads in the vertex submesh in M2.
Namely, a vertex submesh of four quads in M1 can match at
most three quads in a vertex submesh M2. That is, all but one
of the quads in a vertex submesh of M1 can match in a vertex
submesh of M2. Also, note that the same cannot be said of
the submeshes of M1 associated with edges of C. Namely,
note that since each edge in C is expanded into a connected
chain of four quads, the quads in an edge submesh of M1

can match at most two quads in a vertex submesh of M2.
In other words, to get the largest number of matching quads

between M1 and M2, we need to match vertex submeshes in
M1 to vertex submeshes in M2.

So we have yet to show that G is Hamiltonian if and only
if all but n of the quads in M1 can be matched with quads
in M2. Suppose that G is Hamiltonian. That is, C is a sub-
graph of G; hence, we can match each vertex submesh of
M1 with a vertex submesh of M2, using the cycle C as a
guide on how to similarly match each edge submesh of M1

with an edge submesh of M2, again, using the embedding of
C in G as a guide. Then there is a topological match of M1

in M2 that pairs up all but n quads from M1, i.e., the number
of matched quads between M1 and M2 is 7n.

Suppose, on the other hand, that there is a match of M1

and M2 that matches 7n quads, that is, all but n quads
from M1. As we have noted above, the only way this can oc-
cur is if the edge submeshes of M1 match edge submeshes
of M2 and three quads in each vertex submesh of M1 match
inside a vertex submesh of M2. Thus, C is a subgraph of G,
that is, G is Hamiltonian. This completes the proof. �

In addition to the optimization problem of finding the
best approximate topological match between two quadrilat-
eral meshes, we can create a decision version of the prob-
lem:

Given two quad meshes, M1 and M2, and an integer
parameter, K , is there a topological match of meshes
from M1 to M2 such that the number of matched quads
is at least K?

This decision problem is also difficult.

Theorem 3.2 The decision version of the approximate topo-
logical matching problem for quad meshes is NP-complete.

Proof To show that this decision version is NP-compete, we
need to show it is in NP and that it is NP-hard. First, to see
that it is in NP, note that if we nondeterministically guess
an assignment of quads in M1 to M2, we can verify in poly-
nomial time that this assignment satisfies the connectivity
requirements to be a topological match and that the number
of matching quads is at least K . Thus, this decision version
of approximate topological matching is in NP. To show that
it is NP-hard, all we need to do is repeat the proof of Theo-
rem 3.1 using K = 7n. �

4 A heuristic algorithm for approximate topological
matching

Given that the approximate topological matching problem
is NP-hard and that it has a decision version that is NP-
complete, it is very unlikely that there is an efficient algo-
rithm for solving it exactly. Thus, let us discuss heuristic
approaches.



Approximate topological matching of quad meshes 777

4.1 Identifying anchors via color assignment

Let us begin with the starting point for our heuristic algo-
rithm, the identification of good anchors that can seed the
process of matching pairs of quads in the input meshes M1

and M2, that is, extraordinary vertices in M1 and M2 that
have relatively distinctive neighborhoods. Note: if there are
no extraordinary vertices at all (e.g., if M1 and M2 are tori),
then we pick an arbitrary pair of vertices in M1 and M2 as
anchors.

In order to find a good set of anchors in the general case,
we apply a few iterations of the Weisfeiler and Leman (WL)
algorithm for exact graph isomorphism (e.g., see [21]). Re-
call that in the WL algorithm, we initially label each vertex
with a label associated with its degree.1 Then, each vertex is
labeled by a string of its neighbors’ labels in an order that
appears in the topological embedding. In turning the cyclic
ordering into a linear ordering, we pick the one that is lex-
icographically minimum. Then we let these strings be the
new labels of the vertices (which we can renormalize to be
the integers from 1 to n with a simple radix sort). Algo-
rithm 1 gives a pseudocode for this procedure, which views
the vertex labels as “colors.”

Observe that the second loop in Algorithm 1 can be re-
peated to refine the color labels of vertices. This repetition
should be done until we reach a reasonable stopping condi-
tion. For example, we used the stopping condition of repeat-
ing until we reach a set upper bound, k, on the number of
iterations or until at least one pair of uniquely labeled ver-
tices are found, one from each mesh. If we repeat this loop
i times, the label of each vertex u will contain information
about the vertices that are within distance i from u. The run-
ning time of this second loop is 2m = O(m), which is O(n)

in the case of planar meshes or meshes of at most linear
genus, by Observation 2.3.

Algorithm 1 Algorithm for ColorGraph

1Not only the degree of each vertex can serve as the seed for labels; we
may also choose to use the edge weights in the compressed meshes. In
order to do so, we can label each edge by number of edges contracted
while compressing the meshes.

The final step of the algorithm for identifying seeds to
initiate mesh-matching growth from is that of finding cor-
responding anchors from the labeled compressed meshes.
In order to find such seeds, we first match the rarest (hope-
fully unique) labeled vertices returned from the two com-
pressed meshes and then look for matching neighbors of the
two matched vertices. Again, for most meshes, this process
takes O(n) time in the worst case, by Observation 2.3 or
Lemma 2.1.

4.2 Skeleton graphs: compressing meshes for improved
anchor finding

As noted above, we are interested in finding rare or even
uniquely labeled anchors, so as to limit the number of pos-
sible candidate starting points for growing matching sets of
quads between the two input meshes. Thus, it makes intu-
itive sense that we should concentrate on extraordinary ver-
tices. In order to focus on the adjacencies between these ver-
tices, we apply a compression scheme that focuses on extra-
ordinary vertices and in most cases reduces the size of the
graph we must deal with.

4.3 Particle shooting

The idea for constructing this compressed skeleton graph
inside each mesh is quite simple: we imagine that we shoot
a particle out along every possible edge going out of each
extraordinary vertex. These particles travel separately along
the edges going out from extraordinary vertices. When a par-
ticle enters a normal vertex, it continues through that vertex
and leaves out the opposite side (unless this is a boundary
vertex and there is no edge on the other side). In propagat-
ing these fictitious particles in this way we trace out a sub-
graph in each input mesh, M1 and M2. We let the particles
continue to move, tracing out the compressed graph we are
going to use for color label assignment, until each such par-
ticle reaches another extraordinary vertex (which is a very
common occurrence given the way that people build quad
meshes in practice) or the particle reaches a boundary edge.
We then perform our anchor-finding procedure on this skele-
ton graph. (See Fig. 5.)

4.4 A false start: the greedy algorithm

Given a set of anchors to begin our matching process, per-
haps the most natural heuristic algorithm for solving the
approximate topological matching problem is to start with
a seed pair of matching quads, starting at some candidate
anchors, and grow out matching meshes from this starting
point.

The natural greedy algorithm that is based on this ap-
proach would be to grow out the matching set of quads in
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Fig. 5 Anchor finding in a simple quad mesh, M1. This mesh has
five extraordinary vertices consisting of the four corners and the vertex
marked “start.” The vertex marked “start” is the best candidate for an
anchor in this mesh, since the neighborhood structure of the other four
extraordinary vertices are similar to each another. The edges traversed
in the “particle-shooting” process are shown bold

waves, adding as many quads as possible so as to satisfy the
adjacency constraint for quads (e.g., by restricting our at-
tention to quads that are adjacent across an edge or vertex).
Unfortunately, this greedy approach suffers from a serious
drawback, which is highlighted by a simple example.

Suppose that we are given two similar meshes, M1 and
M2, as, for example, shown in Figs. 5 and 6, such that M2

is an exact match for M1 except that some small group of
quads in M2 is compressed into a set of edges.

Suppose further that we grow out sets of matching quads
in M1 and M2 starting from some anchor point, using the
greedy approach of matching as many quads as possible
with each wavefront propagation. When this propagating
wavefront reaches the set of compressed quads, it will cor-
rectly match long sets of quads on each side of the mis-
matching portion. But it will also incorrectly match as many
quads as possible across the compressed edges as well. Un-
fortunately, this sets off a cascading failure, as the wave-
front that propagated across the compressed quads will be
out of phase with the (correct) sets of quads that are being
matched as they go around the compressed region. The cas-
cade continues because the incorrectly matched quads are
being “grown” ahead of the correctly matching quads. Thus,
the correctly matching quads never have a chance to “catch
up” to this wave, and this bad behavior can continue cascad-
ing across the entire mesh. This unfortunate growth pattern

Fig. 6 A candidate quad mesh, M2. Note that M2 is an exact match
for the quad mesh M1 from 5 except that three quads in the middle are
compressed into individual edges in M2

Fig. 7 An unfortunate cascading failure in M2 caused by the greedy
mesh growing algorithm applied to the meshes of Figs. 5 and 6

is illustrated for the meshes M1 and M2 of Figs. 5 and 6 in
Fig. 7.

Thus, we do not recommend that the greedy algorithm be
used as a heuristic for solving the approximate topological
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matching problem. Instead, we advocate the use of a lazy-
greedy approach.

4.5 The lazy-greedy algorithm

In this section, we discuss our lazy-greedy approach to
solving the approximate topological matching problem for
two quad meshes by using a wavefront “fire-propagation”
method.

4.5.1 The main idea behind our matching algorithm

The main idea behind this oxymoronic algorithm is to grow
out waves of matching quads, as in the greedy algorithm
given above as a false start, but to do so in a more relaxed
way that helps to avoid the cascading failures that can arise
from the straightforward greedy algorithm.

Let us assume that we have done an initial color label-
ing and have found a set of anchors to begin the matching
process from in M1 and M2. The goal of the lazy-greedy
algorithm is to incrementally build a mapping function, μ,
that matches quads in M1 to quads in M2. Initially, μ maps
the two anchor quads in M1 and M2 to each other (defining
an edge in the dual graph). As we proceed, we track of the
set of quads where we can expand the matching function μ

to more quads. Let S be the set of currently matched quads,
that is, all quads q in M1 for which we have determined a
matching quad, μ(q). Since we start matching from a seed,
at each iteration, S forms a contiguous block of quads in M1

with a corresponding set of matching quads, μ(S) in M2.
Now, let S′ be a subset of quads in S on the boundary of
the contiguous submesh S, that is, quads that have adjacent
unmatched neighbors. When growing the match at each it-
eration, note that we only need to consider quads that are
either vertex or edge adjacent to quads in S′ or μ(S′), since
the quads that are interior to the contiguous block have no
adjacent unmatched quads.

4.5.2 Using a compatibility graph for growing matching
submeshes

Let A be the set of unmatched quads in M1 that are ver-
tex or edge adjacent to quads in S′, and let B be the set
of unmatched quads in M2 that are vertex or edge adjacent
to quads in μ(S′). For each quad q in A, let M(q) be the
set of quads in B that could match with q , that is, we in-
clude in M(q) each quad r in B such that r is adjacent to
a quad μ(t) with q being adjacent to t in the same way as
r and μ(t) (i.e., across a corresponding vertex or edge adja-
cency).

Let us create a compatibility graph L by defining, for
each M(q), a vertex vi,q for each quad in M(q). Note that
same quad in B might be listed in different M(q) sets, in

which case we create a different vertex in L for each copy
of that quad in the different M(q) sets. We say that a vertex
vi,q is adjacent to vertex vi,s in L if

– q and s are adjacent across an edge in M1.
– The quads, r and t in M2, corresponding respectively to

vi,q and vi,s are compatible in M2, meaning that if we
were to extend μ by mapping q to r and s to t , then the
submesh in M1 consisting of q and s and all their adjacent
quads in S′ would be consistent (in the topological sense)
with the submesh in M2 consisting of r and t and all their
adjacent quads in μ(S′).

Note that the graph L consists of paths, isolated vertices, or
a cycle, i.e., vertices in L have degree at most 2.

4.5.3 The lazy-greedy heuristic

The lazy-greedy heuristic is to extend μ in each iteration by
adding the matches defined by a largest connected compo-
nent (i.e., path or cycle) in L. Note that this is a greedy algo-
rithm in the sense that it is augmenting our match using an
optimization criterion that maximizes an objective function.
But it is also a lazy algorithm in that it postpones perform-
ing a lot of potentially valid matches between quads in M1

and M2 just because they did not belong to the largest con-
nected component in the compatibility graph L. We repeat
this lazy-greedy heuristic process until the current version
of L contains no vertices. (See Fig. 8.)

The benefit of the lazy-greedy approach is that it allows
our matching process to match the quads around a small
mismatching region even when the mismatch is caused by
a compression of quads into individual edges. Such a com-
pression causes the greedy algorithm to immediately march
through these bad regions, whereas the lazy-greedy algo-
rithm will only venture into such regions as a last resort. We

Fig. 8 The lazy-greedy algorithm. The shaded (blue) regions collec-
tively denote S′, the currently matched quads. The labeled quads in
both meshes correspond to the pairs of quads that share the same ad-
jacent quads in S′. Finally, we show the compatibility graph L con-
structed from the quads adjacent to S′. Since quads 4, 5, and 6 form
the largest connected component in L, we match these quads at this
iteration
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illustrate the difference this approach makes for the meshes
M1 and M2 of Figs. 5 and 6 in Fig. 9.

5 Experimental results

We have empirically tested the two main claims of our ap-
proach on real-world meshes from the character database
at Walt Disney Animation Studios. The first claim that we
tested is the following:

– The skeleton graph constructed by our algorithm signif-
icantly compresses quad meshes in a way that preserves
essential features.

Fig. 9 An isolation of a small mismatching region in M2, showing
how the lazy-greedy algorithm avoids the unfortunate cascading failure
caused by the greedy mesh growing algorithm applied to the meshes of
Figs. 5 and 6

Table 1 gives an overview of the size of skeleton graphs
for a number of the models in the Disney character database.

Note that the reduction percentages average around 75%,
and that they range from a low of 66% for the girl of Fig. 12
and a high of 97% for the chick of Fig. 10. The main point
of this compression is not for storage savings, however, al-
though it could be used for this purpose, since the regions
bounded by edges of the skeleton graph are all structured
meshes. Instead, we use the skeleton graph to drive our ap-
proximate matching process.

Another claim of our method is the following:

– The lazy-greedy algorithm runs fast enough for interac-
tive modeling purposes.

The running times for our matching process, applied to the
same characters as used for skeleton graph computations are
shown in Table 2. Note that the average running time for
this set of models is less than half a second and that it corre-
sponds proportionally to the mesh sizes. The second meshes
in these cases correspond to similar models (e.g., two bears),
alternate poses, and across symmetries (e.g., in a shirt).

Note that all the running times for approximate matching
are at a second or less. This is certainly sufficient for inter-
active modeling purposes. Moreover, it significantly speeds

Fig. 10 A compressed mesh; edges in red denote the compressed
mesh

Table 1 Sizes of skeleton graphs for various quad mesh models

Model Original mesh Skeleton graph Reduction

Vertices Edges Vertices Edges (%)

bear 1070 2110 202 393 81%

chick 932 1827 32 56 97%

shirt 3099 6134 518 1015 83%

director 9958 19889 2510 5001 75%

tommy 10281 20530 2496 4973 76%

body 13238 26457 3176 6339 76%

girl 6976 13903 2340 4647 66%
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Table 2 Running times for approximate topological matching of var-
ious quad mesh models

Model Mesh size Time

Vertices Edges (seconds)

bear 1070 2110 0.04

chick 932 1827 0.02

shirt 3099 6134 0.12

director 9958 19889 0.72

tommy 10281 20530 0.76

body 13238 26457 1.08

girl 6976 13903 0.65

Fig. 11 Approximate matching; quads in (dark) red denote mis-
matched regions. Only the ears, which are indeed topologically dif-
ferent, were not matched

up what used to be a semi-automated process that involved
human input of a pair of edges to use as anchors.

Finally, we also make the following claim for our algo-
rithm:

– The lazy-greedy algorithm finds good approximate
matches.

Naturally, since we are not aware of any other approximate
topological matching algorithms, testing this claim against
other algorithms is not possible. Nevertheless, we can prove
that our algorithm is successful in many cases. Suppose,
for example, that there is a mapping between two simple,
connected, well-formed quad meshes M1 and M2 such that
each connected mismatched region has boundary complex-
ity of at most δ. Suppose further that the medial axis of the
matched region for M1 and M2 is connected and has a span-
ning tree T such that each edge of T has a cross-sectional
width of at least ε > 2δ. Then our algorithm will succeed in
finding a match at least as good as this match.

Fig. 12 An approximate matching result; quads in (dark) red denote
mismatched regions. This example shows how the lazy-greedy algo-
rithm tolerates both modest mismatches and massive mismatches, as
in Fig. 2, unlike approaches based on minimizing edit distance. (The
two right hands actually do not match topologically, as the hand of the
second model is attached differently)

In addition, a subjective evaluation of the matches our al-
gorithm produced on the Disney character database demon-
strated that our algorithm empirically found good matches.
For example, we show the quality of the matches produced
by our algorithm on the bears and girl models in Figs. 11
and 12. In addition, an animation of our algorithm is avail-
able for download at the following location:

www.ics.uci.edu/~eppstein/projects/firefront.mov

6 Conclusion and future directions

In this paper, we study the approximate topological match-
ing problem for quad meshes, showing that this problem is
NP-hard in general. Nevertheless, we provide an efficient
heuristic algorithm that works well in practice and provably
well for a large class of models that is common in practice.

Directions for future work include the following:

– Our methods are directed at connected models. How hard
is it to extend the lazy-greedy algorithm to handle discon-
nected models?

http://www.ics.uci.edu/~eppstein/projects/firefront.mov
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– Our methods find a single connected region of matching
quads. Is there a way to generalize the lazy-greedy ap-
proach to handle disconnected matching regions in a way
that maintains distance and intuitive correspondence as
much as possible?

Acknowledgements This research was done while the first two au-
thors were consultants for Walt Disney Animation Studios. Likewise,
this research was done while the third author was a summer intern for
Walt Disney Animation Studios. This paper appeared in preliminary
form as [15] in IEEE Int. Conf. on Shape Modeling and Applications
(SMI) 2008.

References

1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.:
Anisotropic polygonal remeshing. In: SIGGRAPH’03: ACM SIG-
GRAPH 2003 Papers, New York, NY, USA, pp. 485–493. ACM,
New York (2003)

2. Armstrong, C.G., Robinson, D.J., McKeag, R.M., Li, T.S., Brid-
gett, S.J., Donaghy, R.J.: Applications of the medial axis transform
in analysis modelling. In: NAFEMS, Proc. 5th Int. Conf. Reliabil-
ity of FEM for Engineering Applications, pp. 415–426 (1995)

3. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice-Hall
PTR, Upper Saddle River (1998)

4. Baumgart, B.G.: Winged edge polyhedron representation. Techni-
cal Report CS-TR-72-320, Stanford University (1972)

5. Bern, M.W., Eppstein, D.: Quadrilateral meshing by circle pack-
ing. Int. J. Comput. Geom. Appl. 10(4), 347–360 (2000)

6. Berretti, S., Bimbo, A.D., Pala, P.: A graph edit distance based on
node merging. In: Image and Video Retrieval. Lecture Notes in
Computer Science, vol. 3115, pp. 464–472 (2004)

7. Blacker, T.D., Stephenson, M.B.: Paving: a new approach to auto-
mated quadrilateral mesh generation. Int. J. Numer. Methods Eng.
32, 811–847 (1991)

8. Bunke, H.: On a relation between graph edit distance and maxi-
mum common subgraph. Pattern Recognit. Lett. 18(8), 689–694
(1997)

9. Chae, S.-W., Jeong, J.-H.: Unstructured surface meshing using
operators. In: Proc. 6th Int. Meshing Roundtable, pp. 281–291
(1997)

10. Cohen-Or, D., Levin, D., Remez, O.: Progressive compression
of arbitrary triangular meshes. In: Proc. 10th IEEE Visualization
(VIS’99), p. 11 (1999)

11. Corneil, D.G., Gotlieb, C.C.: An efficient algorithm for graph iso-
morphism. J. ACM 17(1), 51–64 (1970)

12. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.:
Computational Geometry: Algorithms and Applications, 2nd edn.
Springer, Berlin (2000)

13. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fáry
embeddings of planar graphs. In: STOC’88: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing,
New York, NY, USA, pp. 426–433. ACM Press, New York (1988)

14. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., Hart, J.C.:
Spectral surface quadrangulation. In: SIGGRAPH ’06: ACM SIG-
GRAPH 2006 Papers, New York, NY, USA, pp. 1057–1066.
ACM, New York (2006)

15. Eppstein, D., Goodrich, M.T., Kim, E., Tamstorf, R.: Approximate
topological matching of quadrilateral meshes. In: IEEE Int. Conf.
on Shape Modeling and Applications (SMI), pp. 83–92 (2008)

16. Eppstein, D., Goodrich, M.T., Kim, E., Tamstorf, R.: Motorcycle
graphs: canonical quad mesh partitioning. Comput. Graph. Forum
27(5), 1477–1486 (2008)

17. Eshera, M.A., Fu, K.S.: An image understanding system using
attributed symbolic representation and inexact graph-matching.
IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 604–618 (1986)

18. Feder, T., Motwani, R.: Clique partitions, graph compression and
speeding-up algorithms. In: Proc. 23rd ACM Symp. Theory of
Computing, pp. 123–133 (1991)

19. Ferragina, P., Manzini, G.: Opportunistic data structures with ap-
plications. In: Proc. 41st Symp. Foundations of Computer Science,
pp. 390–398 (2000)

20. Garey, M.R., Johnson, D.S.: Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman, New
York (1979)

21. Grohe, M.: Isomorphism testing for embeddable graphs through
definability. In: STOC’00: Proceedings of the Thirty-Second An-
nual ACM Symposium on Theory of Computing, New York, NY,
USA, pp. 63–72. ACM Press, New York (2000)

22. Gurnhold, S., Strasser, W.: Real time compression of triangle
mesh connectivity. In: Proc. 25th Conf. Computer Graphics and
Interactive Technology, pp. 133–140 (1998)

23. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomor-
phism of planar graphs. In: Proc. 6th ACM Symp. Theory of Com-
puting, pp. 172–184 (1974)

24. Khodakovsky, A., Alliez, P., Desbrun, M., Schröder, P.: Near-
optimal connectivity encoding of 2-manifold polygon meshes.
Graph. Models 64(3/4), 147–168 (2002)

25. King, D., Rossignac, J., Szymczak, A.: Connectivity compression
for irregular quadrilateral meshes. Technical Report GIT-GVU-
99-36, Georgia Institute of Technology (1999)

26. Marini, S., Spagnuolo, M., Falcidieno, B.: From exact to approxi-
mate maximum common subgraph. In: Graph-Based Representa-
tions in Pattern Recognition. Lecture Notes in Computer Science,
vol. 3434, pp. 263–272. Springer, Berlin (2005)

27. Miller, G.: Isomorphism testing for graphs of bounded genus.
In: Proc. 12th ACM Symp. Theory of Computing, pp. 225–235
(1980)

28. Miller, G.L.: Graph isomorphism, general remarks. In: STOC’77:
Proceedings of the Ninth Annual ACM Symposium on Theory of
Computing, New York, NY, USA, pp. 143–150. ACM Press, New
York (1977)

29. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins
University Press, Baltimore (2001)

30. Müller-Hannemann, M.: High quality quadrilateral surface mesh-
ing without template restrictions: a new approach based on net-
work flow techniques. In: Proc. 6th Int. Meshing Roundtable, pp.
293–307 (1997)

31. Neuhaus, N., Bunke, H.: Automatic learning of cost functions for
graph edit distance. Inf. Sci. 177(1), 239–247 (2007)

32. Nowottny, D.: Quadrilateral mesh generation via geometrically
optimized domain decomposition. In: Proc. 6th Int. Meshing
Roundtable, pp. 309–320 (1997)

33. Palacios, J., Zhang, E.: Rotational symmetry field design on sur-
faces. ACM Trans. Graph. 26(3), 55 (2007)

34. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Intro-
duction. Springer, New York (1985)

35. Ray, N., Li, W.C., Lévy, B., Sheffer, A., Alliez, P.: Periodic global
parameterization. ACM Trans. Graph. 25(4), 1460–1485 (2006)

36. Schnyder, W.: Embedding planar graphs on the grid. In: SODA’90:
Proceedings of the First Annual ACM–SIAM Symposium on Dis-
crete Algorithms, Philadelphia, PA, USA, pp. 138–148. Society
for Industrial and Applied Mathematics, Philadelphia (1990)

37. Schonfeld, T., Weinerfelt, P.E.R.: The automatic generation of
quadrilateral multi-block grids by the advancing front technique.
In: Numerical Grid Generation in Computational Fluid Dynamics
and Related Fields; Proceedings of the 3rd International Confer-
ence, Barcelona, Spain, pp. 743–754 (1991)



Approximate topological matching of quad meshes 783

38. Shimada, K., Liao, J.-H., Itoh, T.: Quadrilateral meshing with di-
rectionality control through the packing of square cells. In: Proc.
7th Int. Meshing Roundtable, pp. 61–75 (1998)

39. Smith, B.C., Rowe, L.A.: Algorithms for manipulating com-
pressed images. Comput. Graph. Appl. 13(5), 34–42 (1993)

40. Talbert, J.A., Parkinson, A.R.: Development of an automatic two-
dimensional finite element mesh generator using quadrilateral ele-
ments and Bezier curve boundary definition. Int. J. Numer. Meth-
ods Eng. 29, 1551–1567 (1991)

41. Taubin, G., Rossignac, J.: Geometric compression through topo-
logical surgery. ACM Trans. Graph. 17(2), 84–115 (1998)

42. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing
quadrangulations with discrete harmonic forms. In: SGP’06: Pro-
ceedings of the Fourth Eurographics Symposium on Geometry
Processing, Aire-la-Ville, Switzerland, pp. 201–210. Switzerland
Eurographics Association (2006)

43. Touma, C., G.C.: Triangle mesh compression. In: Proc. Graphics
Interface, pp. 26–34 (1998)

44. Wood, D.R., Telle, J.A.: Planar decompositions and the crossing
number of graphs with an excluded minor. N. Y. J. Math. 13, 117–
146 (2007)

45. Yeo, B.-L., Liu, B.: Rapid scene analysis on compressed video.
IEEE Trans. Circuits Syst. Video Technol. 5(6), 533–544 (1995)

David Eppstein is a professor and
co-chair of the Computer Science
Department at the University of
California, Irvine. He received his
Ph.D. in Computer Science from
Columbia University in 1989, after
majoring in Mathematics at Stan-
ford University, and worked as a
postdoctoral researcher at the Xe-
rox Palo Alto Research Center from
1989 to 1990 before joining the
UCI faculty. His research special-
ties include computational geom-
etry, graph algorithms, and graph
drawing.

Michael T. Goodrich is a Chan-
cellor’s Professor at the Univer-
sity of California, Irvine, where he
has been a faculty member in the
Department of Computer Science
since 2001. He received his B.A.
in Mathematics and Computer Sci-
ence from Calvin College in 1983
and his Ph.D. in Computer Sciences
from Purdue University in 1987,
and he worked as a professor in the
Department of Computer Science
at Johns Hopkins University from
1987–2001. His research is directed

at algorithms for solving large-scale problems motivated from infor-
mation assurance and security, the Internet, information visualization,
and geometric computing.

Ethan Kim is a Ph.D. student at
School of Computer Science, McGill
University. His research interests
lie in discrete mathematics and ap-
proximation algorithms, particularly
with geometric graphs, and is now
working on graph-theoretic prob-
lems from computational biology.
He is a recipient of NSERC Canada
Graduate Award (2006) and Post-
graduate Award (2007). His work on
this paper was done while he was
visiting Walt Disney Feature Ani-
mation as a graduate research asso-
ciate.

Rasmus Tamstorf is a research sci-
entist at Walt Disney Animation
Studios. Over the past 10 years at
Disney he has worked on a vari-
ety of projects including geometri-
cal problems in rendering, a pro-
duction pipeline based on subdivi-
sion surfaces, and deformation algo-
rithms for character animation. He
is currently working on various as-
pects of cloth simulation and what-
ever it takes to create the Disney
magic. Rasmus has a MS EE de-
gree from the Technical University

of Denmark and film credits on Tarzan, Dinosaurs, Lilo & Stitch, and
Chicken Little, among others.


	Approximate topological matching of quad meshes
	Abstract
	Introduction
	Prior related work
	Quad mesh generation and remeshing
	Mesh compression
	Graph isomorphism
	Graph edit distance

	Our results

	Preliminaries
	The topology of quad meshes
	The size of a quad mesh

	On the difficulty of approximate topological matching of quad meshes
	A heuristic algorithm for approximate topological matching
	Identifying anchors via color assignment
	Skeleton graphs: compressing meshes for improved anchor finding
	Particle shooting
	A false start: the greedy algorithm
	The lazy-greedy algorithm
	The main idea behind our matching algorithm
	Using a compatibility graph for growing matching submeshes
	The lazy-greedy heuristic


	Experimental results
	Conclusion and future directions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


