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Abstract—We describe a method for performing greedy geometric routing for any n-vertex simple connected graph G in the

hyperbolic plane, so that a message M between any pair of vertices may be routed by having each vertex that receives M pass it to a

neighbor that is closer to M ’s destination. Our algorithm produces succinct embeddings, where vertex positions are represented using

OðlognÞ bits and distance comparisons may be performed efficiently using these representations. These properties are useful, for

example, for routing in sensor networks, where storage and bandwidth are limited.

Index Terms—Greedy routing, hyperbolic geometry, autocratic weight-balanced trees, dyadic tree metric space.
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1 INTRODUCTION

VIEWING network routing as an algorithmic problem, we
are given an n-vertex simple connected graph G

representing a communication network, where each vertex
inG is a computational agent, such as a sensor, smart phone,
base station, PC, or workstation, and the edges inG represent
communication channels. The routing problem is to set up an
efficient means to support message passing between the
vertices in G.

The traditional way to do routing is via protocols, like
link-state/OSPF or distance-vector/RIP (e.g., see [1], [2]),
that set up routing tables for each vertex v in G. Each such
routing table has size n (represented using �ðn lognÞ bits)
for each vertex v in G, which allows v to determine to which
of its neighbors it should send a message destined for
another node w in G. Such a solution allows for a simple
message-forwarding policy, but it is space inefficient and it
requires considerable setup overhead.

There is a recent nontraditional approach to solving the
routing problem, however. In this new approach, called
geometric routing [3], [4], [5], [6], [7] or geographic routing [8],
the graphG is embedded in a geometric metric space S in the
standard way, so that vertices are associated with points in S
and each edge is the locus of points along the shortest path
between its two endpoints. For example, if S is the euclidean
plane R2, then edges would be straight line segments in this
approach; edges are allowed to cross each other, in contrast
to other applications of geometric graph embedding such as
graph drawing and VLSI routing. Routing is then performed
by having any vertex v holding a message destined for a node
w use a simple policy involving only the coordinates of v and
w and the coordinates and topology of v’s neighbors to
determine the neighbor of v to which v should forward the

message. It is important to note that even in applications
where the vertices of G come with predefined geometric
coordinates (e.g., GPS coordinates of smart sensors), the
embedding of G need not take these coordinates into
consideration, and, in fact, many known geometric routing
schemes ignore preexisting coordinates and create a new
embedding using only the graph structure.

Perhaps the simplest geometric routing policy imagin-
able is the greedy one:

. If a vertex v receives a message M with destination
w; v should forward M to any neighbor of v in G that
is closer than v to w.

We are interested in this paper in greedy geometric
routing in an arbitrary network. That is, given a network,
we would like to determine an embedding of the network
that causes greedy routing to be guaranteed to succeed no
matter which two vertices are selected as the source and
destination of a routing problem.

Following Papadimitriou and Ratajczak [9], we say that a
distance decreasing path from v to w in a geometric
embedding of G is a path ðv1; v2; . . . ; vkÞ such that v ¼ v1,
w ¼ vk, and

dðvi; wÞ > dðviþ1; wÞ;

for i ¼ 1; 2; . . . ; k� 1. A greedy embedding1 of a graph G in a
geometric metric space S is a drawing of G in S such that a
distance decreasing path exists between every pair of
vertices in G.

Unfortunately, not every embedding is greedy. It is not
uncommon for geometric graph embeddings in euclidean
spaces, and even for noncrossing embeddings of graphs in the
plane, to have “lakes” and “voids” that make greedy routing
impossible in some cases [9]. See Fig. 1 for an example; in this
figure, the only network path from c to a passes through b, a
node that is farther away from the eventual destination.
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1. Note that this formalism is equivalent to the informal notion that
defines a greedy embedding as one in which greedy routing always works.
The formalism based on distance decreasing paths is a little easier to work
with than this informal notion, however, so it is the one we use in this
paper.
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Indeed, in any fixed-dimensional euclidean space, a star
(a tree with one nonleaf node) with sufficiently many leaves
cannot be embedded so that all paths are greedy. The kissing
number of the space is the maximum number of nonover-
lapping unit spheres that can be tangent to a common unit
sphere; kissing numbers in two and three dimensions are 6
and 12, respectively, and in general the kissing number is
upper bounded by an exponential function of the dimen-
sion [10]. In a star with a number of leaves that exceeds the
kissing number, some two leaves would form an angle less
than �=3 at the star’s center node, for otherwise an
arrangement of spheres with the spheres’ centers at distance
two from the center node in the direction of each leaf would
violate the kissing number bound. But, when such a tight
angle is formed, the embedding cannot be greedy: if, as in
the figure, abc is a tight angle, with jbcj � jabj, then the route
from c to a via b cannot be greedy. Thus, in order to find
greedy embedding schemes for arbitrary connected graphs,
it will not suffice to use euclidean spaces of any bounded
dimension; we must instead consider noneuclidean spaces.

1.1 Prior Related Work

Early papers on geometric routing include work by Bose
et al. [3], who extract a planar subgraph of G, embed it, and
then route a message from v to w by a more complicated
greedy algorithm than the one considered here: their
routing algorithm marches around the faces intersected by
the line segment vw using a subdivision traversal algorithm
of Kranakis et al. [11]. Karp and Kung [4] introduce a hybrid
scheme, which combines a greedy routing strategy with
face routing. Similar hybrid schemes were subsequently
studied by several other researchers [5], [6], [7], [12]. An
alternative hybrid augmented greedy scheme is introduced
by Carlsson and Eager [13].

Rao et al. [14] introduce the idea of embedding a graph
using virtual coordinates and doing a pure greedy routing
strategy with that embedding, although they provide no
theoretical guarantee. Papadimitriou and Ratajczak [9]
continue this line of work on greedy routing, studying
greedy schemes that are guaranteed to work, and they
conjecture that euclidean greedy embeddings exist for any

graph containing a 3-connected planar spanning subgraph.
They present a greedy algorithm for embedding 3-connected
planar graphs in R3 based on a specialization of Steinitz’s
Theorem for circle packings, albeit with a nonstandard
notion of distance. Dhandapani [15] provides an existence
proof that two-dimensional euclidean greedy embeddings of
3-connected triangulations are always possible, but he does
not provide a polynomial-time algorithm to find them. Chen
et al. [16] study methods for producing two-dimensional
euclidean greedy embeddings for graphs containing power
diagrams, Lillis and Pemmaraju [17] provide similar
methods for graphs containing Delaunay triangulations,
and Ghosh and Sinha [18] study relationships of greedy
drawings and the weights of maximum and minimum
spanning trees. It is not clear whether either of these greedy
geometric routing methods in euclidean spaces runs in
polynomial time, however. Nevertheless, Leighton and
Moitra [19] give a polynomial-time algorithm for producing
two-dimensional euclidean greedy embeddings of 3-con-
nected planar graphs, resolving the conjecture of Papadimi-
triou and Ratajczak, and a similar result was independently
discovered by Angelini et al. [20] for 3-connected triangula-
tions. The corresponding two-dimensional problem for
greedy embeddings of arbitrary graphs in noneuclidean
geometries also has a solution, in that Kleinberg [8] provides
a polynomial-time algorithm for embedding any graph in the
hyperbolic plane so as to allow for greedy routing using the
standard metric for hyperbolic space. It is Kleinberg’s work
on two-dimensional hyperbolic greedy routing that most
closely forms the basis for our own research.

1.2 The Importance of Succinctness

Unfortunately, all of the algorithms mentioned above for
producing greedy embeddings, including the hyperbolic-
space solution of Kleinberg [8] and the euclidean-space
solutions of Leighton and Moitra [19] and Angelini et al.
[20], contain a hidden drawback that makes them ill suited
for the motivating application of geometric routing.
Namely, each of the greedy embeddings mentioned above
uses vertex coordinates with representations requiring
�ðn lognÞ bits in the worst case. Thus, these greedy
approaches to geometric routing have the same space usage
as traditional routing table approaches. Worse, the above
greedy embedding schemes have larger bandwidth require-
ments, since they use message headers of length �ðn lognÞ
bits in the worst case, whereas traditional routing table
approaches use message headers of size �ðlognÞ bits. Since
the raison d’tre for greedy embeddings is to improve and
simplify traditional routing schemes, if embeddings are to
be useful for geometric routing purposes, they should be
succinct, that is, they should use vertices with representa-
tions having a number of bits that is polylogarithmic in n
and they should allow for efficient distance comparisons
using these representations.

We are, in fact, not the first to make this observation.
Muhammad [21] specifically addresses succinctness, obser-
ving that a method based on extracting a planar subgraph of
the routing networkG and performing a hybrid greedy/face-
routing algorithm in this embedding can be implemented
using only OðlognÞ bits for each vertex coordinate, since
planar graphs can be drawn in OðnÞ �OðnÞ grids [22], [23].
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Fig. 1. An embedding of a graph with three vertices and two edges into
the euclidean plane that is not greedy. To route a message from c to a
along graph edges, it must pass through the vertex b, which is farther
from the eventual destination.



For euclidean spaces, Goodrich and Strash [24] give a succinct
embedding strategy in the plane for 3-connected planar
graphs, which uses OðlognÞ bits per vertex coordinate. For
noneuclidean spaces, Maymounkov [25] provides a greedy
embedding method for three-dimensional hyperbolic space
using vertices that can be represented withOðlog2 nÞ bits. His
work leaves open the existence of succinct greedy embed-
dings for two-dimensional noneuclidean spaces, however, as
well as whether there are succinct noneuclidean greedy
embeddings that use only OðlognÞ bits per vertex.

1.3 Our Results

In this paper, we show that succinct greedy embeddings in
two-dimensional noneuclidean spaces are possible and that
such embeddings can be represented using an asymptoti-
cally optimal number of bits. In particular, we show that
any n-vertex simple connected graph can be embedded in
the hyperbolic plane with coordinates that can be repre-
sented using OðlognÞ bits so as to support greedy geometric
routing between any pair of vertices, using a standard
distance metric for hyperbolic space. Our scheme is
constructive, runs in polynomial time, and allows the
distance between any two vertices to be calculated simply
and efficiently from our representation of their coordinates.
In addition, our greedy embedding scheme is based on the
combination of a number of interesting graph drawing and
data structuring techniques.

The remainder of the paper is organized as follows: In
Section 2, we describe the autocratic weight-balanced tree, a
new binary tree data structure that forms a key component
of our constructions. Using a new algorithm for median
split tree construction, we show how to construct autocratic
weight-balanced trees in linear time. In Section 3, we review
a previously used scheme from the data structures
literature, heavy path decomposition which allows an arbitrary
tree to be decomposed into a set of paths that connect to
each other with the structure of a binary tree. In Section 4,
we combine these two techniques to form OðlognÞ-bit labels
for the vertices of an arbitrary graph, and a simple distance
function on these labels, that is guaranteed to support
greedy routing; the space of possible labels forms a novel
and interesting but nongeometric metric space that we call
the dyadic tree metric space. As we show, an arbitrary graph
may be labeled in this way in linear time. In Section 5, we
show how to interpret these labels as coordinates of points
in the hyperbolic plane in such a way as to preserve the
greedy routing properties of the embedding; we then finish
with a conclusions section.

2 AUTOCRATIC WEIGHT-BALANCED TREES

One of the new data structuring techniques, we use in our
greedy embedding scheme is a data structure that we call
autocratic weight-balanced binary trees. These are first and
foremost weight-balanced binary trees, which store
weighted items at their leaves so that the depth of each
item of weight wi is OðlogW=wiÞ, where W is the sum of all
weights. Just as important, however, is that they are
autocratic, by which we mean that the distance from any
leaf v to any other leaf w is strictly greater than the distance
from the root to w, where tree distance is measured by
simple path length. Of course, this autocratic property

implies that such binary trees are not proper, in that we
allow for some internal nodes in such trees to have only one
child. The advantage of autocratic trees, in the context of
greedy embeddings, is that in going from any leaf to any
other leaf, the root is always closer to the destination than is
the source. The challenge, of course, is to have a structure
that is both autocratic and weight balanced.

2.1 Weight-Balanced Trees

It turns out that there is a fairly simple method for turning any
weight-balanced binary tree into an autocratic weight-
balanced tree. So suppose we are given an ordered collection
of k items with weights fw1; w2; . . . ; wkg, such that each
wi � 1. As implied above, if we store these items at the leaves
of a binary tree T , we say that T is weight balanced if the depth
of each item i is OðlogW=wiÞ, where W ¼

P
i wi.

There are several existing schemes for producing a
weight-balanced binary tree so that an in order listing of the
items stored at its leaves preserves the given order (e.g., see
[26], [27]). For our purposes, it is more important to find a
good weight-balanced tree efficiently than to find the best
possible weight-balanced tree. Therefore, we now describe
a simple technique for finding weight-balanced trees in
linear time, based on the median split tree of Sheil [28].

In a median split tree, for a given sequence of weighted
items, the partition into left and right subtrees is performed
in such a way as to make the balance of weights of these two
subtrees as even as possible: if L and R represent the total
weights of the two subtrees, then the partition is chosen so
that jL�Rj is less than or equal to the corresponding
quantity for any other partition of the input sequence into
two contiguous subsequences. The left and right subtrees are
then constructed in the same way recursively. A single split
in a median split tree may be arbitrarily unbalanced, but only
in the case that there is an item in the middle of the sequence
with high weight. For any item x from the input sequence,
with weight wi, each split either causes x to become part of a
subsequence with at most 2=3 of the weight of the
subsequence it was previously part of, or has a high weight
element that will be removed in the very next split causing x
to become part of a subsequence with at most 1=3 of the
weight of the subsequence it was previously part of. Thus, x
may participate in at mostOðlogW=wiÞ splits until it has been
placed at a leaf in the tree, from which it follows that the
median split tree is weight balanced. Sheil [28] described an
Oðn lognÞ time algorithm for finding median split trees; as
we now show, this can be improved to linear.

We represent the input sequence of weights in an array,
and compute a second array of the prefix sums of the input
weights; using these prefix sums, we may test in constant
time how evenly any particular partition splits the weight
sequence. A subsequence of the input is represented by the
pair of indices of its start and end values; any prefix sum of
the values within that subsequence may be computed in
constant time as the prefix sum at the corresponding
position of the input sequence minus the prefix sum stored
one position prior to the start of the subsequence. To find
the position of the most even split, we perform a doubling
search from both ends of the sequence: that is, for i ¼
1; 2; 3; . . . we consider the split in which the left subse-
quence has 2i elements and the split in which the right
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subsequence has 2i elements, until finding the smallest i
such that a subsequence of 2i elements starting at one end of
the sequence contains at least half of the total weight. After
finding i in this way, we switch to a binary search within
the subsequence of 2i elements found by the doubling
search in order to find the optimal split point.

We analyze this algorithm using a recurrence in which
T ðnÞ denotes its running time. The algorithm above will
partition the sequence into two subsequences, of sizes n1

and n2, where we may assume without loss of generality
that n1 � n2; the doubling search will find an i such that
2i � n2 > 2i�1, in i steps, and the subsequent binary search
will also take i steps. After finding the best split, the
algorithm continues recursively within each of the two split
subsequences. Therefore, its total time is governed by a
recurrence of the form

T ðnÞ ¼ T ðn1Þ þ T ðn2Þ þ k1 logn2 þ k2:

(Here, log represents the base-2 logarithm.) As we now
show, the solution to this recurrence (with the assumptions
n1 � n2 and n1 þ n2 ¼ n) is OðnÞ. More specifically, we
show by induction that there exists a constant c such that
T ðnÞ � cn� k1ð1þ lognÞ � k2. The base case, when n ¼ 1, is
trivial for sufficiently large c. Otherwise,

T ðnÞ � cn1 � k1ð1þ logn1Þ � k2

þ cn2 � k1ð1þ logn2Þ � k2

þ k1 logn2 þ k2

¼ cn� k1ð2þ logn1Þ � k2

� cn� k1ð1þ lognÞ � k2:

Thus, the overall median split tree construction runs in
linear time, as claimed.

Although we do not need it for our greedy embedding
algorithm, we observe that the same technique can be used
for linear time construction of the variant of median split
trees in which the input items are placed in the internal
nodes of the tree as well as at its leaves.

2.2 Making a Tree Autocratic

Suppose, then, that T is an ordered weight-balanced tree,
and let r denote the root of T . To convert T into an
autocratic weight-balanced tree, T 0, we replace the edge
connecting each leaf v to its parent with a path of length

1þ dT ðr;parentðvÞÞ;

where dT ðv; wÞ denotes the length of the path from v to w in
the tree T . That is, we insert a number of “dummy” nodes
between each leaf and its parent that is equal to the depth of
its parent. (See Fig. 2.)

This transformation increases the depth of each leaf inT by
less than a factor of two and it keeps the depth of all other
nodes inT unchanged. Thus, if the depth of a leaf storing item
i in T was previously at most c logW=wi, for some constant c,
then the depth of the corresponding leaf in T 0 is less than
2c logW=wi, which is still OðlogW=wiÞ. Given that T was
weight-balanced, this implies that T 0 is a weight-balanced
tree. More importantly, we have the following lemma.

Lemma 1. The above transformation of a weight-balanced tree T
produces an autocratic weight-balanced tree T 0.

Proof. We have already observed that the tree T 0 is weight-
balanced. So we have yet to show that T 0 is autocratic.
First, observe that, by the construction of T 0, if u is an
ancestor in T of a leaf v, then in T 0 we have the following:

dT 0 ðu; vÞ ¼ dT ðr; vÞ þ dT ðu; vÞ � 1:

In particular, we have the following:

dT 0 ðr; vÞ ¼ 2dT ðr; vÞ � 1:

Let v and w be two leaves in T 0. Furthermore, let u be the
least common ancestor of v and w in T 0. Then

dT 0 ðv; wÞ ¼ dT 0 ðu; vÞ þ dT 0 ðu;wÞ
¼ dT ðr; vÞ þ dT ðu; vÞ � 1

þ dT ðr; wÞ þ dT ðu;wÞ � 1

¼ dT ðr; uÞ þ dT ðu; vÞ þ dT ðu; vÞ � 1

þ dT ðr; wÞ þ dT ðu;wÞ � 1

¼ ðdT ðr; uÞ þ dT ðu;wÞÞ þ dT ðr; wÞ
þ 2dT ðu; vÞ � 2

¼ 2dT ðr; wÞ þ 2dT ðu; vÞ � 2

� 2dT ðr; wÞ
> dT 0 ðr; wÞ:

Thus, T 0 is an autocratic weight-balanced tree. tu
Therefore, we have a way of constructing for any

ordered set of weighted items an autocratic weight-
balanced tree for that set. The expanded tree T 0 may have
a greater-than-linear number of nodes (for instance, when T
is a complete binary tree, T 0 has �ðn lognÞ nodes), but our
greedy embedding algorithm will not need to construct T 0

explicitly. We will use such data structures as auxiliary
components in the structures we discuss next.

3 HEAVY PATH DECOMPOSITIONS

Let T be a rooted ordered tree of arbitrary degree and
depth having n nodes. Sleator and Tarjan [29] describe a
scheme, which we call the heavy path decomposition, for
decomposing T into a hierarchical collection of paths (see
also [30] for an alternative path decomposition scheme
with similar properties). Their scheme works as follows:
For each node v in T , let nðvÞ denote the number of
descendants in the subtree rooted at v, including v itself.
For each child-to-parent edge, e ¼ ðv; wÞ in T , label e as a
heavy edge if nðvÞ > nðwÞ=2. Otherwise, label e as a light
edge. Connected components of heavy edges form paths,
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Fig. 2. Converting a weight-balanced binary tree into an autocratic
weight-balanced binary tree.



called heavy paths, which may in turn have many incident
light edges. As a degenerate case, we also consider the zero
length path consisting of a single node in T incident only
to light edges as a heavy path.

Note that the size of a subtree at least doubles every time
we traverse a light edge from a child to a parent. (See Fig. 3.)
Thus, if we compress every heavy path in T to a single
“super” node, preserving the relative order of the nodes,
then we define a tree, Z, of depth OðlognÞ. Of course, the
nodes in Z can have arbitrary degree. Nevertheless, for data
structuring purposes, following Alstrup et al. [31], we may
replace each vertex v inZ having d children v1; v2; . . . ; vd with
a weight-balanced binary tree that uses the nðviÞ values as
weights. The useful property of this substitution is that any
leaf-to-root path P in the resulting binary tree, Z00, will have
length OðlognÞ, since the lengths of the subpaths of P in the
weight-balanced binary trees traversed in P form a telescop-
ing sum that adds up to OðlognÞ. That is, such a sum can be
written as a value proportional to something of the form

logn0 þ logn1=n0 þ logn2=n1 þ � � � þ logn=nk

¼ logn0 þ logn1 � logn0 þ � � � þ logn� lognk

¼ logn;

where each ni is an nðviÞ value.
In our case, we use autocratic weight-balanced binary

trees for the substitutions of high-degree super nodes in Z,
so as to define a binary tree of depth OðlognÞ. This
construction will prove essential for our greedy embedding
scheme. Before we present this geometric embedding,
however, we first present a combinatorial greedy embed-
ding in a completely contrived metric space, which we will
subsequently show how to turn into a greedy embedding in
the hyperbolic plane using the standard hyperbolic metric.

4 GREEDY EMBEDDINGS IN THE DYADIC TREE

METRIC SPACE

Let G be a graph with n vertices and m edges for which we
wish to construct a succinct greedy embedding. We show in
this section how to produce a combinatorial greedy embed-
ding in a contrived space we call the dyadic tree metric space.

We may consider the infinite binary tree B, to be an
abstract metric space, in which the distance between any two
tree nodes is just the number of edges on the shortest path
between them. But there is another natural metric that can be

formed on the same tree by embedding it into the dyadic
rational numbers (Fig. 4, top), that is, rational numbers with
denominators that are powers of two. Let f be the map from
B to the open interval ð0; 1Þ that maps the root of the tree to
1=2, and that maps the children of a node x at level i of the
tree to fðxÞ � 2�i�2; thus, the children of the root map to the
dyadic rational numbers 1=4 and 3=4, the grandchildren of
the root map to 1=8; 3=8; 5=8; 7=8, and so on. We define the
dyadic metric onB as the metric in which the distance between
two tree nodes x and y is jfðxÞ � fðyÞj. Note that all distances
in the dyadic metric are less than one.

We will show that any graph may be greedily embedded
into an ad-hoc metric space that combines these two tree
metrics; we call it the dyadic tree metric space. A point in this
space is represented by a pair ðx; yÞ, where x and y are
nodes in the infinite binary tree B, and where x must be an
ancestor of y (possibly equal to y itself). We define the
distance between two points ðx; yÞ and ðx0; y0Þ in the dyadic
tree metric space to be the sum of the tree distance between
x and x0 and of the dyadic distance jfðyÞ � fðy0Þj. The
dyadic tree metric space can be represented as an infinite
binary tree representing the x coordinates of each of its
points, in which each tree node contains an interval of
dyadic rational numbers; this interval of numbers is split
into two halves at the two children of each node. This
representation is depicted in Fig. 4, bottom.

Our embedding begins with us finding a spanning tree T
of G, choosing a root arbitrarily, and producing a heavy
path decomposition of T . For technical reasons, we require
that each node in a nontrivial heavy path of the decom-
position has at least one child that is not in the path; we add
dummy nodes to T if necessary, after forming the path
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Fig. 3. The heavy path decomposition of a tree. Three heavy paths are
shown; the remaining 17 nodes form degenerate length 0 heavy paths.
The numbers shown at each node v are the sizes nðvÞ of the subtree
rooted at that node.

Fig. 4. The dyadic rational numbers (top) and a schematic of the dyadic
tree metric space (bottom).



decomposition, to ensure that this is true. There will be
fewer than n dummy nodes added, so they will not
significantly increase the number of bits needed to
represent each vertex in our greedy embedding.

We fix a combinatorial planar embedding of T by
specifying a cyclic ordering of the edges incident to each
vertex. At any internal vertex v of a heavy path P , we order
the two edges of P consecutively, with the edge into v from
the root of the tree counterclockwise and the edge out of v
clockwise in the ordering; otherwise, the ordering may be
chosen arbitrarily. In this way, all the light edges incident to
P are placed on the same side of P in the combinatorial
embedding, as they are depicted in Fig. 5.

We then compress each heavy path P into a super node.
In the resulting compressed tree Z we may still determine a
cyclic ordering of the light edges incident to each super
node, in the same order that they appeared around P in T ,
by concatenating together the consecutive sequences of
light edges from the cyclic orderings of the vertices in P .

Next, we form groups of the nodes in Z, where each
group contains a maximal set of nodes that have the same
parent in T . We form a weight-balanced binary tree that has
one node for each group, in which the tree order of the
nodes is the same as the order of the parents along the path
P . Furthermore, within each group, we form a weight-
balanced binary tree of the nodes of Z that belong to the
group, where the order of these nodes is the same as the
order of the light edges connecting them to their parent in
the combinatorial planar embedding of T . Concatenating
these two levels of weight-balanced trees forms a single
weight-balanced tree connecting the node for P in Z to each
of its children, in the order given by the combinatorial
planar embedding of P ; we apply the transformation
described earlier to make this tree autocratic. The first three
steps, in which we form a weight-balanced tree of the
groups and a weight-balanced tree within each group, and
then concatenate these two levels of weight-balanced trees
to form a single binary tree for all children of the node in Z,
are depicted in Fig. 5.

This construction of an autocratic weight-balanced tree for
each node inZ can be used to embedZ into the infinite binary
tree, B. The root of Z may be placed at the root of B, and the
children of each node v inZ are placed under that node in the
positions of B corresponding to their positions in the
autocratic weight-balanced tree constructed for v. We observe

that, in this way, all nodes of Z are placed at most OðlognÞ
levels deep; for, as noted above, due to the weight balancing,
the distance in B between any node w and its parent v is
proportional to the difference in the logarithms of the weights
of the subtrees rooted at vandw, and along any path ofZ these
differences add in a telescoping series to OðlognÞ.

We have embedded Z into the infinite binary tree B;
hence, we are now ready to embed T itself into the dyadic
tree metric. To do so, we must determine a pair ðx; yÞ of
coordinates for any node v of T ; both x and y must be nodes
of B, and x must be an ancestor of y. The x coordinate of v is
simply the node of B at which the heavy path of v is placed.
The y coordinate of v is the least common ancestor in B of the
placements of all the children of v. This calculation is the
reason we required v to have at least one child; for leaf nodes
of T , we instead set y ¼ x. Due to our two-level weight
balancing strategy, two nodes of T that belong to the same
heavy path (and that, therefore, share the same x coordinate)
will have different y coordinates, for their children will be
placed within disjoint subtrees of the infinite binary tree B.

Lemma 2. The above embedding of T into the dyadic tree metric
space is greedy.

Proof. Any directed path in T consists of edges that, when
translated into the dyadic tree metric space, have three
types: edges from a node to the parent heavy path in Z,
edges within a heavy path, and edges from a node to a
child heavy path in Z. We must show that edges of each
type lead to a node that is closer to the terminus of the path.

For the edges that go from a node to the parent heavy
path or to a child heavy path, this is straightforward: the
contribution of the x-coordinates to the distance to the
terminus decreases by one at each step, due to the
autocratic property of our weight-balanced trees, more
than offsetting any possible increase in the contribution
of the y-coordinates.

For the edges that are in a heavy path, the end-vertices
of such edges have the same the x coordinates and do not
lead to any increase or decrease of the distance to the
terminus. The y coordinates are linearly ordered by the
map f from infinite binary tree nodes to dyadic rationals,
and our weight-balanced trees were chosen to be
consistent with this linear ordering; therefore, any step
along the heavy path, either toward a node of the path
that is the ancestor of the terminus or toward the topmost
node of the path and the edge leading to the parent node
in Z, decreases the distance to the terminus. tu
As in previous works (e.g., see [8]), we note that a greedy

embedding for the spanning tree T is automatically greedy
for the overall graph G from which it was drawn.

So far we have described our embedding into the dyadic
tree metric space mathematically, but to use it we need an
algorithm for constructing the embedding. This algorithm
computes a spanning tree T for the graph, forms a heavy
path decomposition of T , constructs the embedding of the
heavy paths into the infinite binary tree B in a top-down
order, and performs a bottom-up calculation to find least
common ancestors in B of the children of each node in T to
determine that node’s precise placement in the dyadic tree
metric space. The embedding of heavy paths into B involves
the construction of a collection of weight-balanced trees
with linear total size, and otherwise (including the step in
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Fig. 5. Our two-level weight-balanced strategy for placing the children of
the nodes on a heavy path. The groups of children for each heavy path
node are assigned to subtrees in a weight-balanced way (gray shaded
areas), and then within each subtree the individual children are placed
using a second level of weight balancing. The third step of child
placement, in which we make the subtree between the root (represent-
ing the heavy path) and its children autocratic, is not shown.



which these trees are made autocratic) can be performed
using a linear number of operations in which labels
representing positions in B are padded and concatenated;
each of these padding and concatenation operations can be
performed in constant time using standard bitwise Boolean
operations. The least common ancestor operations used in
the final step of the embedding algorithm are, in terms of
the binary numbers used to represent positions in B, simply
a calculation of the most significant bit at which two
numbers differ; these operations can again be performed in
constant time, by a bitwise exclusive or followed by a
constant number of lookups in precomputed tables of the
most significant bit of a 1

2 logn-bit subsequence of the
number’s binary representation. Therefore, the embedding
can be constructed in linear total time.

5 SUCCINCT GREEDY EMBEDDING IN THE

HYPERBOLIC PLANE

We have shown that any tree T (and any graph G by
choosing a spanning tree of G) may be greedily, succinctly,
and efficiently embedded into a dyadic tree metric space.
To complete our greedy embedding, it remains to show that
this space may be embedded, independently of our original
graph (but depending on a parameter D determined by the
number of vertices of the graph), into the hyperbolic plane
in such a way that the greedy property of the embedding of
T is preserved. That is, although the distances themselves in
the hyperbolic plane may differ from those in the dyadic
tree metric space, composing our embedding of T into the
dyadic tree metric space with our embedding of the dyadic
tree metric space into the hyperbolic plane should yield a
greedy embedding of T into the hyperbolic plane.

Due to the existence of this embedding, we may
reinterpret the succinct coordinates computed for the
embedding of a graph into the dyadic tree metric space as
coordinates for a subset of points in the hyperbolic plane.
Not every hyperbolic plane point will be representable with
such coordinates, but this is no different in principle from
using pairs of integers to represent grid points in the
euclidean plane: not every euclidean point is representable
as an integer grid point. The parameter D is analogous to
the scale of a grid embedding.

Our overall strategy will be to embed the infinite binary
tree B, into the hyperbolic plane in such a way that any edge
has length DþOð1Þ and crosses a buffer zone of width D,
bounded by two hyperbolic lines (Fig. 6). The buffer zones
for different edges will be disjoint from each other. Thus,

any two nodes of the tree that have tree distance k units
apart will have hyperbolic distance at least Dk (because any
path between the two nodes must cross k buffer zones) and
at most ðDþOð1ÞÞk (there exists a path following tree edges
with that length). In our application, all tree paths will have
OðlognÞ edges; thus, by choosing D � � logn, for a large
enough constant �, we may guarantee that the order
relation between any two distinct tree distances remains
unchanged by this hyperbolic embedding. Any point ðx; yÞ
of the dyadic tree metric will be placed near the embedding
of tree node x, and this placement will ensure the
greediness of any edge whose endpoints belong to different
paths of our heavy path decomposition.

Next, we place nodes of the infinite binary tree B, into
the hyperbolic plane, with buffer zones as described above.
Although this placement is conceptual rather than algo-
rithmic, we may view it as being performed in a top down
traversal of the tree, so that when node x is placed we will
already know the location of its parent, the buffer zone
separating x from its parent, and a line connecting it to its
parent and on which it must be placed. We place x itself on
this line in such a way that the boundary of the parental
buffer zone forms one of the seven sides of an ideal regular
heptagon—a figure in the hyperbolic plane formed by seven
lines that are asymptotic to each other but never intersect,
such that the angle subtended by each line as viewed from x
is equal. Fig. 7 shows this placement, in a Poincaré disk
model of the hyperbolic plane centered at x; the parental
buffer zone is the topmost shaded region in the figure and
the vertical line through x is the one connecting it to its
parent node. The large arcs depict hyperbolic lines forming
the heptagon described above.

In the case where x is the right child of its parent, so that
the upper nodes of the heavy path represented by x have
children in its left subtree and the lower nodes of the heavy
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Fig. 6. Disjoint buffer zones of width D are crossed by each edge of an
embedding of B into the hyperbolic plane, so that tree distance and
hyperbolic distance closely approximate each other.

Fig. 7. Top-down placement of node x of B and point ðx; yÞ of the dyadic
tree metric space into the hyperbolic plane, shown in a Poincaré disk
model centered at x.



path have children in the right subtree, shown in the figure,
we place the left subtree within the halfplane bounded by the
heptagon side one step counterclockwise from the parent,
and the right subtree within the halfplane bounded by the
heptagon side three steps counterclockwise from the parent,
as shown in the figure. In the case where x is its parent’s left
child, we reverse the figure, placing the right subtree within
the halfplane one step clockwise from the parent and the left
subtree within the halfplane three steps clockwise from the
parent. In either case, we draw lines connecting x to its child
nodes, at angles of 2�=7 and 6�=7 from the angle of the line
connecting x to its parent (the solid straight lines of the
figure). We use the heptagon edges as the outer boundaries
of buffer zones between x and its children, and we set the
inner boundaries of the buffer zones to be hyperbolic lines
perpendicular to the lines connecting x to its children, at
distance D from the outer boundaries of the buffer zones.
With this information determined, we may continue to place
the children of x in the same way.

We are finally ready to describe the mapping of the
dyadic tree metric space into the hyperbolic plane. Recall
that each point of the dyadic tree metric space consists of a
pair ðx; yÞ where x and y are nodes of B; x a parent of y. We
draw small circles of equal radius centered at each point
where we have placed a node of B—the precise radius is
unimportant as long as it is small enough that the circles are
disjoint from the buffer zones. Then, given a point ðx; yÞ of
the dyadic tree metric space, we draw a hyperbolic line
segment from x to y (the dotted straight line in the figure),
and place ðx; yÞ at the point where this line segment
intersects the circle centered at x. In the case x ¼ y, which
happens in our construction only for leaves, we instead
place ðx; xÞ at the point where the line segment from x to its
parent intersects the circle centered at x.

Theorem 3. For sufficiently large values of D, the embedding of
G formed by composing the embedding from G into the dyadic
tree metric space and the embedding of the dyadic tree metric
space into the hyperbolic plane is greedy.

Proof. We show that, for every edge e of the chosen
spanning tree, and every possible terminus v of a path
using e, traveling along e reduces the distance to the
terminus. We assume that the starting endpoint of e is
placed at point ðx; yÞ of the dyadic tree metric, the ending
endpoint is placed at point ðx0; y0Þ, and that these points
are mapped as described above to the hyperbolic plane.
We distinguish several cases.

First, if x 6¼ x0, let k ¼ OðlognÞ be the tree distance
from x0 to the destination. Then, due to the autocratic
property of our weight-balanced placement of heavy
paths into the dyadic tree metric, x is at tree distance at
least kþ 1 from the destination. As discussed above, due
to the buffer zones of our construction, ðx; yÞ is at
hyperbolic distance at least ðkþ 1ÞD from the destina-
tion, while ðx0; y0Þ is at hyperbolic distance at most
kðDþOð1ÞÞ. By choosing D sufficiently large (a constant
times logn), we can guarantee that the former distance is
larger than the latter and that this step is greedy.

Second, if x ¼ x0 and the eventual destination also has
the same value of x, the result follows from the fact that
our embedding places the nodes of any heavy path

consecutively over an arc of less than half of a circle.
Such an embedding is greedy for any path, no matter
how the nodes are distributed within the arc.

Third, if x ¼ x0 and the eventual destination is
reached via the parent of x, the step is greedy for the
same reason as in the second case: the nodes that are
mapped to x form a heavy path placed in order along an
arc of less than half the circle, with the node of the arc
closest to the parent being the apex of the heavy path.

The most complicated case is the fourth: x ¼ x0 and the
eventual destination z has x0 as a proper descendant of x.
The closest point to z on the circle surrounding x onto
which ðx; yÞ and ðx0; y0Þ are both mapped is the hyperbolic
point represented by the coordinates ðx; zÞ; the distance to
z from other points on the circle can be calculated as a
monotonic function of the arc length between those other
points and ðx; zÞ. Thus, moving around the circle toward
ðx; zÞ is a greedy step. Unfortunately, the point ðx; zÞmay
not be a node of the heavy path; rather, the node of the
heavy path from which z descends may be some other
nearby point ðx; y00Þ. We must show that any step along
the heavy path toward this point is greedy.

In most cases, it is straightforward to show that this
step is greedy: a step around the circle toward ðx; zÞ is also
a step toward ðx; y00Þ, which as we have argued immedi-
ately above is greedy. The only possible exception occurs
when y0 ¼ y00 and when the true closest point on the circle
to z, that is, ðx; zÞ, lies on the arc of the circle between y and
y0. In this case, we must show that ðx; y0Þ and ðx; zÞ are
closer in arc length than ðx; yÞ and ðx; zÞ, for then the
greediness of the step will follow from the monotonicity of
the distance to z as a function of arc length.

Let ŷ be the least common ancestor in the binary tree of
the two disjoint subtrees containing y and y0. Let A be the
inner boundary of the buffer zone adjacent to ŷ that
contains y0, let C be the inner boundary of the buffer zone
adjacent to ŷ that contains y, and let B be the edge of the
regular ideal heptagon adjacent to ŷ that separatesA from
C. Fig. 8 illustrates this notation. These three hyperbolic
lines may not be symmetrically placed relative to x, due to
the asymmetry of the placement of the two subtrees
relative to the parent at each node x. However, the
distances from x to A and to C are within Oð1Þ of each
other, and B is closer to x by a distance ofD�Oð1Þ. It is a
basic property of hyperbolic geometry that the angle that

1578 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 11, NOVEMBER 2011

Fig. 8. Illustration for proof of greediness of our embedding (not to
scale).



an object subtends, as viewed from a fixed point of view x,
is inversely proportional to an exponential function of the
distance of the object from x. Thus, B will subtend an
angle, as viewed from x, that is larger than the angles
subtended byA andC by a factor exponential inD�Oð1Þ.
In particular, for sufficiently large D (larger than some
fixed constant, a weaker requirement than the one above
that D ¼ �ðlognÞ), both A and C will subtend smaller
angles than the angle subtended by B. Then, any point
behind line A, and in particular the point z, will form an
arc from ðx; y0Þ to ðx; zÞ that is shorter than the arc from
ðx; yÞ to ðx; zÞ. The greediness of the step from ðx; yÞ to
ðx; y0Þ follows from the monotonicity of the distance to z as
a function of arc length. tu

In another paper [32], we provide an isometric embed-

ding of the dyadic tree metric space into a different two-

dimensional geometric metric space, a manifold with the

local geometry of the L1 metric on the plane. Thus, our

greedy embedding technique can be interpreted as apply-

ing as well to the spaces described in that paper.
To pull all the details together, then, we have shown how

to embed any graph into a metric space such that the

coordinates can be represented using OðlognÞ bits, and we

have also shown how a tree in that metric space can

be embedded in the hyperbolic plane so that greedy paths

are preserved. Thus, we have a greedy embedding in the

hyperbolic plane that can be represented using OðlognÞ bits

for the coordinates. We should mention that representing

the coordinates of embedded vertices using standard

representations, such as the Poincaré disk, would result in

much larger sizes, which is one motivation for why we

developed this alternate approach.

6 CONCLUSION AND FUTURE DIRECTIONS

We have given an succinct method for embedding a

connected graph in the hyperbolic plane so as to support

greedy routing. Future directions include the following:

1. Design an efficient distributed algorithm for succinct
greedy routing for its own network.

2. Maintain a succinct greedy routing scheme subject to
vertex and/or edge updates.
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