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Abstract. We provide linear-time algorithms for geometric graphs with sublinearly many edge
crossings. That is, we provide algorithms running in O(n) time on connected geometric graphs
having n vertices and k pairwise crossings, where k is smaller than n by an iterated logarithmic
factor. Specific problems that we study include Voronoi diagrams and single-source shortest paths.
Our algorithms all run in linear time in the standard comparison-based computational model; hence,
we make no assumptions about the distribution or bit complexities of edge weights, nor do we utilize
unusual bit-level operations on memory words. Instead, our algorithms are based on a planarization
method that “zeros in” on edge crossings, together with methods for applying planar separator
decompositions to geometric graphs with sublinearly many crossings. Incidentally, our planarization
algorithm also solves an open computational geometry problem of Chazelle for triangulating a self-
intersecting polygonal chain having n segments and k crossings in linear time, for the case when k is
sublinear in n by an iterated logarithmic factor.
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1. Introduction. A geometric graph [50] is an embedding of a graph G = (V,E)
in R2 so that each vertex v is associated with a unique point p in R2 and each edge is
“drawn” as a straight line segment joining the points associated with its end vertices.
Moreover, the edges incident on each vertex v are given in angular order around v, so
that faces in the embedding of G in R2 are well defined (e.g., using the next-clockwise-
edge ordering). Thus, we use the same notation and terminology to refer to G and its
embedding. If the edges in G have no crossings, then G is said to be a plane graph,
while graphs that admit realizations as plane graphs are planar graphs [20, 29].

Geometric graphs are natural abstractions of the geometric and connectivity re-
lationships that arise in a number of applications, including road networks, railroad
networks, and utility distribution grids, as well as sewer lines and the physical con-
nections defining the Internet. An example road network is shown in Figure 1.1.

Although planar graphs and their plane graph realizations have been studied
extensively (e.g., see [57]), real-world geometric graphs often contain edge crossings.
Recent experimental studies by the first two authors give empirical evidence that
real-world road networks typically have Θ(

√
n) edge crossings, where n is the number

of vertices [25]. Motivated by this real-world example, therefore, we are interested in
studying algorithms for connected geometric graphs that have a sublinear number of
edge crossings. However, we use a weaker restriction on the number of crossings than
the bounds that our evidence suggests for road networks: here we are interested in
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LINEAR-TIME ALGORITHMS FOR GEOMETRIC GRAPHS 3815

Fig. 1.1. A portion of the road network for Manhattan, New York. This image is from http://
wiki.openstreetmap.org/, under the Creative Commons attribution–share alike license.

Fig. 1.2. A geometric graph and its planarization.

n-vertex geometric graphs that have at most O(n/ log(c) n) pairwise edge crossings,

for some constant c, where log(c) n denotes the cth iterated logarithm function. We
allow more than two edges to cross at the same point; however, these crossings are
counted as the number of pairwise edges involved. We refer to such geometric graphs
as restrained graphs.

Given an n-vertex geometric graph G, the planarization1 of G is the graph G′

that is defined by the arrangement of the edges in G. That is, as shown in Figure 1.2,
we place a vertex in G′ for every vertex and pairwise edge crossing in G, and we

1Our use of this term differs from its use in the graph drawing literature (e.g., see [20]), where it
refers to the problem of removing a minimal number of edges to make G be planar.
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3816 D. EPPSTEIN, M. T. GOODRICH, AND D. STRASH

create an edge in G′ for every maximal edge segment from G that connects exactly
two vertices in G′. Likewise, we preserve the (clockwise/counterclockwise) ordering
of edges around corresponding vertices in G and G′, and we assume that intersection
vertices in G′ similarly have their edges given in rotational order. Thus, G′ is a plane
graph having n+ k vertices, where k is the number of pairwise edge crossings among
the edges in G. By well-known properties of planar graphs (e.g., see [49, Prop. 2.1.6]),
this implies that G′ has at most 3n+3k−6 edges, which in turn implies that G has at
most 3n+ k− 6 edges. Therefore, by restricting our attention to connected geometric
graphs with a sublinear number of edge crossings, we are, by implication, focusing on
connected geometric graphs that have O(n) edges in their planarizations.

As mentioned above, a wealth of algorithms are known for planar graphs and
plane graphs. Indeed, many of these algorithms, for such problems as single-source
shortest paths and minimum spanning trees, run in O(n) time. Much less is known
for nonplanar geometric graphs, however, which motivates our interest in such graphs
in this paper. Specifically, we are interested in the following problems for connected,
restrained geometric graphs:

• The Voronoi diagram problem, which is also known as the post office problem:
we are given a set P of k vertices in a geometric graph G and asked to
determine for every other vertex v in G the vertex in P that is closest to v
according to the graph metric.

• The single-source shortest path problem: we are given a vertex s and a ge-
ometric graph G and asked to find the shortest paths from s to every other
vertex in G.

• The polygon planarization problem: given a geometric graph defining a non-
simple polygon P having n vertices, compute the arrangement of all the edges
of P , including vertices defined by the pairwise crossings of the edges in P .

In all these cases, we desire comparison-based algorithms that require no additional
assumptions regarding the distribution of edge weights, so that our algorithms can
apply to a wide variety of possible edge weights that may vary for different users,
including combinations of distance, travel time, toll charges, and subjective scores
rating safety and scenic interest [23].

1.1. Previous related work. In the algorithms community, there has been
considerable prior work on shortest path algorithms for Euclidean graphs (e.g., see
[32, 38, 40, 53, 54, 58]), which are geometric graphs where edges are weighted by
the lengths of the corresponding line segments. This prior work takes a decidedly
different approach than we take in this paper, however, in that it focuses on using
special properties of the edge weights that do not hold in the comparison model,
whereas we study road networks as geometric graphs with a sublinear number of edge
crossings and we desire linear-time algorithms that hold in the comparison model.

The specific problems for which we provide linear-time algorithms are well known
in the general algorithms and computational geometry literatures. For general graphs
with n vertices and m edges, excellent work can be found on efficient algorithms in
the comparison model, including single-source shortest paths [16, 34, 51], which can
be found in O(n log n + m) time [30], and Voronoi diagrams [4, 5], whose graph-
theoretic version can be constructed in O(n log n + m) time [28, 44]. None of these
algorithms run in linear time, even for planar graphs. Linear-time algorithms for
planar graphs are known for single-source shortest paths [37], but these unfortunately
do not immediately translate into linear-time algorithms for nonplanar geometric
graphs.
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A number of efficient algorithms have been developed for the RAM model of
computation under various edge weight restrictions. For example, if edge weights are
restricted to be positive integers, the algorithm of Thorup [56] runs in linear time.
If negative integers are allowed, then Goldberg’s algorithm [31] takes O(

√
nm logN)

time, where N is the absolute value of the smallest negative integer edge weight. Fur-
thermore, if edge weights are selected at random in the range [0, 1], then the algorithm
of Meyer [45] achieves linear average-case time complexity. However, the methods used
in these algorithms exclude them from being applicable in the comparison model.

Chazelle [8] shows that any simple polygon can be triangulated in O(n) time and
that this algorithm can be extended to determine in O(n) time, for any polygonal
chain P , whether or not P contains a self-intersection. In addition, Chazelle posed
as an open problem whether or not one can compute the arrangement of a nonsimple
polygon in O(n+k) time, where k is the number of pairwise edge crossings. Clarkson,
Cole, and Tarjan [14, 13] answer this question in the affirmative for polygons with a
superlinear number of crossings, as they give a randomized algorithm that solves this
problem in O(n log∗ n + k) expected time. There is, to our knowledge, no previous
algorithm that solves Chazelle’s open problem, however, for nonsimple polygons with
a sublinear number of edge crossings.

1.2. Our results. In this paper, we provide the first linear-time algorithm for
planarizing a nonplanar connected geometric graph having a number of pairwise edge
crossings, k, that is sublinear in the number of vertices, n, by an iterated logarith-
mic factor. Specifically, we provide a randomized algorithm for planarizing geometric
graphs in O(n + k log(c)n) expected time, which is linear for restrained geometric
graphs. Given such a planarization, we show how to apply O(

√
n)-separator decom-

positions to produce linear-time algorithms for a number of problems on restrained
geometric graphs, including Voronoi diagrams and single-source shortest paths. We
also show how our planarization algorithm can be used to solve Chazelle’s open prob-
lem of planarizing nonsimple polygons in expected linear time for polygons having a
number of pairwise edge crossings that is sublinear in n by an iterated logarithmic
factor. Thus, combining this result with the polygon planarization algorithm of Clark-
son, Cole, and Tarjan [14, 13] provides a method for planarizing an n-vertex polygon
with k edge crossings in optimal O(n + k) expected time, for all values of k except

those in the range [n/ log(c) n, n log∗ n]. Our result also implies that the convex hull
of restrained nonsimple polygons can be constructed in O(n) expected time, which,
to the best of our knowledge, was also previously open.

Besides planar separator decompositions, which we discuss below, another one of
the techniques used in this paper is a method for constructing a (1/r)-cutting for the
edges of a geometric graph, G. This is a proper triangulation,2 T , of the interior of
the bounding box containing G such that any triangle t in T intersects at most (1/r)n
edges of G. Using existing methods (e.g., see [1, 17, 36]), one can construct such a
(1/r)-cutting for G in O(n log r + (r/n)k) time, where n is the number of vertices in
G and k is the number of pairwise edge crossings. However, in our application such a
bound would be nonlinear, as we require r to be large. We show, in section 4, that for
connected geometric graphs such a cutting can be constructed in the faster expected
time bound O(ns+ (r/n)k), where r ≤ n/ log(s)n.

2. Separator decompositions. One of the main ingredients in our algorithms
is the existence of small separators in certain graph families (e.g., see [42, 46]). Several

2A proper triangulation is a connected planar geometric graph such that every face is a triangle
and every triangular face has exactly three vertices on its boundary.
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3818 D. EPPSTEIN, M. T. GOODRICH, AND D. STRASH

of the algorithms in this paper are based on the use of separators: we use them both
as part of our algorithm for finding cuttings of geometric graphs and later, once the
graph has been planarized. Hence, we briefly review these tools here.

Given a graph G = (V,E), a subset W of V is an f(n)-separator if the removal
of the at most f(n) vertices in W separates G into two subgraphs G1 and G2, each
containing at most δn vertices, for some constant 0 < δ < 1. It is well known that
planar graphs have O(

√
n)-separators with δ = 2/3, and that such separators can

be constructed in O(n) time [42]. Such separators are typically used in divide-and-
conquer algorithms, which involve finding a separator, recursively solving the problem
in the two separated subgraphs, and then merging the solutions together. If the merge
and divide steps can be solved in o(n) time, however, it is useful to have the entire
recursive separator decomposition computed in advance, for otherwise there is no way
to beat an O(n log n) time bound. Such a separator decomposition defines a binary
tree B such that the root of B is associated with the f(n)-separator for G and the
subtrees of this root are defined recursively for the graphs G1 and G2.

Previous work on separators includes the seminal contribution of Lipton and
Tarjan [42], who show that O(

√
n)-sized separators exist for n-vertex planar graphs

and that these can be computed in O(n) time. Goodrich [33] shows that recur-
sive O(

√
n)-separator decompositions can be constructed for planar graphs in O(n)

time. A related concept is that of geometric separators, which use geometric ob-
jects to define separators in graphs defined by systems of intersecting disks (e.g.,
see [3, 48, 47, 55]). Eppstein, Miller, and Teng [27] provide a linear-time construc-
tion algorithm for geometric separators which translates into an O(n log n) recursive
separator decomposition algorithm.

Because restrained graphs are not planar, the result of Goodrich does not imme-
diately apply. However, it can be applied once we have planarized the graph, and it
can also be applied to planar structures formed from subsets of the graph, such as
the one we describe in the next section.

3. Trapezoidal decomposition of a sample. Suppose we are given a geomet-
ric graph G having n vertices and k pairwise intersections among its edges. In this
section, we describe our algorithm for constructing a trapezoidal decomposition of a
random sample of the edges of G. That is, given a sample of r edges, we construct
the arrangement of these edges together with a set of vertical line segments through
each edge endpoint and crossing, where each such segment is maximal with respect
to the property of not crossing any other sampled edge, as shown in Figure 3.1. Our
method is parameterized by s, where r ≤ n/ log(s)n, and the sample probability is

inversely proportional to log(s)n. We will later show how to refine this sample so that
we can produce a cutting and then a planarization of G.

This first step of our algorithm is essentially the same as performing s levels of
the Clarkson, Cole, and Tarjan algorithm, except that their method is for polygonal
chains, whereas ours is for geometric graphs. Thus, we describe it at a high level.

Our algorithm begins with a trivial trapezoidal decomposition T0 containing a
single trapezoid that encloses all of G. Call this trapezoid t. Let C(t) = E be the
conflict list for t, that is, the set of edges from G that intersect the interior of t. Then,
for i = 1 to s, we perform the following computation:

1. Find a random sample Si of size n/ log(i)n of the edges in G, and for each
trapezoid t in Ti−1, use the Bentley–Ottmann algorithm [6] to construct the
trapezoidal decomposition of the arrangement of the segments in C(t) ∩ Si.
Once all these trapezoidal decompositions are constructed, merge them to-
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Fig. 3.1. Trapezoidal decomposition of a sampled subset of input graph edges.

gether to create a single trapezoidal decomposition, Ti, for the segments in
Si. To be consistent with Clarkson, Cole, and Tarjan, we choose the samples
such that S1 ⊂ S2 ⊂ · · · ⊂ Ss.

2. Perform a depth-first traversal of G, while keeping track of the trapezoids in
the trapezoidal decomposition that are intersected during the walk, so as to
determine, for each trapezoid t in Ti, the set C(t). Since the geometric graph
is connected, we never have to restart the depth-first traversal from a node
whose location we do not already know. We can therefore use the arrangement
of the sampled line segments to keep track of the intersected trapezoids at
each step of the traversal. Thus we eliminate the need for time-consuming
point-location data structure lookups.

Let T = Ts be the resulting final trapezoidal decomposition that we get from
this computation, and let S = Ss be the final random sample. Using the framework
established by Clarkson and Shor [15] for randomized divide-and-conquer algorithms
such as this, we can show that

(3.1) E (|T |) = O

(
r +

( r
n

)2
k

)

and

(3.2) E

(∑
t∈T

|C(t)|
)

= O
(
n+

( r
n

)
k
)
.

In particular, (3.1) is from their Lemma 4.1, and (3.2) follows from their Corollary 4.4.
The number of steps in the depth-first traversal is proportional to the total size of
the conflict lists of the input geometric graph with the trapezoidal decomposition,
which as we have seen above is small. A step from one trapezoid to a horizontally
adjacent trapezoid may be accomplished in constant time, but a single trapezoid may
have a nonconstant number of neighbors above and below it, causing steps in those
directions to take longer. However, as Clarkson, Cole, and Tarjan show, if d(t) is the
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3820 D. EPPSTEIN, M. T. GOODRICH, AND D. STRASH

number of trapezoids that neighbor trapezoid t, then

E

(∑
t∈T

|C(t)| · d(t)
)

= O
(
n+

( r
n

)
k
)
,

and this sum bounds the time to step vertically from one trapezoid to another using
a sequential search along the trapezoid boundary to find the neighboring trapezoid.
Therefore, we have the following preliminary result.

Lemma 3.1. Given a connected geometric graph G, with n edges and k pairwise
edge crossings, and a parameter s, we can in expected time O(ns + (r/n)k) find a

random sample of r = O(n/ log(s) n) edges from G, the trapezoidal decomposition
induced by the sample, and the set of edges of G crossing each trapezoid of the sample.

4. Cuttings. At this stage we take a detour from the Clarkson, Cole, and Tar-
jan algorithm. For each trapezoid t in T , let αt = |C(t)|r/n. That is, αt is the
degree of excess that the conflict list for t has beyond what we would like for a (1/r)-
cutting. For each trapezoid t with αt > 1, we form a random sample, Rt, of C(t)
of size 2Kmaxαt logαt, where Kmax is the constant from Corollary 4.4 of Clarkson
and Shor [15]. We then form the trapezoidal decomposition, Tt, of the arrangement
of the segments in Rt using any quadratic-time line segment arrangement algorithm
[2, 7, 10, 21]. Thus, by Corollary 4.4 from Clarkson and Shor [15], the maximum size
of any conflict list of a trapezoid in Tt is expected to be less than( |C(t)|

|Rt|
)
log |Rt| =

(n
r

)( 1

logα2
t

)
log(2αt logαt)

≤ n

r

for αt ≥ 4. Thus, we can repeat the above algorithm an expected constant number of
times until we have this condition satisfied, which gives us one of the crucial properties
of a (1/r)-cutting: namely, that each cell intersects at most (n/r) edges of G.

In addition, the number of new trapezoids created inside t, as well as the running
time for creating the trapezoidal diagram Tt, is certainly at most O(|Rt|2), which is
O(α2

t log
2 αt). More importantly, we have the following result.

Lemma 4.1. Given the above construction applied to each trapezoid t in T , then

E

(∑
t∈T

α2
t log

2 αt

)
= O

(
r +

( r
n

)2
k

)
.

Proof. Our proof is based on an application of Theorem 3.6 from the Clarkson–
Shor framework. To apply this theorem, we bound

E

(∑
t∈T

α2
t log

2 αt

)

by bounding the term α2
t log

2 αt by

W

((|C(t)|
c

))
,
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where W is a positive concave function on R+ and c is a constant. Here, for the sake
of an upper bound, we take c = 3 and define

W (x) =

(
x1/3

N

)2

log2
x1/3 +N

N
,

where N = n/r. Finally, to apply Theorem 3.6 from [15], we need to observe that the
number of trapezoids in T that have a conflict list size at most c is proportional to
the number of trapezoids in T that have a conflict list size at least 0, which is |T |. To
see this, note that we can extend the vertical edges of any trapezoid in T in at most
O(1) ways until it hits i = 1, 2, 3 other edges of the random sample, S, at which point
we can extend this trapezoid horizontally in O(1) ways until we hit three segments in
total. Therefore, by Theorem 3.6 from [15],

E

(∑
t∈T

α2
t log

2 αt

)

is

O

(
r +

( r
n

)2
k

)
.

Thus, our refined trapezoidal decomposition, T ′, will have size proportional to
|T |. It is still not quite a (1/r)-cutting, however, as it is not a proper triangulation.
Indeed, some trapezoids may have many more than four vertices on their boundaries
(see Figure 4.1).

Fig. 4.1. Many trapezoids may be adjacent to another trapezoid along its top or bottom edges.

To refine T ′ into a proper triangulation, we borrow an idea from the fractional
cascading framework of Chazelle and Guibas [11] to first refine T ′ into a trapezoidal
decomposition such that each trapezoid has O(1) vertices on its boundary, while
keeping the total number of trapezoids to O(|T ′|), which is expected to be

O

(
r +

( r
n

)2
k

)
.

By triangulating the interior of each such trapezoid, we will get a (1/r)-cutting whose
size is still O(|T ′|). (See Figure 4.2.)

Construct the graph-theoretic planar dual U to T ′, and note that we can direct
the edges of U so as to define four directed-acyclic graphs, which respectively define
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Fig. 4.2. The cascading of trapezoidal rays.

the partial orders “below,” “above,” “left-of,” and “right-of” among the trapezoids.
Without loss of generality, let us direct U according to the “below” relation, perform
a topological sort, and process the trapezoids of T ′ from top to bottom according to
this ordering. When processing a trapezoid, t, we assume inductively that we have
determined the ordered list of vertices Vt = (v1, v2, . . . , vj) on t’s upper edge, which
are bottom vertices of trapezoids above t. To process t we choose every other vertex,
v2i, in Vt and extend a vertical segment from v2i to the bottom of t to split t in two for
each such v2i. Doing this for every other vertex in Vt, therefore, splits t and increases
the number of trapezoids by �|Vt|/2�. We then repeat this computation by considering
the new set of trapezoids according to the “above” relation, from bottom to top. Next,
we do a similar computation for the “left-of” and “right-of” relations (except that
now we extend segments parallel to the top or bottom edges of our trapezoid in a way
that partitions its interior into noncrossing trapezoids). When we have completed
this last scan of the trapezoids, we will have created a trapezoidal decomposition such
that each trapezoid has O(1) vertices on its edges. More importantly, we also have
the following result.

Lemma 4.2. The total number of trapezoids created by the above refinement
process is O(|T |), which has expected value O(r + (r/n)2k).

Proof. We have already established that E(|T |) is O(r+(r/n)2k) and that E(|T ′|)
is O(E(|T |)). So we have yet to show that the number of new trapezoids created during
any of our splitting processes is O(|T ′|). We do this by an accounting argument.
Without loss of generality, consider the processing according to the “below” relation.
Assume, for the sake of our analysis, that, at the beginning of our computation, we
give each vertical edge in our trapezoidal decomposition $2 and require every vertical
edge at the end of the process to have at least $1. When we extend a vertical ray from
an even-numbered vertex v2i at the top of a trapezoid t, we can assume inductively
that the vertical edge above v2i has $2, as does the vertical edge directly to the left
of this edge (which hits t at vertex v2i−1). Let us take $1 from this vertical edge and
from the one that hits t at v2i, which leaves $1 at each of those edges, and use the $2
to pay for the new vertical edge that we then extend through t. Therefore, since
the two vertical edges we just took money from will not be processed again, we can
process each trapezoid and pay for every action, while keeping $1 for each trapezoid
in our refined trapezoidal decomposition. Repeating this accounting argument for the
“above,” “left-of,” and “right-of” relations completes the proof.

Given a trapezoidal diagram having O(1) vertices on the boundary of each trape-
zoid, and each trapezoid intersecting at most (n/r) edges of our geometric graph G,
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we can easily triangulate each trapezoidal face in this diagram to turn it into a (1/r)-
cutting with a number of triangles that is proportional to the number of trapezoids.
(See Figure 4.3.)

Fig. 4.3. The triangulation step.

Thus, putting all the pieces together, we get the following.
Theorem 4.3. Given a connected geometric graph G having n vertices and

k pairwise edge crossings, one can construct a (1/r)-cutting for the edges of G of

expected size O(r + (r/n)2k) in expected time O(ns+ (r/n)k) for r ≤ n/ log(s)n.
Taking s as a constant gives us such a (1/r)-cutting of expected sizeO(r+(r/n)2k)

in expected time O(n+ (r/n)k), and taking s = log∗ n gives us a (1/r)-cutting of the
same expected size (but with a potentially larger r) in expected time O(n log∗n +
(r/n)k) for any r ≤ n. Since, in our applications involving restrained geometric
graphs, k is sublinear in n by an iterated logarithmic factor, we will be taking s to be
a constant.

5. Planarization. In this section, we describe how to planarize a connected
geometric graph G having n vertices and k edge crossings. We begin by using the
method of Theorem 4.3 to construct a (1/r)-cutting, C, of the edges of G of expected

size O(r + (r/n)2k) in expected time O(n + (r/n)k), where r = n/ log(c+1) n, for a
fixed constant c ≥ 1. We then do a depth-first search of G, keeping track of the
triangles we cross in C as we go, to compute, for each triangle t in C, the set, C(t),
of at most (n/r) edges of G that intersect t. This takes O(|C|n/r) time, which has
expectation O(n + (r/n)k).

We then apply Goodrich’s separator decomposition algorithm [33] to construct an
O(
√|D|)-separator decomposition of the graph-theoretic dual, D, to C. Rather than

taking this decomposition all the way to the point where we would have subgraphs of
D of constant size, however, we stop when subgraphs have size O(log2(n/r)); hence,
we have separators of size O(log(n/r)). We now show how to use these separators
to divide our graph into regions for further processing [18, 19, 52]. Since C is a
triangulation, D has degree 3; hence, any vertex separator for D of size g also gives
us an edge separator for D of size at most 3g. Moreover, each edge of D corresponds
to a triangle edge in C, which in turn crosses at most (n/r) edges of G. For each
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separator H in our decomposition, therefore, we can sort the edges of G that cross
each boundary of a triangle in the separator in O((n/r) log(n/r)) time. There are
O(|D|/ log2(n/r)) nodes at this level of the separator decomposition tree; hence, there
are O(|D|/ log2(n/r))×O(log(n/r)) = O(|D|/ log(n/r)) triangles involved. Thus, the
total time for all these sorts is O(|D|(n/r)) = O(n+ k(r/n)), which is O(n+ k).

After performing the sorts of edges on the boundaries of triangles in our separa-
tors, we can imagine that we have used these boundaries to cutG intoO(|D|/ log(n/r))
regions (including each triangle in one of our separators) such that the edges of G
intersecting each region boundary are given in sorted order. (See Figure 5.1.)

Fig. 5.1. Illustrating the regions and their boundary edges.

The total size of each subgraph is O((n/r) log2(n/r)). Moreover, the boundaries of
these regions form a planar subdivision. Thus, we have just subdivided our geometric
graph G into O(|D|/ log(n/r)) disjoint geometric graphs. In other words, all k edge
crossings in G have been isolated into these small subgraphs.

For each subgraph Gi, use Chazelle’s algorithm [8] to test whether all the faces
of Gi are simple in O(|Gi|) time. If all the faces of Gi are in fact simple, then
Gi clearly contains no edge crossings. Thus, we can identify each small subgraph
in this partition that contains an intersection in time O(|C|(n/r) + |G|), which has
expectation O(n + k).

Clearly, there are at most k such subgraphs that contain edge crossings. We
complete our planarization algorithm, therefore, by running the Bentley–Ottmann
algorithm [6] for each subgraph of G that is identified as having at least one edge
crossing. The time for each such invocation of the Bentley–Ottmann algorithm is
O((n/r) log3(n/r) + k′ log(n/r)), where k′ ≥ 1 is the number of edge crossings found.
Summing this over k regions implies that the total time needed to complete the
planarization of G is O(k(n/r) log3(n/r)). Substituting for r, we see that this time is

O(k log(c+1) n log3 log(c+1) n), which is O(k log(c) n). Therefore, we have the following.

Theorem 5.1. Suppose one is given a connected geometric graph G with n
vertices and k edge crossings, together with a (1/r)-cutting of the edges of G of

size O(r + (r/n)2k) for r = n/ log(c+1) n. Then one can construct a planarization
of G (and the trapezoidal decomposition of the arrangement of G’s edges) in time

O(n+ k log(c) n).

Combining this result with Theorem 4.3, we get the following corollary.

Corollary 5.2. Given a connected geometric graph G having n vertices and
k pairwise edge crossings, one can construct a planarization of G in expected time
O(n+ k log(c) n).

6. Applications. In this section, we provide a number of applications of the
above algorithms.
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6.1. Separator decompositions and restrained geometric graphs. The
algorithms in this section are based on the use of separators. As mentioned above,
the separator-decomposition algorithm of Goodrich [33] applies only to planar graphs.
We now show how to apply Goodrich’s result, together with the tool of planarization,
for use with restrained geometric graphs. We do not compute a separator decomposi-
tion of restrained geometric graphs directly, however. Instead, we provide a procedure
to augment a given restrained geometric graph with dummy vertices in a way that
preserves shortest paths, and we then produce a separator decomposition of the result-
ing augmented graph. In the next subsection, we use this result to find single-source
shortest paths and Voronoi diagrams in linear time.

Given a restrained geometric graph G, we planarize it using the algorithm above,
creating the planar graph G′. As observed above, G′ has total size O(n). Thus, we can
use the result of Goodrich [33] to compute a recursive O(

√
n)-separator decomposition

of G′ in O(n) time. Using this separator decomposition of G′ and the original graph
G, we form an augmentation of G, which we call Ĝ, that preserves shortest paths
from G, and we construct an O(

√
n)-separator decomposition of Ĝ. We produce this

augmentation and separator decomposition by the following transformation. For each
vertex v in a separator W of G′ at a node w in the separator decomposition tree B,
we form a corresponding separator Ŵ of Ĝ at a node ŵ in B̂ as follows:

• If v is also a vertex in G, then we add v to separator Ŵ , provided that v is
not already a member of a separator associated with an ancestor of ŵ.

• If v is an intersection point in G′, between edges (a, b) and (c, d) in G, then
we add each of a, b, c, and d to separator Ŵ , provided that it is not already
a member of a separator associated with an ancestor of ŵ.

• If no vertex associated with v is added to separator Ŵ , then the balance
condition for B̂ may be violated. To preserve the balance condition, we
create a dummy vertex u in Ĝ, add it to the separator Ŵ , and add an edge of
positive weight from u to a vertex in the separator associated with the parent
of ŵ.

It is easy to see that shortest paths in G are preserved in Ĝ since no dummy vertex
is on a simple path between corresponding vertices in G. This gives us the following
result.

Theorem 6.1. Suppose that we are given an n-vertex geometric graph, G, and
its planarization, G′, which is of size O(n). We can form a graph Ĝ which preserves
shortest paths in G and construct a recursive O(

√
n)-separator decomposition of Ĝ in

O(n) time for δ = 2/3.

6.2. Single-source shortest paths and Voronoi diagrams. Given an n-
vertex bounded-degree graph G and a recursive O(

√
n)-separator decomposition for

G, Henzinger et al. [37] show that one can compute shortest paths from a single
source s in G to all other vertices in G in O(n) time. Applying the shortest-paths-
preserving augmentation and the separator decomposition algorithm presented above,
then, their algorithm applies to restrained geometric graphs, even ones that do not
have bounded degree, by a simple transformation that replaces high-degree vertices
with bounded-degree trees of zero-weight edges.

Suppose we are given K distinguished vertices in an n-vertex restrained geometric
graph G and we wish to construct the Voronoi diagram of G, which is a labeling of
each vertex v of G with the name of the distinguished vertex closest to v. As before,
by replacing high-degree vertices with bounded-degree trees of zero-weight edges, we
can assume without loss of generality that G has constant degree. In this case, we
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apply the shortest-paths-preserving augmentation of G and construct its recursive
O(

√
n)-separator decomposition using the algorithm of the previous subsection. Let

B be the recursion tree, and let us label each vertex v in G with the internal node
w in B where v is added to the separator or with the leaf w in B corresponding to
a set containing v where we stopped the recursion (because the set’s size was below
our stopping threshold). Given this labeling, we can trace out the subtree B′ of B
that consists of the union of paths from the root of B to the distinguished vertices
in G in O(n) time. Let us now assign each edge in B′ to have weight 0, and let us
add B′ to the augmentation of G to create a larger graph G′. Note that if we add
each internal node v in B′ to the separator associated with node v in B, then we get
a recursive O(

√
n)-separator decomposition for G′, for each separator in the original

decomposition increases by at most one vertex. Thus, we can apply the algorithm of
Henzinger et al. [37] to compute the shortest paths in G′ from the root of B′ to every
other vertex in G′ in O(n) time. Moreover, since the edges of G′ corresponding to
edges of B′ have weight 0, this shortest path computation will give us the Voronoi
diagram for G. Therefore, we have the following.

Theorem 6.2. Given a connected n-vertex restrained graph G, together with
its planarization, one can compute shortest paths from any vertex s or the Voronoi
diagram defined by any set of K vertices in G in O(n) time.

Incidentally, the above approach also implies a linear-time Voronoi diagram con-
struction algorithm for planar graphs, which was not previously known.

7. Conclusions and future work. We have provided linear-time algorithms
for a number of problems on connected restrained geometric graphs, which include
real-world road networks. Our results allow for linear-time trapezoidalization, trian-
gulation, and planarization of geometric graphs except for the very narrow range of the
number of crossings for which neither our algorithm nor the previous O(n log∗ n+ k)
algorithm is linear. In addition, our methods imply linear-time algorithms for other
problems on such graphs as well. For example, one can use our algorithm to planarize
a restrained nonsimple polygon and then construct its convex hull in linear time by
computing the convex hull of the outer face of our planarization (e.g., by an algorithm
from [35, 41]). There are a number of interesting open problems and future research
directions raised by this paper, including the following:

• Can we close the log(c) n gap on values of k that admit optimal solutions
to Chazelle’s open problem of computing a trapezoidal decomposition of an
n-vertex nonsimple polygon in O(n + k) time, where k is the number of its
edge crossings?

• Can we planarize restrained geometric graphs deterministically in linear time?
Such a result would allow us to apply separator-based divide-and-conquer
techniques for minimum spanning trees [24] to construct them in linear time
for this family of graphs. Known linear-time minimum spanning tree algo-
rithms for arbitrary graphs require randomization [39], and known determin-
istic algorithms for this problem are superlinear [9], although deterministic
linear-time algorithms are known for planar graphs and minor-closed graph
families [12, 22, 43].

Acknowledgments. We would like to thank Bernard Chazelle for several help-
ful discussions regarding possible approaches to solving his open problem involving
nonsimple polygons. We would also like to thank the anonymous referees for their
helpful comments.
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