
JOURNAL OF PARALLEL AND DISTRIBUTEDCOMPUTING 9,69-76 (1990)

On Performing Robust Order Statistics in Tree-Structured
Dictionary Machines

MICHAEL T. GOODRICH *

Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218

AND

MIKHAIL J. ATALLAHt

Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907

We show how to extend any tree-structured dictionary ma-
chine so that it can perform order statistics robustly. In particu-
lar, we consider how to allow for redundant insertions, dele-
tions, and updates, as well as operations based on the ranks of
data items, such as Extract(j), which simultaneously selects and
deletes the jth smallest data item. All these operations can he
performed without ever interrupting the pipelining of responses
coming from the machine, and the resulting machine has the
same interval time and latency time performance as the original
design, to within constant factors. o 1990 Academic press. I N K .

1. INTRODUCTION

An application of parallel computing which seems to
offer many rewards is that of manufacturing powerful, spe-
cial-purpose computing devices which allow general-pur-
pose (host) computers to off-load some of their computa-
tional burden. Specifically, one such application is the de-
sign of dictionary machines (sometimes referred to as
database machines) [1-4, 6-91. A dictionary machine is a
computing device which is to be used to allow a host com-
puter to off-load certain operations for maintaining and
querying data files.

For a dictionary machine to be attractive for use with a
general-purpose computer, it should obviously perform the
required operations better than the general-purpose com-
puter can. One way such a special-purpose machine can ex-

* This author’s research was supported by a grant from the Sperry Corp.,
by a David Ross Grant from the Purdue Research Foundation, and by the
National Science Foundation under Grant CCR-88 10568.

t This author’s research was supported by the Office of Naval Research
under Grants NO00 14-84-K-0502 and NO00 14-86-K-0689, and by the Na-
tional Science Foundation under Grant DCR-845 1393, with matching
funds from AT&T.

ccl over a general-purpose machine is in the use of parallel-
ism. The possible speedups are even more dramatic if the
special-purpose machine has the ability to pipeline opera-
tions. That is, the host computer using such a machine can
send it a stream of operations, and can get back a stream of
responses. In this context there are two useful measures for
evaluating a machine’s performance: its latency time and
its interval time (or period). The latency time of a machine
is the time it takes one operation to flow through the ma-
chine, from the input of the operation to the output of its
result. The interval time of a machine is the time that
elapses between consecutive responses. In designing an
efficient special-purpose machine one wishes to minimize
both of these quantities. Typically, one wishes to have a
constant interval time and a latency time which is logarith-
mic in either the size of the machine or the number of ele-
ments it stores.

One design which makes considerable use of this type of
parallelism is the tree-structured dictionary machine [1, 2,
3,6, 8, 91, depicted in Fig. 1. Such a machine is structured
as a binary tree of processing elements (PEs), and stores
data items internally, each PE having U(1) storage registers.
Operations are sent to the dictionary machine in a pipelined
fashion, the execution of an operation beginning when it is
input as a single instruction to the tree’s root processor.
(These high-level instructions should not be confused with
the primitive instructions which compose the instruction
set for the CPU in a PE.) Instructions flow through the ma-
chine like waves, flowing down the tree in a broadcast mode
until they reach the last level of the tree storing data items,
at which point the instructions “bounce” and start flowing
up the tree in a combining mode, eventually resulting in an
answer being output at the root. For example, the response
from a Delete(k) instruction could be that each PE indi-
cates by responding with a “yes” or “no” whether it deleted

69
0743-73 15/90 $3.00

Copyright 0 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

70 GOODRICH AND ATALLAH

: .

FIG. I. Instruction pipelining in the dictionary machine.

the specified item or not. For the host to know if the item
was deleted all of the responses would need to be combined
into just one answer: “yes” or “no.” Or, alternatively, the
operation could be a query to count how many elements
fall within a certain range, in which case each PE with an
element in the range would respond with 1 and all others
would respond with 0. The combining operation would
simply be to sum up all the responses.

Some of the previous designs (e.g., [1,6]) describe dictio-
nary machines which are robust in the sense that they allow
for graceful recovery from redundant Insert and Delete op-
erations. That is, the machine can recover gracefully if an
Insert operation tries to insert something that is already in
the dictionary machine or if a Delete tries to remove some-
thing that is not in the machine. Clearly, one desires that a
special-purpose machine be robust if its task is to off-load
as much of the computational burden from the host com-
puter as possible.

Much of the previous work on tree-structured dictionary
machines [l-3,6, 8,9] was dealt with efficient ways of im-
plementing simple operations, such as inserting a data item,
deleting an item, finding an item, etc. Some of these papers
describe machine designs in which data items are stored
close to the top of the tree, thus optimizing the latency time
of the machine. Others describe ways of optimizing the in-
terval time of the machine. Because so much work has been
spent optimizing the simple operations, one might be led to
the misconception that a tree-structured dictionary ma-
chine cannot perform more complex operations, such as
rank-based queries. A notable exception to this restriction
to simple instructions is the design of Song [91 which can
perform complex operations, such as multiselection, sort-
ing, and join. This design has some unfortunate drawbacks,
however, in that it does not support rank-based queries, it
requires that data items be stored only at the leaves of the
tree, and operations cannot be redundant.

In this paper we show how to extend any tree-structured
dictionary machine design so that it can perform order sta-
tistics and other data operations in a robust fashion, even if
the previous design was not robust. It is this robustness that
makes our design interesting, for if we were to disallow re-
dundant Insert’s and Delete’s, then rank-based queries
would be straightforward to implement by simply having
each data item in the dictionary machine keep track of its
rank. This becomes nontrivial, however, in the presence of
redundant operations, especially if we allow for an opera-
tion Extract(j), which simultaneously selects and deletes
the jth smallest data item. This Extract(j) operation is a
generalization of the ExtractMin and ExtractMax opera-
tions that some of the previous designs support [1,6,8 1.

Our scheme does not depend on any single way of imple-
menting the low-level instructions, such as insertion and de-
letion of data items. Instead, it is a design built “on top” of
any existing method for implementing these instructions.
Our methods guarantee that the generalized dictionary ma-
chine will achieve the same latency and interval times as the
original machine, to within constant factors. In addition,
our scheme is general enough that it can be implemented
in a synchronous VLSI environment or in a SIMD parallel
environment which allows for on-line definable “masking”
vectors (which identify which PEs perform an instruction
and which ones simply perform a no-operation).

The remainder of this paper is organized as follows. In
the next section we review the tree-structured dictionary
machine model, and in Section 3 we describe our protocol
for instruction flow and show how to implement order sta-
tistics robustly, even in the presence of Extract(j) instruc-
tions.

2. THE TREE-STRUCTURED
DICTIONARY MACHINE

The machine model we will be using incorporates the
common properties of previous tree-structured dictionary
machine designs [1-3, 6, 8, 91. The general framework is
that the machine’s topology is a complete binary tree.
(Some designs have additional connections, but we will
only use edges of the binary tree.) The data elements are
stored in the nodes of this tree, 0(1) elements per node.
Some of the previously proposed machines have data items
stored only at the leaves of the tree, but for the purpose of
more generality we will assume that a data item can be
stored at any node in the tree. Also, without loss of general-
ity, we assume that each PE can store at most one data ele-
ment. This allows us to refer to the element stored in a PE.

The flow of an instruction through the machine is as fol-
lows. The execution of the instruction begins when it is sent
to the root of the dictionary machine from the host com-
puter. We assume that each PE executes synchronously us-
ing a global clock, or, equivalently, that the dictionary ma-

ORDER STATISTICS IN DICTIONARY MACHINES 71

chine is implemented to support SIMD operation with on-
line definable masking vectors for enabling and disabling
PEs. A PE receives an instruction from its parent, executes
the instruction on its contents, then divides the instruction
into two instances, called bubbles, and sends them to its
children. It includes its response (if there was one) with one
of the bubbles, and its parent’s response with the other. The
instruction continues to be broadcast down the tree in this
manner, PEs broadcasting bubbles to their children. As the
bubbles from this instruction move down the tree, like sol-
diers marching in formation, they carry along the responses
that have been generated so far. We define the last level of
the tree still containing data items to be the effective lust
level of the tree. When bubbles from an instruction reach
the effective last level of the tree they stop being broadcast
down the tree, “bounce,” and start moving back up the tree
to be output, combining with each other as they move up.
When a (response) bubble arrives at the root, the root sim-
ply sends it back to the host. An exception to this generic
execution pattern is the design of Somani and Aggarwal
[8 1, where instructions can be executed as they are going
up the tree. The algorithms we describe in this paper assume
that instructions execute as they travel down the tree. Modi-
fying our machine design so that instructions execute on the
way up is straightforward.

A data item is represented as a key-record pair (k, r),
where k is a key uniquely identifying the item, and Y is a
data record. In a database it is often useful for k to be a tuple
(k,, kz, . . ., kd). Without loss of generality, we consider
each k to be single integer. An instruction bubble consists
of an instruction-response pair (i, b), where i is the instruc-
tion being executed and b is a response (i.e., an answer)
from some PE which has executed i on its contents. We
place no restrictions on the response b, but typically it will
be 0 (the null response), “yes,” “no,” or some (k, r) pair.

There are six primitive operations which previously pro-
posed machines can perform:

1. Insert(k,r):inserta(k,r)pair;
2. Delete(k): delete the (k’, Y) pair for which k’ = k;
3. Update(k, Y): replace (k, r’) by (k, r), if there is no

(k, Y’) pair then this operation has no effect;
4. Member(k) : return the (k’, r) pair for which k’ = k if

there is such a pair, otherwise, return “no”;
5. Min() : return the (k, I) pair which has the minimum

k value among all those stored in the machine;
6. ExtractMin(), ExtractMax(): simultaneously select

and delete the (k, r) pair with smallest (largest) k value [1,
681.

Since the implementation details for operations 1,2, and
3 above differ from machine design to machine design, we
will not describe their implementation in any detail. For the
details of various implementations see the references at the

end of this paper. The only thing we assume is that, like all
operations, operations that can modify the contents of the
dictionary machine execute while traveling down the tree.
We will describe how to perform operations 4, 5, and 6 in
this paper, and in fact will describe a generalization of oper-
ation 6.

2.1. Robustness

One of the important aspects of our design is that it is
robust. That is, the machine can gracefully recover from
redundant instructions. An Insert(k, v) is redundant if
there is already a pair (k, r’) in the tree, and a Delete(k) or
Update(k, Y) is redundant if there is no pair (k, r’) in the
tree. Not all machine designs allow for redundant opera-
tions, and some of the ones that do allow for them require
that all redundant Insert’s be treated like Update’s. Our so-
lution allows for any kind of error recovery the user wants.
The main idea of our method is to change the way instruc-
tions are pipelined through the machine similar to the
method used by Atallah and Kosaraju in [I]. Instead of
only going up and down the tree once, instructions in our
machine go up and down the tree twice. In the first round-
trip instructions are tagged as being either “redundant” or
“nonredundant.” Then, in the second round-trip, the non-
redundant instructions will perform, more or less, just as in
the original design [l-3, 6, 8, 91. The redundant instruc-
tions will perform some error recovery procedure (usually
a no-operation) in their second round-trip. For example, a
redundant Insert(k, Y) could act as a nonredundant
Update(k, r) or it could simply do nothing, allowing the
(k, r’) pair already in the machine to remain unchanged.

If we restrict the operations which can modify the con-
tents of the machine to Insert(k, r), Delete(k), and
Update(k, r) , then the original scheme of Atallah and Ko-
saraju [11, as just outlined, will correctly tag an instruction
as “redundant” or “nonredundant” by the end of its first
round-trip through the machine. Their scheme is not
sufficient, however, for maintaining robustness in the pres-
ence of content-modifying instructions that depend on the
rank of data elements.

Since our method builds on that of Atallah and Kosaraju,
we review their scheme here, and then in the next section
show how to extend it for our design. Their scheme called
for instructions traveling down the tree in their first round-
trip to examine the (k, Y) pairs in the tree, and the instruc-
tion traveling up the tree in their first round-trip to examine
the instructions traveling down the tree in their second
round-trip (see Fig. 2). The redundancy tags of the instruc-
tions in their first round-trip are updated depending on the
results of these comparisons. Operations flowing through
the tree in their second round-trip operate exactly as before.

We refer to the updating done while instructions travel
down in their first round-trip as phase I updating and up-

72 GOODRICH AND ATALLAH

i i-l +
Broadcast Tagging Execute Output

FIG. 2. The phases of instructions flowing through the machine. The
first round-trip consists of a broadcast phase and a tagging phase; the sec-
ond round-trip consists of an execute phase and an output phase.

dating while instructions travel up in their first round-trip
as phase 2 updating. One updates the redundancy tags as
follows:
Phase 1 Redundancy Tag Updating:

A nonredundant Insert(k, r) becomes redundant by finding a pair
(k, r’) in the tree. Similarly, a redundant Delete(k) or Update(k, r) ,
becomes nonredundant by finding a pair (Jr, r’) in the tree.

Phase 2 Redundancy Tag Updating:

A nonredundant Insert(k, r) becomes redundant, or a redundant
Delete(k) or Update(k, r) becomes nonredundant, by finding a pair
(k, r’) in the tree or by encountering a nonredundant Insert(k, r’)
instruction making its way down the tree in its second round-trip.

A redundant Insert(k, r) becomes nonredundant, or a nonredun-
dant Delete(k) or Update(k, r) becomes redundant, by encountering
a nonredundant Delete(k) in its second round-trip down the tree.

Initially, all Insert(k, r) instructions are tagged nonre-
dundant, and all Delete(k) and Update(k, Y) instructions
are tagged redundant. On the way up the tree in the first
round-trip the tags are combined so that if the tags of two
bubbles to be combined into one differ, then one always
prefers the tag which is different from the tag the instruction
was given initially when it was input to the machine [11.
Thus, if differences occur, the tag always represents a value
it was changed to.

As mentioned before, this scheme does not work in the
presence of rank-based content-modifying instructions. In
the next section we show how to eliminate this drawback.

3. ROBUST ORDER STATISTICS

Since our methods are based on how instructions flow
through the machine, we begin by describing the instruc-
tion-flow protocol.

3. I. A Simple Instruction-Flow Protocol

In this section we describe our protocol for how instruc-
tions should flow through the machine. An instruction
flowing through the machine passes through four phases be-
fore its answer is output at the root. An instruction is input
to the machine at the r6ot PE and is in phase 1 while its
bubbles are flowing down the tree. During this phase the
instruction bubbles are being compared to data elements in
the tree in order to initialize each bubble’s redundancy tag.

The instruction makes the transition to phase 2 at the effec-
tive last level, where it bounces, and its bubbles proceed
back up to the root. During this phase the PEs are updating
the instruction bubbles’ redundancy tags by comparing
each instruction bubble going up the tree in its phase 2 to
the instructions coming down the tree in their phase 3. An
instruction begins phase 3 when it reaches the root, com-
pleting its first round-trip in the tree. In phase 3 it flows
back down the tree and executes exactly as in the original
scheme. The response from a PE is always sent to its right
child, and its parent’s response is sent to the PE’s left child
(even ifthat response is null). When the instruction reaches
the effective last level in the tree it makes the transition to
phase 4, where the bubbles again proceed up the tree to the
root; this time all the answers to the instruction are com-
bined to be output to the host computer as a single answer.

Each PE has communication ports which allows it to deal
with the four different types of instruction bubbles implied
by this scheme. We describe our protocol assuming com-
munication ports are directed, and we denote each port rel-
ative to a particular PE p by a& where cx is P (resp., L or R)
ifthe port is connected top’s parent (resp., left child or right
child), and @ is the phase number of instructions that will
come from or go to that port. For example, port L2 in some
PE p will be connected to port P2 of p’s left child. Because
of the semantics of the phase numbers, it should be clear
that, relative to a particular PE, PI, L2, R2, P3, L4, and R4
are input ports and L 1, R 1, P2, L3, R3, and P4 are output
ports.

We denote the operation of a PE writing a value to a port
(resp., reading a value from a port) by P c V (resp., V c
P) , where V/is the value and P is the port. If a PE reads from
a port which has not been written upon since the last time
it was read, then it receives a special value nil as the result
of the read. We assume that the operations of reading and
writing to a port are mutually exclusive and atomic. The PE
execution-cycle procedure (which we describe below), and
the fact that the dictionary machine operates synchro-
nously, guarantees that no port is ever written to unless its
previous value has been read by the PE at the other end.

In its execution loop the PE p processes the instruction
bubbles in phase 4 first, then those in phase 3, and so on, to
those in phase 1. In addition to these ports, a PE has four
registers storing the instruction bubbles in each phase cur-
rently passing through p, which we denote as bl, b2, b3,
and b4. Finally, the data record stored at p is denoted D.
The details of the execution loop can be found in Fig. 3.

Although we have not shown it in the pseudocode, we
assume that if a PE does not execute the body of an if state-
ment, then it performs a number of no-operations so that it
is at the same place in the code as the other PEs. In other
words, our methods can be implemented in a SIMD envi-
ronment using on-line definable masking vectors.

A PE on the effective last level performs the computation

ORDER STATISTICS IN DICTIONARY MACHINES 73

Psuedo Code:

while (TRUE) do
/* phase 4 */

b4 + Combine4(L4,R4);

if (b4 # nil) then
P4 + b4;

end if
/* phase 3 */

b3 + P3;
if (b3 # nil) then

L3 + b3;

R3 + Ezecute(b3,D);

end if
/* phase 2 */

b2 + CombineP(L2,R2);

if (b2 # nil) then
if (b3 # nil) then

TogZ(b2,b3);

end if
P2 + b2;

end if
/* phase 1 */

bl + Pl;
if (bl # nil) then

Tagf(bl,D);

Ll +- bl;
RI + bl;

end if
end while.

Comments:

Combine4 returns nil if L4 and R4 are nil,
and combines L4 and R4 as in the original
design otherwise.

Ezecute performs the operation b3 on the data
record D just as in the original design. Note
that the response is sent to the right child.

Combine2 returns nil if L2 and R2 are nil,
and combines the redundancy tags for L4 and
R4 as described earlier.

Tag2 compares the bubbles b2 and b3 and sets
the redundancy tag of b2 as was described
earlier.

Tagf compares the bubble b2 and the data
record D and sets the redundancy tag of b2
as was described earlier.

FIG. 3. The PE execution loop.

of Fig. 3 as if Ll (resp., Rl, L3, R3) is connected to L2
(resp., R2, L4, R4). That is, it reads an instruction-re-
sponse pair (i, b) from its parent, computes its response b’
to i, and then performs the combining process as if it were
an interior node PE which had just read b and b’ from its
children.

We assume that every other instruction being pipelined
through the machine is either a no-operation or at least is
not a content-modifying instruction. This assures us that
we will never have a content-modifying instruction in phase
2 “pass” an instruction in phase 3 without the two instruc-
tions being compared in the Tag2 procedure. The root pro-
cessor can easily maintain this invariant. This idea, in fact,
is already present in some of the previous designs (e.g.,
[1>61).

Note that with every other instruction cycle there is al-
ways some response being output at the root, so the ma-
chine is pipelining responses as fast as is possible to within
a constant factor. In other words, the interval time for the
machine is on the order of that of the original design. In
addition, since we have instruction only flow down to the
effective last level in the tree, the latency time is on the order
of that of the original design.

In the next subsection we show how to maintain robust-
ness while adding order-statistic capability to the machine.

3.2, Implementing Order Statistics

There are a number of useful data operations which use
the ranks of data items as operands: selecting the median
element, extracting thejth smallest element, or selecting the
jth largest element, to name a few. In this section we show
how to implement these types of rank-based queries. The
first operation we describe is selecting the jth smallest data
item in the dictionary tree. If we add a rank field to the [k,
r] register of each PE, to store the rank of k, then we can
easily add a new instruction Select(j), which returns the (k,
r) pair with jth smallest k value.

A PE storing (k, r) can easily update the rank field for k
by incrementing its rank for every nonredundant Insert(k’,
J) with k’ < k and decrementing it for every nonredundant
Delete(k’) with k’ < k that passes through the PE in its
phase 3 (as a part of the Execute procedure). If the key k is
really a tuple (k,, k2, . . . , kd), then the rank of k can also
beatuple(r,,rZ,..., rd) . The algorithms we present below
consider the rank to be a single integer, but changing them
for the case of a tuple of ranks should be obvious.

74 GOODRICH AND ATALLAH

Adding the operation Select(j) does not corrupt the re-
dundancy tagging mechanism presented in the previous
section, because it does not alter the contents of the dic-
tionary machine. However, if we include the instruc-
tion Extract(j), a generalization of ExtractMin() and
ExtractMax() which simultaneously selects and deletes the
(k, Y) pair with the jth smallest k value, then the previous
scheme for maintaining robustness is not enough. This is
because an Extract(j) instruction can make redundant in-
sertions nonredundant and can make nonredundant dele-
tions redundant.

We can maintain the rank of the (k, r) pairs in the ma-
chine even with this new instruction by decrementing the
rank of k by 1 for each nonredundant Extract(j) which is
executed at the PE storing (k, Y) such that the rank of k is
more than j. Of course, if the rank of k equals j, then we
delete (k, Y) and (k, r) becomes the response of this instruc-
tion. Also, if the rank of k is less thanj then the instruction
has no effect on the rank of k.

It is not so easy, however, to determine which instruc-
tions are affected by Extract(j) instructions. For determin-
ing that in a robust environment we must be more clever in
how we process instructions through the machine. Let i be
some content-modifying instruction, using the key k, which
is in its first round-trip moving up the machine (phase 2).
We have already noted that as i is moving through the ma-
chine it exists as a number of instances (or “bubbles”). We
define the relative rank of k for a bubble of i which is in its
first round-trip moving up the tree and is currently at some
PE p to be the rank of k if we were to complete executing
all the instructions which have already passed through p in
their second round-trip moving down the machine (phase
3). (See Fig. 4.) To rectify the problems introduced by
Extract(j) we add a rank field to each bubble of every con-
tent-modifying instruction i. When i is in its phase 1 we will
use this rank field to compute the relative rank of k for at
least one of the bubbles of i, and when i is in its phase 2 we
will update the rank fields so that at the end of i’s first
round-trip through the machine this field will store the ac-
tual rank of k (for i). The most important application of
the rank field used in the instruction’s first round-trip
through the machine is that an instruction in its phase 2 can
use this field to tell if it is affected by an Extract(j) moving
down the machine in its phase 3. This rank field is also used

1 ;“-I i
FIG. 4. The relative rank of i, currently in some PE p, is the rank it

would have after executing all the instructions (indicated by a heavy line)
which are past p in their second round-trip.

in the second round-trip to help compute the ranks of bub-
bles of instructions in their first round-trip.

When an instruction i is moving up the tree in its phase
2 it will be compared against those instructions coming
down the tree in their phase 3 by examining their rank fields
as well as their redundancy tags (in the procedure Tag2).
We denote the rank field of a bubble B = (i, b) by B.rank.

Initially, the rank of an Insert(k, r) instruction will be 1,
Delete(k) and Update(k, r) instructions have an undefined
rank (since they start out redundant), and Extract(j) has
rank j. To maintain the value of B. rank we must modify the
procedures Tagl, Tag2, and Combine2 to maintain rank
information as well as performing their original duties. We
begin with the modifications for Tagl. Recall that this is
the procedure for tagging instruction bubbles as they are
moving down the tree in their phase 1, being compared to
the data records in the tree. We add the following check to
Tag1

Let (i, b) be the bubble stored in b 1, let k be the key value for this
instruction, and let D = (k’, r’) be the data record stored at the PE. If
k = k’, then set the rank of bl to the rank of D (note that this case
should change the redundancy tag of bl as well). Otherwise, if the
bubble hl is for a nonredundant Insert(k. r) instruction and k’ c k,
then set bl.runk := max(bl.rank,rank(k’) + 1).

This rank is then sent down to the children PEs of this PE
as a part of the message that is sent. We make an important
observation about this rank-updating procedure in the fol-
lowing lemma:

LEMMA 3.1. Let i be some content-modijying instruc-
tion with key value k. At least one bubble for i will contain
the correct relative rank of k by the time the bubble reaches
the efective last level of the tree, unless i is Delete(k) or
Update(k, r) and all its bubbles are redundant when they
reach the eflective last level.

ProoJ Suppose i is a Delete(k) or Update(k, r) instruc-
tion. If there is a nonredundant bubble for i on the effective
last level of the tree, then there was some (k, r’) pair in the
tree when this bubble passed by. In this case the correct rela-
tive rank for i is the rank of (k, r’) when i “passed through”
the PE p storing this value, since no instruction in its phase
3 could pass through p and then pass by i (because of the
synchronous nature of the machine). That is, if there is an
instruction i’ which modifies the rank of k after the bubble
for i passes through p, then i’ has yet to encounter i (while
the bubbles for i are in their phase 2). Thus, there is a bub-
ble on the effective last level which stores the correct relative
rank of i. This completes the proof for deletions and up-
dates.

Suppose i is an Insert(k, r) instruction. If there are no
redundant bubbles for i on the effective last level, then the
correct relative rank of k at effective last level of the tree is
one greater than the maximum rank of all (k’, r’) pairs, k’
< k, which were in the tree when the bubbles of i flowed

ORDER STATISTICS IN DICTIONARY MACHINES 75

past them (by an argument similar to that of the previous
paragraph). Since bubbles for the instruction i pass by every
PE in the tree storing a (k’, v’) pair, then there is certainly
some bubble for i which will pass through the PE storing the
immediate predecessor of (k, Y) (if there was one). Thus, if
there are no redundant bubbles for i on the effective last
level, then this bubble will store the correct relative rank of
k for i. On the other hand, if there is a redundant bubble
for i on the effective last level of the tree, then the relative
rank for i is the rank of the (k, r’) pair which caused that
bubble to become redundant (again, by an argument sim-
ilar to that of the previous paragraph). Since this is exactly
the rank that is given to the redundant bubble in this case,
there is a bubble which has the correct relative rank of k for
i on the effective last level of the tree. n

In combining instructions as they proceed up the tree in

A redundant Insert(k, r) becomes nonredundant, or a nonredun-
dant Delete(k) or Update(k, r) becomes redundant, if it encounters
an Extract(j) instruction traveling down the machine in its second
round-trip withj equal to the rank field for that instruction.

It should now be clear that the other reasons we do not
care about the ranks of redundant deletions and updates are
that (i) the Extract(j) only affects nonredundant deletions
and updates, and (ii) redundant operations turn into no-
operations in their phase 3.

The following lemma shows that the above scheme will
maintain the correct relative rank of an instruction as it
flows up the tree in its phase 2.

their phase 2 we take the rank of the combined bubble to
be the maximum of the ranks of the bubbles coming from
the children PEs. This, of course, amounts to a slight addi-
tion to the procedure Combine2.

LEMMA 3.2. Let iz, k2, i3, b2, and b3 be as in theprevi-
ous discussion. Ifb2 .rank stores the correct relative rank of
k2 before b2 is compared to 63 (in the Tag2 procedure), then
it will store the correct relative rank ofk2 after this compari-
son.

We update the relative rank fields of the bubbles for an
instruction i as it proceeds up the tree in its phase 2 so that
the rank field of i will store the correct rank of the key value
for i by the time it completes is phase 2. We must add some
steps to the Tag2 procedure to accomplish this. Let i2 be the
instruction for b2 and let i3 be the instruction for b3. Let us
assume that i2 is an insertion, a deletion, or an update, since
we need not update b2.rank if this is not the case. The first
step we add to Tag2 is to check if b3 changes b2 from a
redundant operation to a nonredundant operation. If this
happens, then we set b2.rank to b3.rank. For this reason,
and reasons which will become apparent shortly, we do not
maintain b2.rank if i2 is a redundant Delete(k) or
Update(k, r). We let k2 denote the key value of iz. Let us
also assume that i3 is a nonredundant rank-modifying in-
struction (i.e., Insert(k, r), Delete(k), or Extract(j)),
since we need not update b2.rank if this is not the case. We
have yet to specify how to update b2.rank if i2 is an
Insert(k, r) operation or i2 is a nonredundant Delete(k) or
Update(k, r) operation:

ProoJ: As might be expected, the proof is by a case anal-
ysis. Suppose b2.rank stores the correct relative rank of k2.
By an argument similar to that of Lemma 3.1, if b3 changes
b2 from being redundant to nonredundant, then the correct
relative rank of b2 is the rank of b3. Thus, let us assume that
b3 does not make b2 nonredundant.

Case 1. i3 = Insert(k3, r). If b3.rank < b2.rank, then,
by the induction hypothesis, k3 < k2. Thus, it is correct that
we increment b2.rank by 1. Suppose b3.rank = b2.rank; i.e.,
the relative rank of k2 is the same as the actual rank of k3.
If k3 < k2, then the relative rank of k2 is 1 more than that of
k3. So we are correct in incrementing b2.rank in this case.
Suppose k3 = k2. If i2 = Insert(k2, r2), then b3 makes b2
redundant and the relative rank of k2 is unchanged. Other-
wise, b3 forces b2 to become nonredundant. In either case,
b2.rank is updated correctly. If k3 > kZ, then the relative
rank of k2 is unchanged. In addition, if b3.rank > b2.rank,
then b2.rank is unaffected by b3.

1. Suppose i3 = Insert(k3, r). If b3.rank < b2.rank, then
increment b2xank by 1. If b3.rank = b2.rank, then incre-
ment b2.rank by 1 only if k3 < kZ. Otherwise, if b3.rank
> b2.rank, then b2.rank is unchanged.

2. Suppose i3 = Delete(k3). If b3.rank < b2.rank, then
decrement b2.rank by 1. Otherwise, b2.rank remains un-
changed.

3. Suppose i3 = Extract(j) (in which case b3.rank = j by
definition). If b3.rank < b2.rank, then decrement b2.rank
by 1. Otherwise, b2.rank remains unchanged.

Case 2. i3 = Delete(k3). If b3.rank < b2.rank, then, by
the induction hypothesis, k3 < k2. Thus, it is correct that we
decrement b2.rank by 1. Suppose b3.rank = b2.rank. If i2
= Insert (k2, r2), then by the induction hypothesis k2 = k3
and i3 forces i2 to become nonredundant; hence, b2.rank is
updated correctly. If i2 = Delete(k2) or i2 = Update(k2, r2),
then by the induction hypothesis i3 makes i2 redundant and
we do not care about b2.rank (the induction hypothesis is
vacuously true in this case). Finally, if b3.rank > b2.rank,
then ix does not change the relative rank of i2.

We also add the following rule to the redundancy tagging
rules of the Tag2 procedure:

Case 3. i3 = Extract(j). lfj < b2.rank, then it is clearly
correct that we decrement b2.rank by 1. Suppose j
= b2.rank. Then i3 changes the redundancy tag of iz, and
either we do not care about b2.rank or (if i2 = Insert(k2,
r2)) we correctly set b2.rank to j. Finally, ifj > b2.rank, then
the relative rank of i2 is unaffected by i3. This completes the
proof. H

76 GOODRICH AND ATALLAH

The following immediately follows from this lemma:

COROLLARY 3.3. If a content-modifying instruction
completes its phase 2 and is nonredundant, then its rank
field stores the actual rank of the (k, r) pair it is to aflect.

Note that the only time the Extract(j) operation can be
redundant is if there are less than j elements being stored
in the machine when the instruction flows through. But, as
should be apparent by the way Extract(j) interacts with
other instructions and the (k, r) pairs in tree, the fact that n
< j essentially means the instruction is a no-operation.
Thus, we conclude this subsection with the following
theorem:

THEOREM 3.4. An instruction is correctly tagged as re-
dundant or nonredundant by the time it is finished traveling
through the tree for theJirst time, even in the presence of
Extract(j) instructions.

ProoJ We have already established the theorem for the
basic three content-modifying instructions. So we need to
prove that an instruction is correctly tagged in the presence
of Extract(j) instructions. From the previous lemma, for
an instruction i moving up the tree in its first round-trip,
where i is a nonredundant Insert(k, r) or a redundant
Delete(k) or Update(k, r), there is at least one bubble of i
with the correct relative rank of k. If i on its way up encoun-
ters an Extract(j) on its way down with j equal to its relative
rank, then it is affected by this Extract(j). Note that the
redundancy rule added above to Tag2 for this instruction
correctly handles this case. Since we have already estab-
lished the theorem for the other content-modifying instruc-
tions, this completes the proof. n

3.3. Using the Value of n

Another important piece of information that should be
allowed to be included in machine instructions is n, the
number of (k, r) pairs in the machine. This makes opera-
tions such as extracting the maximum element, selecting
the median, or selecting the jth largest element possible.
One might be tempted to require that every PE store the
value of n to be able to implement these operations, but
the only PE which needs to store the value of n is the root
processor. Any instruction that uses the value of n as an
argument can have the actual value substituted as soon as
the instruction reaches the root after its first round-trip
through the machine. This is because the root processor will
store the correct value of n for that instruction, having
processed all content-modifying instructions which pre-
cede it. For example, when an instruction such as
SelectMedian() or SelectMax() reaches the root PE the
root simply changes the instruction into the appropriate
Select(j) instruction. Similarly, the root can convert an
ExtractMax() or ExtractMedian() operation to an

Received September 1, 1987; revised February 17, 1988

Extract(j) in this way, as well. After this change, the in-
struction proceeds in its second round-trip as before.

ACKNOWLEDGMENTS

We thank the referees for their helpful suggestions. In particular, we ac-
knowledge their suggestions on ways of improving the rigor and correctness
of the presentation.

1.

2.

3.

4.

5.

6.

7,

8.

9.

10.

REFERENCES

Atallah, M. J., and Kosaraju, S. R. A generalized dictionary machine
for VLSI. IEEE Trans. Comput. C-34,2 (1985), 151-155.
Bentley, J. L., and Kung, H. T. A tree machine for searching problems.
Proc. I979 IEEE International Conference on Parallel Processing, pp.
257-266.
Bonuccelli, M. A., Lodi, E., Luccio, F., Maestrini, P., and Pagli, L. A
VLSI tree machine for relational data bases. Proc. IOth ACM/IEEE
International Symposium on ComputerArchitecture, 1983, pp. 67-73.
Fisher, A. L. Dictionary machines with a small number of processors.
Proc. 1 I th ACM/IEEE International Symposium on Computer Archi-
tecture, 1984, pp. 15 1 - 156.
Fredman, M. L. A lower bound on the complexity of orthogonal range
queries. J. ACM 28, (198 1) ,696-706.
Ottmann, T. A., Rosenberg, A. L., and Stockmeyer, L. J. A dictionary
machine (for VLSI). IEEE Trans. Comput. C-31,9 (1982), 892-897.
Shemer, J., and Neches, P. The genesis of a database computer. Com-

puter 17, 11 (1984), 42-56.
Somani, A. K., and Agarwal, V. K. An efficient unsorted VLSI dictio-
nary machine. IEEE Trans. Comput. C-34,9 (1985), 841-852.
Song, S. W. A highly concurrent tree machine for database applica-
tions. Proc. 1980 IEEE International Conference on Parallel Process-
ing, pp. 259-268.
Willard, D. E., and Lueker, G. S. Adding range restriction capability
to dynamic data structures. J. ACM32,3 (1985), 597-6 17.

MICHAEL T. GOODRICH received the B.A. in mathematics and com-
puter science from Calvin College, Grand Rapids, Michigan, in 1983 and
the M.S. and Ph.D. in computer science from Purdue University, West
Lafayette, Indiana, in 1985 and 1987, respectively. In July 1987 he joined
the Department of Computer Science at Johns Hopkins University, Balti-
more, Maryland, where he is currently an assistant professor. In 1988 he
received a Research Initiation Award from the National Science Founda-
tion. His research interests include computational geometry and the design
and analysis of sequential and parallel algorithms. Dr. Goodrich is a mem-
ber of the Association for Computing Machinery, including the Special
Interest Groups on Automata and Computability Theory (SIGACT) and
Computer Graphics (SIGGRAPH)

MIKHAIL J. ATALLAH received the B.E. in electrical engineering
from the American University, Beirut, Lebanon, in 1975 and the M.S.E.
and Ph.D. in electrical engineering and computer science from Johns Hop-
kins University, Baltimore, Maryland, in 1980 and 1982, respectively. In
August 1982 he joined the Department of Computer Science at Purdue
University, West Lafayette, Indiana, where he is currently a professor. In
1985 he received a Presidential Young Investigator award from the Na-
tional Science Foundation. His research interests include the design and
analysis ofalgorithms, parallel computation, and computational geometry.
Dr. Atallah is a member of the Association for Computing Machinery,
the Institute of Electrical and Electronics Engineers, and the Society for
Industrial and Applied Mathematics (SIAM). He serves on the Editorial
Board of the SIAM Journal on Computing.

