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Abstract—In this paper, we study the straggler identification problem, in which an algorithm must determine the identities of the

remaining members of a set after it has had a large number of insertion and deletion operations performed on it, and now has relatively

few remaining members. The goal is to do this in oðnÞ space, where n is the total number of identities. Straggler identification has

applications, for example, in determining the unacknowledged packets in a high-bandwidth multicast data stream. We provide a

deterministic solution to the straggler identification problem that uses only Oðd lognÞ bits, based on a novel application of Newton’s

identities for symmetric polynomials. This solution can identify any subset of d stragglers from a set of nOðlognÞ-bit identifiers,

assuming that there are no false deletions of identities not already in the set. Indeed, we give a lower bound argument that shows that

any small-space deterministic solution to the straggler identification problem cannot be guaranteed to handle false deletions.

Nevertheless, we provide a simple randomized solution, using Oðd logn logð1=�ÞÞ bits that can maintain a multiset and solve the

straggler identification problem, tolerating false deletions, where � > 0 is a user-defined parameter bounding the probability of an

incorrect response. This randomized solution is based on a new type of Bloom filter, which we call the invertible Bloom filter.

Index Terms—Straggler identification, Newton’s identities, Bloom filters, data streams.
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1 INTRODUCTION

IMAGINE a security guard, who we’ll call Bob, working at a

large office building. Every day, Bob comes to work

before anyone else, unlocks the front doors, and then staffs

the front desk. After unlocking the building, Bob’s job is to

check in each of a set of n workers when he or she enters the

building, and check each worker out again when he or she

leaves. Most workers leave the building by 6pm, when
Bob’s shift ends. But, at the end of Bob’s shift, there may be

a small number, at most d << n, of stragglers, who linger in

the building working overtime. Before Bob can leave for

home, he must tell the night guard the ID numbers of all the

stragglers. The challenge is that Bob has only a small

clipboard of size oðnÞ to use as a “scratch space” for

recording information as workers come and go. That is, Bob

does not have enough room on his clipboard to write down
all the ID numbers of the workers as they arrive and to

check off these numbers again as they leave. Of course, he

also has to deal with the fact that some of the n workers

may not come to work at all on any given day. The question

we address in this paper is, “What information can Bob, the

security guard, record as he checks workers in and out so

that he may identify all the stragglers at the end of his shift,

using a scratch space of size only oðnÞ?”

Formally, suppose that we are given a universe U ¼
fx1; x2; . . . ; xng of unique, positive identifiers, each repre-
sentable with OðlognÞ bits. Given an upper bound para-
meter d < n, the straggler identification problem is the
problem of designing an indexing structure for a database
that uses oðnÞ bits and efficiently supports the following
operations on a dynamic and initially empty subset S of U :

. Insert xi: Add the identifier xi to S. Prior to the
update, xi should not belong to S; the effect of the
insert operation is undefined, if xi 2 S.

. Delete xi: Remove the identifier xi from S. Prior to
the update, xi should belong to S; the effect of the
delete operation is undefined, if xi 62 S.

. ListStragglers: Test whether jSj � d, and if so, list all
the elements of S.

A solution to the straggler identification can be used to list
the contents of S when jSj � d, but makes no such
guarantees when jSj > d. In our solutions to this problem
we will assume, without loss of generality, that d is small
enough that d logðn=dÞ is oðnÞ. If, on the contrary, d is larger,
then the problem is not solvable in oðnÞ bits, since we need
to store �ðd logðn=dÞÞ bits in order to distinguish among the
different possible valid answers to a ListStragglers query.
Moreover, if d is close to n, we might as well just store all
the elements of S, explicitly using a single bit per element.
However, by requiring that d be small and that our
structure use oðnÞ bits of memory, we focus our attention
on implicit representations of S.

In addition to our motivating example of Bob, the
security guard (which also applies to other in-and-out
physical environments, like amusement parks), the strag-
gler identification problem has the following potential
information-processing applications:
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. In a high bandwidth data stream, a server sends
packets to many different clients, which send
acknowledgments back to the server, identifying
each packet that was successfully received. The
server then needs to identify and resend the packets
to clients that did not successfully receive them. This
round-trip data stream application is an instance of
the straggler identification problem, since we expect
most of the packets to be sent successfully, and we
would like to minimize the space needed per client at
the server for unacknowledged packet identification.

. In heterogeneous Grid computations, a supervisor
sends independent tasks out to Grid participants,
who, under normal conditions, perform these tasks
and return the results to the supervisor. There may
be a few participants, however, who crash, are
disconnected from the network, or otherwise fail to
perform their tasks. The supervisor would like to
identity the tasks without responses, so that they can
be sent to other participants for completion.

. At the beginning of the school year in a public grade
school, teachers distribute textbooks to students. At
the end of the year, most students return those
books. But there may be a few stragglers who do not
return their textbooks, and the teacher would, with
low computational overhead, like to identify those
students.

. A software company issues pseudorandom serial
numbers to users who download their software, with
an implied commitment to return payment within a
week. Most of these users do indeed return such a
payment, tagged with their serial numbers. But a few
do not, and we would like to identify the serial
numbers of the users who have not returned payment.

Given these motivating applications, the goal of the

straggler identification problem is to design a database

indexing scheme that uses as few bits as possible, with

reasonable running times for performing the Insert, Delete,

and ListStragglers operations.

1.1 New Results

In this paper, we study the straggler identification problem,

showing that it can be solved with small space and fast

update times. We provide the following results:

. In Section 2, we describe a deterministic solution to
the straggler identification problem, which uses
Oðd lognÞ bits to represent the dynamic set S of
OðlognÞ-bit identifiers. Our solution is based on a
novel application of Newton’s identities and allows
for insertions and deletions to be performed in
Oðd logOð1Þ nÞ time. It allows the ListStragglers
operation to be performed in time polynomial in d
and logn. This solution does not allow (false) Delete
x operations that have no matching Insert x
operations; however, our algorithm does not detect
false deletions, and may produce unpredictable
results, if it is asked to handle an update sequence,
in which false deletions occur.

. As a partial explanation of our inability to handle
false deletions, we prove in Section 3 a lower bound

showing that no deterministic algorithm for the
straggler detection problem with sublinear space can
guarantee correctness in scenarios, allowing false
deletions. Thus, this drawback of our algorithm
should come as no surprise.

. Despite this impossibility result, we provide a
second solution to the straggler identification pro-
blem, in Section 4. Our solution is a simple
randomized algorithm that uses Oðd logn logð1=�ÞÞ
bits and tolerates false deletions, where � > 0 is a
user-defined error probability bound. Our algorithm
can handle any sequence of updates, and has
probability at most � of being unable to correctly
answer a ListStragglers query. This solution is based
on a novel extension to the counting Bloom filter [3],
[17], which itself is a dynamic, cardinality-based
extension to the well-known Bloom filter data
structure [1] (see also [5]). We refer to our extension
as the invertible Bloom filter, because, unlike the
standard Bloom filter and its counting extension—
which provide a degree of data privacy protection—
the invertible Bloom filter allows for the efficient
enumeration of its contents, if the number of items it
stores is not too large. This might seem like a
violation of the spirit of a Bloom filter, which was
invented specifically to avoid the space needed for
content enumeration. Nevertheless, the invertible
Bloom filter is useful for straggler identification,
because it can, at one time, represent, with small
space, a multiset that is too large to enumerate, and
later, after a series of deletions have been performed,
provide for the efficient listing of the remaining
elements.

1.2 Related Work

Our work is most closely related to the “deterministic k-set
structure” of Ganguly and Majumder [19], [20]. This
structure solves the straggler detection problem, and, unlike
our solution, it allows items to have multiplicity greater
than one. This solution, like our deterministic algorithm,
disallows false deletions and is based on the arithmetic of
finite fields. However, the most space-efficient version of
their solution uses roughly twice as many bits as ours, and
their decoding times are slower; ignoring logarithmic
factors, their structure’s ListStragglers queries take Oðd3Þ
or Oðd4Þ time, compared to Oðd2Þ for ours. An additional
technical difference is that, for the algorithm of Ganguly
and Majumder, the parameter k (analogous to our d)
measures the number of distinct stragglers, while, for us,
it measures the total number of stragglers. Independent of
our work, Ganguly and Majumder added to the journal
version of their paper, a lower bound similar to ours,
proving the impossibility of straggler detection with false
deletions [20].

Our deterministic solution is also related to work on set
reconciliation in communication complexity [27]. The set
reconciliation problem is the problem of finding the union
of two similar sets, held by two different communicating
parties, with an amount of communication close to the size
of the symmetric difference of the two sets. A solution to the
straggler detection problem that allows false deletions,
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could be used to solve the set reconciliation problem as
follows: the first party inserts all of the elements of its set
into a straggler detection data structure and then commu-
nicates the structure to the second party, who deletes all of
the elements of its set. The remaining small numbers of
stragglers and false deletions represent the symmetric
difference of the two sets. However, Minsky et al. [27]
present a protocol for the set reconciliation problem that is
more closely related to our deterministic straggler detection
algorithm (which does not allow false deletions) than t.

Some additional existing work can be adapted to solve
the straggler identification problem. For example, Cor-
mode and Muthukrishnan [10] study the problem of
identifying the d highest cardinality members of a dynamic
multiset. Their solution can be applied to the straggler
identification problem, since, whenever there are d or
fewer elements in the set, then all elements are of relatively
high cardinality. Their result is a randomized data
structure that uses Oðd log2 n logð1=�ÞÞ bits to perform
updates in Oðlog2 n logð1=�ÞÞ time, and can be adapted to
answer ListStragglers queries in Oðd log2 n logð1=�ÞÞ time
(in terms of their bit complexities), where � > 0 is a user-
defined parameter bounding the probability of a wrong
answer.

Also relevant is prior work on combinatorial group,
testing (CGT), e.g., see [9], [12], [13], [14], [16], [18], [22], [26],
and multiple access channels (MAC), e.g., see [7], [21], [23],
[24], [25], [30], [31], [35]. In combinatorial group testing,
there are d “defective” items in a set U of n objects, for which
we are allowed to perform tests, which involve forming a
subset T � U and asking if there are any defective items in T .
In the standard combinatorial group testing problem, the
outcome is binary—either T contains defective items or it
does not. The objective is to identify all d defective items. The
combinatorial group testing algorithms that are most
relevant to straggler identification are nonadaptive, in that
they must ask all of their tests, T1; T2; . . . ; Tm, in advance.
Such an algorithm can be converted to solve the straggler
identification problem by creating a counter ti for each test
Ti. On an insertion of x, we would increment each ti such
that x 2 Ti. Likewise, on a deletion of x, we would
decrement each ti such that x 2 Ti. The tests with nonzero
counters would be exactly those containing our objects of
interest, and the nonadaptive combinatorial group testing
algorithm could then be used to identify them. Unfortu-
nately, these algorithms don’t translate into efficient
straggler-identification methods, as the best known non-
adaptive combinatorial group testing algorithms (e.g., see
[13], [14]) use Oðd2 lognÞ tests, which would translate into a
straggler solution, needing Oðd2 log2 nÞ bits.

The multiple access channel problem is similar to the
combinatorial group testing problem, except that the items
of interest are no longer “defective”—they are d devices, out
of a set U , wishing to broadcast a message on a common
channel. In this case a “test” is a time slice, where members
of a subset T � U can broadcast. Such an event has a three-
way outcome, in that there can be zero devices that use this
time slice, one device that uses it (in which case it is
identified and taken out of the set of potential broadcasters),
or there can be two or more, who attempt to use the

channel, in which case none succeeds (but all the potential

broadcasters learn that T contains at least two broad-

casters). Unfortunately, traditional multiple access channel
algorithms are adaptive, so do not immediately translate

into straggler identification algorithms.
Nevertheless, we can extend the multiple access channel

approach further [21], [30], [31], [35], so that each test T

returns the actual number of items of interest that are in T .

This extension gives rise to a quantitative version of

combinatorial group testing (e.g., see [13, Section 10.5]).

Unfortunately, previous approaches to the quantitative

combinatorial group testing problem are either noncon-
structive [30], adaptive [21], [30], [31], [35], or limited to

small values of d. We know of no nonadaptive quantitative

combinatorial group testing algorithms for d � 3, and the

ones for d ¼ 2 don’t translate into efficient solutions to the

straggler identification problem (e.g., see [13, Section 11.2]).

2 STRAGGLER DETECTION VIA

SYMMETRIC POLYNOMIALS

We now describe a deterministic algorithm for straggler

detection, using near-optimal memory. The algorithm is

algebraic in nature; it stores as its snapshot of the data
stream a collection of power sums. The decoding algorithm

for this information uses Newton’s identities to convert

these power sums into the coefficients of a polynomial that

has the stragglers as its roots, and finds the roots of this

polynomial. In order to control the time complexity of the

root-finding algorithm used as a subroutine in our

ListStragglers operations and the space complexity for

storing the power sums, we perform our operations in a
carefully chosen finite field GF ½pe�.

As a notational simplification, we use ~OðxÞ as a short-
hand for Oðx logOð1Þ xÞ. Using this notation, we ignore terms

in our running times that are logarithmic in the overall time

bound.

2.1 Newton’s Identities

A symmetric polynomial in a set S of variables fx1; x2; . . .g is a

multivariate polynomial that maintains the same overall

value whenever the values of the variables in S are

permuted arbitrarily. Two particularly important families

of symmetric polynomials are the elementary symmetric

polynomials �k, the sums of all k-tuples of distinct variables

�1 ¼ x1 þ x2 þ x3 þ � � � ;
�2 ¼ x1x2 þ x1x3 þ x2x3 þ � � � ;
�3 ¼ x1x2x3 þ x1x2x4 þ x1x3x4 þ � � � ;

..

.

and the power sums sk ¼
P
xki :

s1 ¼ x1 þ x2 þ x3 þ � � � ;
s2 ¼ x2

1 þ x2
2 þ x2

3 þ � � � ;
s2 ¼ x3

1 þ x3
2 þ x3

3 þ � � � ;

..

.

EPPSTEIN AND GOODRICH: STRAGGLER IDENTIFICATION IN ROUND-TRIP DATA STREAMS VIA NEWTON’S IDENTITIES AND INVERTIBLE... 299



The significance of these polynomials for straggler detection

is that the power sums may be maintained easily by a

streaming algorithm, whereas the elementary symmetric

polynomials may be combined to form the coefficients of a

univariate polynomial that has the stragglers as its roots.
Newton’s identities (e.g., see [11]) provide a formula for

computing the power sums from the elementary symmetric

polynomials:

sk � kð�1Þk�k ¼ �
Xk�1

i¼1

ð�1Þi�isk�i:

That is,

s1 � �1 ¼ 0;

s2 þ 2�2 ¼ �1s1;

s3 � 3�3 ¼ �1s2 � �2s1;

s4 þ 4�4 ¼ �1s3 � �2s2 þ �3s1;

s5 � 5�5 ¼ �1s4 � �2s3 þ �3s2 � �4s1;

and so on. These equations hold over any field.
In our application, we need to invert this system of

equations, computing the value of the elementary sym-

metric polynomials from the power sums. In the presenta-

tion of the identities above, each equation is a linear

combination of the elementary symmetric polynomial of

order k, the power sum of order k, and terms computed

from symmetric polynomials of both types of lower order.

Therefore, we may use these identities to compute the

elementary symmetric polynomials �k from the power

sums, in order by k, by rearranging the equations so that

the left hand side is the symmetric polynomial �k and the

right hand side is 1=k times a linear combination of known

and previously computed terms. However, this rearranged

system of identities is no longer valid over all fields;

computing �k from the identities above requires a division

by the integer k, so if we are to perform our computations

within a finite field GF ½pe� then k must not be divisible by

the order p of the field.

2.2 Arithmetic in Finite Fields

For the correctness of our straggler detection algorithm, we

are free to perform our arithmetic operations within any

finite field, in which, the order of the field is large enough to

allow Newton’s identities to be inverted; however, different

choices of field will lead to different running times for the

root-finding subroutine in our algorithm for handling

ListStragglers queries. Thus, rather than working in the

integers modulo a prime p that is larger than our universe

size n, it will turn out to be more efficient to work in a

finite fieldGF ½pe� of a smaller order p. We briefly summarize

the necessary facts about computational arithmetic in such

fields; for a more detailed explanation, see, e.g., [8].
As is standard for this sort of computation, we represent

each value x in GF ½pe� as an univariate polynomial of

degree at most e� 1 in a variable �, with coefficients that are

integers modulo p; that is,

x ¼ x0 þ x1�þ x2�
2 þ � � � þ xe�1�

e�1;

where each coefficient xi is an integer modulo p. Therefore,
values in the field GF ½pe� may be represented, using
edlog2 pe bits per value. These polynomials are taken
modulo a monic irreducible polynomial

Zð�Þ ¼ Z0 þ Z1�þ Z2�
2 þ � � � þ Ze�1�

e�1 þ �e:

This modulus Z may be found, e.g., by a deterministic
algorithm of Shoup [33]. The sum or difference of any two
polynomials, representing values in GF ½pe�, may be
computed by coordinatewise modulo-p addition:

xþ y ¼ ðx0 þ y0Þ þ ðx1 þ y1Þ�þ ðx2 þ y2Þ�2 þ � � �

To multiply two values in GF ½pe�, one may use a
convolution-based polynomial multiplication algorithm to
produce a single product polynomial of degree 2ðe� 1Þ,
and then reduce the product modulo Z. Working modulo Z
is equivalent to constraining � to satisfy the equation
Zð�Þ ¼ 0, that is,

�e ¼ �ðZ0 þ Z1�þ Z2�
2 þ � � � þ Ze�1�

e�1Þ:

This equation allows the product polynomial, of degree
2ðe� 1Þ, to be reduced to a polynomial of degree at most
e� 1 in a sequence of Oðlog eÞ steps. In the ith-from-last
reduction step, we split the reduced polynomial qið�Þ into
two parts:

qið�Þ ¼ rið�Þ þ �e�1þ2ihið�Þ;

where hi has degree 2i and ri has degree e� 2þ 2i; this split
may be accomplished simply by partitioning the coefficients
of qi, according to their degrees. We then compute the
product of hi with a polynomial of degree e� 1, equal in
value (modulo Z) to �e�1þ2i , and replace qi with a
polynomial qi�1, the sum of this product with ri. In this
way, multiplication in GF ½pe� may be accomplished, using
Oðlog eÞ calls to a polynomial multiplication subroutine. A
modified version of the Schönhage-Strassen integer multi-
plication algorithm allows each of these calls to be
accomplished in ~OðeÞ modulo-p operations [6], [29], [32].

We do not need to perform divisions by arbitrary values
in GF ½pe�, but our algorithms do involve division of values
in GF ½pe� by integers in the range ½2; p� 1�; this may be
done by dividing each coefficient of the value indepen-
dently by the given integer, modulo p.

Therefore, each field operation may be performed in bit
complexity ~Oðe log pÞ.

2.3 The Algorithm

Theorem 1. There is a deterministic streaming straggler
detection algorithm, using ð1þ oð1ÞÞðdþ 1Þ logn bits of
storage, such that Insert and Delete operations can be
performed in bit complexity ~Oðd lognÞ, and such that
ListStragglers operations can be performed in bit complexity
~Oðd log3 nþ d2 lognþ d3=2 log2 n minðd; lognÞÞ.

Proof. We let p be a prime number, larger than d, but at
most OðdÞ, and let e ¼ dlogpðnþ 1Þe so that pe > n. We
perform all operations of the algorithm in the field
GF ½pe�, and interpret all identifiers in the straggler
detection problem as values in this field. The number
of bits needed to represent a single value in GF ½pe� is
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ð1þ oð1ÞÞ log2 n, and with this choice of p and e, each
arithmetic operation in the field may be performed in bit
complexity ~OðlognÞ.

Define the power sums

skðSÞ ¼
X

xi2S
xki

(where xi and sk belong to GF ½pe�, except for s0, which
we store as a logn bit integer). Our streaming algorithm
stores skðSÞ for 0 � k � d. As s0ðSÞ is the number of
stragglers, we can easily compare the number of
stragglers to d.

To update the power sums after an insertion of a
value xi, we simply add xki to each power sum sk; this
requires OðdÞ arithmetic operations in GF ½pe� to compute
the powers of xi and perform the additions. Similarly, to
delete xi, we subtract xki from each power sum sk.

At any point in the algorithm, we may define a
polynomial in GF ½pe�½x�:

P ðxÞ ¼
Y

xi2S
ðx� xiÞ ¼

XjSj

k¼0

ð�1Þk�kxjSj�k;

where �k is the kth elementary symmetric function of S.
By using Newton’s identities, we may calculate the
coefficients of P in sequence from the power sums and
the earlier coefficients, using Oðd2Þ arithmetic operations
to compute all coefficients. Thus, this stage of the
ListStragglers operation takes bit complexity ~Oðd2 lognÞ.

Finally, to determine the list of stragglers, we find

the roots of the polynomial P ðxÞ that has been
determined as above. The deterministic root-finding

algorithm of Shoup [34] solves this problem in
~Oðd log2 n þ d3=2 logn minðd; lognÞÞ field operations;

multiplying this by the ~OðlognÞ bound on the number

of bit operations per field operation gives the
~Oðd log3 nÞ and ~Oðd5=2 logn minðd; lognÞÞ terms in the

statement of the theorem. Thus, the overall bit

complexity bound is as stated. tu
We note that a factor of d1=2 in Shoup’s algorithm [34]

occurs only when p has an unexpectedly long repeated
subsequence in its sequence of quadratic characters. Per
the discussion in Shoup’s paper, it seems likely that a
more careful choice of p can eliminate this factor,
simplifying the time bound for the ListStragglers opera-
tion to ~Oðd log3 nþ d2 lognÞ. If this is possible, it would be
an improvement when d lies in the range of values from
log2=3 n to log2 n.

For d ¼ 2, the root finding algorithm may be replaced by
the quadratic formula for solving a degree-two polynomial,
and similarly for d � 4, the root finding algorithm may be
replaced by the closed-form formulas for the solutions of
cubic and quartic polynomials.

3 IMPOSSIBILITY RESULTS IN THE PRESENCE OF

FALSE DELETIONS

So far, we have assumed that an element deletion can occur
only if a corresponding insertion has already occurred. That
is, the only anomalous data patterns, that might occur, are

insertions that are not followed by a subsequent deletion.
What can we say about more general update sequences in
which insertion-deletion pairs may occur out of order,
multiple times, or with a deletion that does not match an
insertion? We would like to have a streaming data structure
that handles these more general event streams and allows
us to detect small numbers of anomalies in our insertion-
deletion sequences.

Formally, define a signed multiset over a set S to be a
map f from S to the integers, where fðxÞ is the number of
occurrences of x in the multiset. To insert x into a signed
multiset, increase fðxÞ by one, while to delete x, decrease
fðxÞ by one. Thus, any sequence of insertions and deletions,
no matter how ordered, produces a well-defined signed
multiset. We wish to find a streaming algorithm that can
determine whether all but a small number of elements in
the signed multiset have nonzero values of fðxÞ and
identify those elements. But, as we show, for a natural
and general class of streaming algorithms, even if restricted
to signed multisets in which each x has fðxÞ 2 f�1; 0; 1g, we
cannot distinguish the empty multiset (in which all fðxÞ are
zero) from some nonempty multiset. Therefore, it is
impossible for a deterministic streaming algorithm to
determine whether a multiset has few nonzeros.

The signed multisets form a commutative group, iso-
morphic to ZZjSj, which we will represent using additive
notation: ðf þ gÞðxÞ ¼ fðxÞ þ gðxÞ. Call this group M. Define
a unit multiset to be a signed multiset, in which all values
fðxÞ are in f�1; 0; 1g; the unit multisets form a subset of M,
but not a subgroup.

Suppose a streaming algorithm maintains information
about a signed multiset, subject to insertion and deletion
operations. We say that the algorithm is uniquely represented,
if the state of the algorithm at any time depends only on the
multiset at that time and not on the ordering of the
insertions and deletions by which the multiset was created.
That is, there must exist a map u from M to states of the
algorithm. Intuitively, this is a natural requirement on an
efficient streaming algorithm, because the additional bits
required to allow the representation of multiple different
states for the same multiset represent wasted storage space.
The deterministic straggler detection algorithm of the
previous section, for instance, is uniquely represented.

Define a binary operation þ on states of a uniquely
represented multiset streaming algorithm as follows: If a
and b are states, let A and B be signed multisets such that
uðAÞ ¼ a and uðBÞ ¼ b, and let aþ b ¼ uðAþBÞ.
Lemma 1. If a streaming algorithm is uniquely represented, and
uðP Þ ¼ uðQÞ, then uðP þRÞ ¼ uðQþRÞ.

Proof. Let s be a sequence of updates that forms R. Then s
transforms uðP Þ to uðP þRÞ and uðQÞ to UðQþRÞ. Since
uðP Þ ¼ uðQÞ, uðP þRÞ and uðQþRÞ result from apply-
ing the same sequence of updates to the same initial
state, and, therefore, must equal each other. tu

Lemma 2. The addition operation on states defined above is well-
defined independent of how the representative multisets A and
B are chosen, the states of the streaming algorithm form a
commutative group under this operation, and u is a group
homomorphism.
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Proof. Independence from the choice of representation is
Lemma 1: if A and A0 represent the same state, and B and
B0 represent the same state, then by two applications of
Lemma 1, we may substitute A for A0 and B for B0,
showing that AþB and A0 þB0 represent the same state.

Associativity and commutativity follow from the
associativity and commutativity of the corresponding
group operation on M: if two states are represented by
the elements A and B of M, then the sum of the two
states (in either order of summation) is represented by
AþB ¼ BþA, where the equality is just commutativity
within M. Similarly, if three states are represented by the
elements A, B, and C of M, then the sum of the three
states (in either of two ways of grouping the sum) is
represented by ðAþBÞ þ C ¼ Aþ ðBþ CÞ, where again
the equality is just commutativity within M.

By Lemma 1, uðAÞ þ uð�AÞ ¼ uð0Þ and uðAÞ þ uð0Þ ¼
uðAÞ, so uð0Þ satisfies the axioms of a group identity.

Because addition of states satisfies associativity,
commutativity, and identity, we have defined a commu-
tative group. That u is a homomorphism follows from
the way we have defined our group operations as the
images by u of group operations in M. tu

Theorem 2. Any uniquely represented multiset streaming
algorithm for a multiset on n items, with fewer than n bits
of storage, will be unable to distinguish between the empty set
and some nonempty unit multiset.

Proof. Suppose there are k < n bits of storage, so that the
data structure has at most 2k possible states. By the
pigeonhole principle, two different sets A and B, when
interpreted as multisets and mapped to states, map to
the same state uðAÞ ¼ uðBÞ. Then, by Lemma 2,
uðA�BÞ ¼ uð;Þ. A�B is a nonempty unit multiset
that cannot be distinguished from the empty set. tu

By applying similar ideas, we can prove a similar
impossibility result without making our unique representa-
tivity assumption about the nature of the streaming
algorithm.

Theorem 3. No deterministic streaming algorithm with fewer
than n bits of storage can distinguish a stream of matched pairs
of insert and delete operations over a set of n items from a
stream of insert and delete operations that are not matched
in pairs.

Proof. Suppose that we have a deterministic streaming data

structure with k < n bits of storage. For any set A, let

fðAÞ denote the state of the data structure on a stream

that starts with an empty set and inserts the items in A in

some canonical order. By the pigeonhole principle, there

exist two sets A and B such that A 6¼ B but such that

fðAÞ ¼ fðBÞ. Let sPQ (P;Q 2 fA;Bg) be the operation

stream formed by inserting the items in set P followed

by deleting the items in set Q. Then the streaming

algorithm must have the same state after stream sAA as it

does after stream sBA, but sAA consists of matched insert-

delete pairs while sBA does not. tu
Another way of stating this result is that, for any

deterministic streaming algorithm, some nonempty set A
must be indistinguishable from the empty set, so it is

impossible to always correctly answer queries that should
give different answers for empty and nonempty sets. This
argument does not apply to a randomized streaming
algorithm, however, as it may be very unlikely that any
particular set queried by the algorithm has this property of
being indistinguishable from empty. This observation
motivates the results in the following section, in which we
describe streaming algorithms for a multiset version of the
straggler detection problem that use randomness to evade
the limitations of our impossibility results. As with previous
randomized streaming algorithms, our algorithm may give
mistaken answers to queries, but it is highly unlikely that
any particular query is answered incorrectly.

4 INVERTIBLE BLOOM FILTERS

The standard Bloom filter [1] is a randomized data structure
for approximately representing a set S, subject to insertion
operations and membership queries.

Given a parameter d on the expected size of S and an
error parameter � > 0, a standard Bloom filter consists of a
hash table B containing m ¼ Oðd logð1=�ÞÞ single-bit cells
(which we denote as a “bit” field), together with k ¼
�ðlogð1=�ÞÞ random hash functions fh1; . . . ; hkg that map
elements of S to distinct integers in the range ½0;m� 1�.

Initially, each cell contains the value 0. An insertion of an
element x into the standard Bloom filter is performed by
setting each B½hiðxÞ�:bit to 1, for i ¼ 1; . . . ; k. Likewise,
testing for membership of x in S amounts to testing that
there is no i 2 f1; . . . ; kg such that B½hiðxÞ�:bit ¼ 0. If one
sets the constant factor in the formulas for m and k
appropriately, one can cause the probability that this data
structure returns a false positive to any single membership
query (that is, that any particular element not in S is
erroneously identified as belonging to S) to become less
than the error parameter � (e.g., see [4]).

Standard Bloom filters do not allow elements, once
inserted, to be deleted from S. To remedy this inability,
the counting Bloom filter [3], [17] extends the standard
Bloom filter by replacing each “bit” cell ofBwith a counter
cell, “count” (as before, initialized to 0 for each cell). An
insertion of item x is performed by incrementing each
B½hiðxÞ�:count by 1, for i ¼ 1; . . . ; k. Such a structure also
supports the deletion of an item x, by decrementing each cell
B½hiðxÞ�:count by 1, for i ¼ 1; . . . ; k. Answering a member-
ship query is similar to that for the standard Bloom filter,
and is performed by testing that there is no i 2 f1; . . . ; kg
such that B½hiðxÞ�:count ¼ 0. The error analysis is the same
as for standard Bloom filters. However, although counting
Bloom filters can be used to map any set to a fully dynamic
membership testing data structure, the map cannot be
inverted efficiently; it is not obvious how to find the
members of a set represented by a counting Bloom filter
other than by testing membership for all elements in the
universe.

4.1 The Indexing Scheme for the
Invertible Bloom Filter

The invertible Bloom filter extends the counting Bloom filter,
in several ways, and allows us to solve the straggler
identification problem even in the presence of false
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deletions. It requires that we use three additional random
hash functions, f1, f2, and g, in addition to the k hash
functions, h1; . . . ; hk, used for B above. The functions, f1

and f2 map integers in ½0; n� to distinct integers in ½0;m�.
The function g maps integers in ½0; n� to integers in ½0; n2�.
In addition, we add two more fields to each Bloom filter
cell B½i�:

. An “idSum” field, which stores the sum of all the
elements, x in S, for xs that map to the cell B½i�. Note
that if B½i� stores m copies of a value x (and no other
values), then B½i�:idSum ¼ mx.

. A “hashSum” field, which stores the sum of all the
hash values, gðxÞ, for xs that map to the cell B½i�.
Note that if B½i� stores m copies of a value x (and no
other values), then B½i�:hashSum ¼ mgðxÞ.

The idSum field must be of size at least lognþ log d bits, so
that it can store d IDs and the hashSum field should be of
size at least 2 lognþ log d bits, so that it can store d numbers
in the range ½0; n2�. We allow these fields to overflow, in the
case that there are more than d numbers summed in either
field. But we require that addition and subtraction remain
inverses of each other, so that it is always the case that
ðaþ bÞ � b ¼ a and ða� bÞ þ b ¼ a.

In addition to these fields in B, we create a second Bloom
filter, C, which has the same number of (count, idSum,
and hashSum) fields as B, but uses only the functions f1

and f2 to map elements of S to its cells. That is, C is a
secondary augmented counting Bloom filter with the same
number of cells as B, but with only two random hash
functions, f1 and f2, to use for mapping purposes.
Intuitively, C will serve as a fallback Bloom filter for
“catching” elements that are difficult to recover using B
alone. Finally, in addition to these fields, we maintain a
global count variable, initially 0. Each of our count fields
is a signed counter, which (in the case of false deletions)
may go negative.

Since all n IDs in U can be represented with OðlognÞ bits,
their sum can also be represented with OðlognÞ bits.
Thus, the space needed for B and C is Oðm lognÞ ¼
Oðd logn logð1=�ÞÞ bits.

4.2 Updating an Invertible Bloom Filter

We process updates for the invertible Bloom filter as
follows:

Insert x:

increment count

for i ¼ 1; . . . ; k do

increment B½hiðxÞ�:count
add x to B½hiðxÞ�:idSum
add gðxÞ to B½hiðxÞ�:hashSum

for i ¼ 1; 2 do

increment C½fiðxÞ�:count
add x to C½fiðxÞ�:idSum
add gðxÞ to C½fiðxÞ�:hashSum

Delete x:

decrement count

for i ¼ 1; . . . ; k do

decrement B½hiðxÞ�:count
subtract x from B½hiðxÞ�:idSum
subtract gðxÞ from B½hiðxÞ�:hashSum

for i ¼ 1; 2 do

decrement C½fiðxÞ�:count
subtract x from C½fiðxÞ�:idSum
subtract gðxÞ from C½fiðxÞ�:hashSum

That is, to insert x, we go to each cell that x maps to and
increment its count field, add x to its idSum field, and add
gðxÞ to its hashSum field. Thus, the methods for element
insertion are fairly straightforward. Deletion is similarly
easy, in that we simply decrement counts and subtract out
the appropriate summands to reverse the insertion opera-
tion. These operations are illustrated in Fig. 1.

4.3 Listing the Contents of an
Invertible Bloom Filter

Our method for performing the ListStragglers operation is
a bit more involved than the insert and delete operations.
The basic idea is that some cells of B are likely to be pure,
that is, to have values that have been affected by only a
single item (Fig. 2). If we can find a pure cell, we can recover
the identity of its item by dividing its idSum by its count.
Once a single item and its count are known, we can remove
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that item from the database and continue until all items
have been found.

The difficulty with this approach is in finding the pure
cells. Because of the possibility of multiple insertions and
false deletions, we cannot simply test whether count is one;
some pure cells may have larger counts (i.e., have multiple
copies of the same value), and some impure cells may have
a count equal to one (e.g., because of two insertions of a
value x followed by a false deletion of a value y that collides
with x at this cell). Instead, to test whether a cell is pure, we
use its hashSum: in a pure cell, the hashSum should equal the
count times the hash of the item’s identifier, while in a cell
that is not pure it is very unlikely that the hashSum, idSum,
and count fields will match up in this way.

The following pseudocode expresses the decoding
algorithm outlined above.

ListStragglers:

while 9i, s. t. gðB½i�:idSum=B½i�:countÞ ¼
B½i�:hashSum=B½i�:count do

if B½i�:count > 0 then {this is a good element}

Push x ¼ B½i�:idSum=B½i�:count onto an output

stack O.

Delete all B½i�:count copies of x from B and C

(using a method similar to Delete x above)

else {this is a false delete}

Back out all �B½i�:count falsely-removed

copies of x from B and C (using a method

similar to Insert x above)

if count ¼ 0 then

Output the elements in the output stack and

insert each element back into B and C.
else {we have mutually-conflicting elements in B}

Repeat the above while loop, but do the tests

using C instead of B.

Output the elements in the output stack, O, and

insert each element back into B and C.

There is a slight chance that this algorithm fails. For
example, we could have two or more items colliding in a
cell of B, but we could nevertheless have the condition,
gðB½i�:idSum=B½i�:countÞ ¼ B½i�:hashSum=B½i�:count, sat is-
fied (and similarly for C in the second while loop).
Fortunately, since g is a random function from ½0; n� to
½0; n2�, such an event occurs with probability at most 1=n2;
hence, over the entire algorithm we can assume, with high
probability, that it never occurs (since d << n). More
troubling is the possibility that, even after using the fallback
array C to find and enumerate elements in the invertible

Bloom filter (in the second while loop), we might still have
some mutually-conflicting elements in C. That is, we would
have count > 0, even after the second while loop. Let us,
therefore, analyze this probability of failure for the List-

Stragglers algorithm, beginning with the first while loop.

Lemma 3. If the number of elements in S, which were inserted
but not deleted, plus the number of false elements negatively
indicated in S, corresponding to items deleted but not inserted,
is at most d, then the first while loop will remove all but �d
such elements from S with probability 1� �=2, for � < 1=4.

Proof. It is sufficient for us to show that, with probability
1� �=2, for all but �d elements x in S, there is a cell in B
such that that x is the only element in S mapping to that
cell. Let us define the constants so that each of the
d elements in B map to most k ¼ logð1=�Þ distinct cells,
and the size of B is 4dk, which implies that the
probability of a collision at any cell is at most 1=4. Thus,
the probability that any element x collides with other
elements in each of the cells it gets mapped to is at most
1=4k. That is, we can bound the number of elements to
remain after the first while loop, using a sum of
independent 0� 1 random variables that has expectation
at most �2d. Using this fact, we can use a Chernoff bound
(e.g., see [28]) to show that the number of such elements
is at most �d with probability at least 1� �=2. tu

Let us assume, therefore, that at most �d elements (true
and/or false) remain in S after the first while loop. Let us
suppose further that each is mapped to two distinct cells in
C (the probability there is any such self-collision among the
remaining elements in C is at most �d=4dk � �=4). We can
envision each cell in C as forming a vertex in a graph, and
each selected pair of cells as forming an edge in the graph
(Fig. 3); thus, our data can be modeled as a random
multigraph with x � �d edges and y ¼ 4dk � 8d vertices.
Thus, it is a very sparse graph. Let c ¼ y=x � 8=�.

Two types of bad event could prevent us from
decoding the data remaining in C after the first loop.
First, two items could map to the same pair of cells, so
that our multigraph is not a simple graph. There are
xðx� 1Þ=2 pairs of items, and each two items collide with
probability 2=ðyðy� 1ÞÞ, so the expected number of
collisions of this type is xðx� 1Þ=ðyðy� 1ÞÞ, roughly 1=c2.
Second, the graph may be simple but may contain a cycle.
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Fig. 2. Pure cells of B allow us to recover the identity of their items and
(using the hashSum field) to verify their purity with high probability. Fig. 3. A highly sparse random graph in which the vertices represent

cells in C and the edges connect cells f1ðxiÞ and f2ðxiÞ for each
remaining element xi. Degree-one vertices of this graph form pure cells
in C, so if the graph has no cycles, it may be uniquely decoded.



As shown by Pittel [2, Exercise 8, p. 122], the expected

number of vertices in cyclic components of a random

graph of this size is bounded by
P1

k¼3 kc
�k ¼ Oð1=c3Þ.

Therefore, the expected number of events of either type,

and the probability that there exists an event of either

type, is Oð1=c2Þ. Choosing c ¼ Oð
ffiffiffiffiffiffiffi
1=�

p
Þ is sufficient to

show that we will fail in the second while loop with

probability at most �=4.

Theorem 4. If the number of elements in S, which were inserted

but not deleted, plus the number of false elements negatively

indicated in S, which correspond to items deleted but not

inserted, is at most d, then the above algorithm correctly

answers a ListStragglers query with probability at least

1� �, where � < 1=4.

To get a handle on the real-world performance of the

invertible Bloom filter, we implemented an instance of the

table B, with four random hash functions and capacity of

101 cells. The four hash functions and the functions f1 and

f2 were implemented using the SHA-1 cryptographic hash

function, modulo 101, and the hash function g was

implemented using the SHA-1 function, modulo 10211.

We then inserted as many elements as possible such that we

could still perform the ListStragglers operation (without

resorting to the backup table C). We implemented the

count and idSum fields using 16-bit integers, and we

implemented the hashSum field using a 32-bit integer. We

did one set of experiments with the table B used alone and

another set of experiments with the table used in conjunc-

tion with the table C. In both cases, we searched for clean

elements as described above, but also added a “sanity”

check that tests that each clean element being listed in a

ListStragglers operation actually maps to the location that

revealed this clean element. We performed 1,000 random

trials of each set of experiments, and we show a histogram

of the maximum sizes of feasible inversions, for both sets,

with the results for B used alone shown in Fig. 4. and those

for B and C used together in Fig. 5. Clearly, the use of the

backup table, C, significantly extends the ability of the

invertible Bloom filter to recover a set.

5 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we study the straggler identification problem

for data streams, showing that small sublinear-space

indexing schemes exist for performing straggler detection.

Another way of viewing this problem is that we desire a

database indexing scheme that can represent a dynamic set

using a compact structure, D. As the database D fills to be

of size as large as n, the cells of D can “overflow” and we

lose the ability to list the contents of D. But as items are

removed from D, we eventually get to a point where we can

enumerate the contents of D again.

Our deterministic solution uses Oðd lognÞ bits to repre-

sent D, where d is a parameter indicating an upper bound

on the number of stragglers we expect to exist at the time

when we wish to enumerate the contents of D. We observe

that this deterministic solution cannot tolerate redundant

insertions or false deletions, but this requirement is justified

by our negativity result for any deterministic solution to the

straggler identification problem. Our randomized solution,

on the hand, which introduces the invertible Bloom filter,

can tolerate both redundant insertions and false deletions,

provided there are not too many of them.

In all our solutions, we assume we have an upper bound,

d, on the size of D at the time we wish to perform

enumerations of its contents. One direction of future study,

then, is to reduce this requirement of knowledge of an upper

bound d, for example, for insertion-deletion sequences that

belong to certain probabilistic distributions.
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Fig. 4. Frequencies of saturation points for B used alone. The mean is
74.8 and the standard deviation is 4.4.

Fig. 5. Frequencies of saturation points for B and C used together. The
mean is 130.3 and the standard deviation is 5.7.
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