
Round-Trip Voronoi Diagrams

and Doubling Density in Geographic Networks

Matthew T. Dickerson1, Michael T. Goodrich2,
Thomas D. Dickerson3, and Ying Daisy Zhuo1

1 Dept. of Computer Science, Middlebury College, Middlebury, VT, USA
{dickerso,yzhuo}@middlebury.edu

2 Dept. of Computer Science, Univ. of California, Irvine, Irvine, CA, USA
goodrich@ics.uci.edu

3 St. Michael’s College, Colchester, VT, USA
tdickerson@smcvt.edu

Abstract. Given a geographic network G (e.g. road network, utility
distribution grid) and a set of sites (e.g. post offices, fire stations), a
two-site Voronoi diagram labels each vertex v ∈ G with the pair of sites
that minimizes some distance function. The sum function defines the
“distance” from v to a pair of sites s, t as the sum of the distances from
v to each site. The round-trip function defines the “distance” as the min-
imum length tour starting and ending at v and visiting both s and t. A
two-color variant begins with two different types of sites and labels each
vertex with the minimum pair of sites of different types. In this paper, we
provide new properties and algorithms for two-site and two-color Voronoi
diagrams for these distance functions in a geographic network, including
experimental results on the doubling distance of various point-of-interest
sites. We extend some of these results to multi-color variants.

Keywords: Voronoi diagrams, road networks, round-trip, point-of-
interest, two-color.

1 Introduction

Given a set S of d-dimensional points, called sites, the Voronoi diagram of S is
defined to be the subdivision of Rd into cells, one for each site in S, where the
Voronoi cell for site p ∈ S is the loci of all points closer to p than to any other
point in S. The Voronoi diagram is an important and well-studied geometric
structure, now more than 100 years old [3,4,14,16,24,25]. For example, when
coupled with point location data structures and algorithms, the Voronoi diagram
provides a solution to Knuth’s well-known post office problem [18]: given a set
of n post offices, create a structure that allows us to identify, for each house, its
nearest post office.

As useful as is the geometric version of the Voronoi diagram defined above for
many real world applications, for other applications it is inappropriate because it
assumes that distance can be measured via a straight line in Euclidean space—
or, in the case of post offices, on a Euclidean plane. That is, it applies a geometric

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. XIV, LNCS 6970, pp. 211–238, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

212 M.T. Dickerson et al.

structure to a geographic problem. In the real world, by contrast, postal delivery
cars travel along roads, and not on straight lines (across fields, mountains, rivers,
and through forests.) Post offices as well as mailboxes or addresses are points in a
geographic network—the graph defined by the set of roads in a given geographic
region—not points in R2. Thus, a Voronoi diagram defined geometrically is, in
practice, a poor solution to Knuth’s post office problem, especially in geographic
regions with natural obstacles, like lakes, rivers, bridges, and freeways, that
make the Euclidean metric a inappropriate distance function for determining
a nearest post office. A more practical and realistic solution to Knuth’s post
office problem should use a version of the Voronoi diagram that is defined for
geographic networks, or non-negatively weighted graphs.

Furthermore, traditional Voronoi diagrams define the distance only from a
single vertex to a single site. However the “cost” related to a particular vertex
in a geographic network may be dependent on its relationship to several sites.
For example, if one likes to visit three different grocery stores each week for
maximum savings, then one would want to associate each vertex on a graph with
the three grocery store sites that together minimize the sum distance, and so we
want to compute the 3-site Voronoi diagram using the sum function. If one visits
two grocery stores on each trip, then the goal is to find the sites that minimize
the round-trip distance function—which may be different sites than those that
minimize the sum function—and we want a round-trip distance function Voronoi
diagram to evaluate each vertex. If one visits a post office, grocery store, and
department store each week, then optimal sites can be determined by a multi-
color Voronoi diagram.

1.1 Graph-Theoretic Voronoi Diagrams

A geographic network is a graph G = (V, E) that represents a transportation or
flow network, where commodities or people are constrained to travel along the
edges of that graph. Examples include road, flight, and railroad networks, utility
distribution grids, and sewer lines. We assume that the edges of a geographic
network are assigned weights, which represent the cost, distance, or penalty of

37

22

48

40

24
30

29

17

41

34

37

24 46

26

23

A

B

D

C

34

37

46

C

17
D

37

24

266

23

B2

48

A

Fig. 1. An example graph-theoretic Voronoi diagram with sites A,B,C,D

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 213

moving along that edge, or some combination of these and other factors, such as
scenic or ecological value. The only requirement we make with respect to these
weights is that they be non-negative. In this paper, we also restrict our attention
to undirected geographic networks.

Since all our edge weights are non-negative, and the edges are undirected, a
shortest path exists between each pair of vertices in G. The distance, d(v, w)
for v, w ∈ G, is defined as the length of a shortest (i.e., minimum weight) path
between v and w. This distance function, d, is well-defined, and d(v, w) = d(w, v).
Moreover, since by definition of “shortest”, it follows immediately that for any
vertices v, w, x ∈ G, d(v, x) ≤ d(v, w) + d(w, x); that is, the triangle inequality
holds for this path distance d.

This observation allows us to define the Voronoi diagram of a geographic
network. Formally, we define a geographic network, G = (V, E), to be a set V
of vertices, a set E of edges (which are unordered pairs of distinct vertices), and
a weight function w : E → R+ mapping edges E to non-negative real numbers.
In a road network, this weight function could represent either distance along a
road (that is, the Euclidean length of an edge) or the travel time. In the Voronoi
diagram problem, we are also given a subset K ⊂ V of special vertices called
sites. These are the “post offices” in Knuth’s post office problem, but of course
they could also be any points of interest (or POIs) such as a schools, hospitals,
fire stations, or grocery stores. Each site v ∈ K is uniquely labeled with a natural
number n(v) from 0 to |K| − 1, so that we can refer to sites by number. The
numbering is also used to resolve ties so that the ordering of sites by distance
can be uniquely defined.

The standard first-order graph-theoretic Voronoi diagram [21] of G is a la-
beling of each vertex w in V with the number, n(v), of the vertex v in K that
is closest to w. All the vertices with the same label, n(v), are said to be in the
Voronoi region for v. Intuitively, if a site v in K is considered a post office, then
the Voronoi region for v consists of all the homes that ought to be in v’s zip
code. (Note: if we want to consider each house on a block as separate entity with
potentially a different closest post office, rather than model the entire block as
a single vertex, we should use an individual vertex in V for each house, most of
which would be degree-2 vertices in G.) (See Fig. 1.)

We also use these numbers, n(v), to break ties in distances, which allows us
to speak of unique closest sites in K for each vertex in V . That is, if we have
two distinct sites v, w ∈ S and a third vertex x ∈ V such that d(v, x) = d(w, x),
then we say that x is closer to v if and only if n(v) < n(w), and otherwise x
is closer to y. For example, consider two distinct sites v, w ∈ S with n(v) = 0
and n(w) = 1, and a third vertex x ∈ V , and with two edges (v, x) and (w, x)
such that d(v, x) = d(w, x). Then x is in the Voronoi region for site v. This
becomes particularly important if there is a fourth vertex y and a third edge
(x, y). Without the tie-breaking rule using n(v), the entire edge (x, y) would be
equidistant to v and w, and if there were no other alternate paths then any entire
subgraph of G connected at x would be equidistant from v and w.

214 M.T. Dickerson et al.

37

22

48

40

24
30

29

17

41

34

37

24 46

26

23

A

B

D

C

24

29

17

B

D

V(B,D)

V(C,D)

37

24 46

C

V(B,C)

22

48

40

A V(A,B)

(a)

37

22

48

40

24
30

29

17

41

34

37

24 46

26

23

A

B

D

C

24

29

17

B

D

V(B,D)

V(B,C)

V(A,B)

48

40

A

V(A,B)

34

37

24 46

266

C

V(B,C)

(b)

Fig. 2. (a) An example graph-theoretic two-site sum function Voronoi diagram of the
same graph from Fig. 1. (b) An example graph-theoretic two-site round-trip function
Voronoi diagram of the same graph as in Fig. 1.

Mehlhorn [21] shows that the graph-theoretic Voronoi diagram of a graph G,
having n vertices and m edges, can be constructed in O(n log n + m) time. A
similar algorithm is given by Erwig [15]. At a high level, these algorithms perform
n simultaneous runs of Dijkstra’s single-source shortest-path algorithm [13] (see
also [10,17]).

In this paper, however, we are not interested in these types of single-site
Voronoi diagrams.

1.2 Round-Trip Distance

In a number of applications, we may be interested in labeling the vertices of
a geographic network, G, with more information than just their single nearest
neighbor from the set of sites, K. We may wish, for instance, to label each vertex
v in G with the names of the C closest sites in K, for some C ≤ |K|. For example,
the sites in K may be fire stations, and we may wish to know the three closest
fire stations for each house in our network, just in case there is a three-alarm
fire at that location.

For many applications, “closest” among a set of neighbors should instead be
defined by the round-trip or tour distance. (For C = 2, and for point sites on the

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 215

Euclidean plane, this distance was referred to in [7] as the “perimeter” distance,
in reference to the perimeter of a triangle, since shortest paths are straight
edges. In this paper, although we also focus on the case c = 2, we will refer to
this function as the “round-trip” distance in reference both to road networks
and to the more general case of C ≥ 2.) (See Fig. 2.) In this notion of distance,
we want to take a single trip, starting and ending at our “home” location and
visiting two (or more) distinguished sites. Such distances correspond to the work
that would need to be done, for example, by someone who needs to leave their
house, visit multiple sites to run a number of errands, and then return home.
Some hypothetical examples include the following:
– Some legal documents require the signatures of multiple witnesses and/or no-

taries in order to be executed, so we may need to travel to multiple locations
to get them all.

– Some grocery stores place a limit on the amount of special “loss leader” sale
items one can purchase in a single visit, so we may need to visit multiple
stores to get enough of such items needed for a big party.

– A celebrity just out of rehab may wish to get multiple community service
credits in a single trip, for instance, by tutoring students at an educational
institution and speaking at an alcoholics anonymous meeting at a religious
institution, all on the same day.

In each case, we are likely to want to optimize our travel time to visit all the
sites of interest as quickly as possible.

Alternatively, we may have a number of different kinds of sites, such as gas
stations, grocery stores, and coffee houses, and we are interested in the three
that are closest to each house, in terms of how one could visit all three types
of sites in a single trip from home. Thus we are also interested in multi-color
Voronoi diagrams, where each type of site (such as coffee houses and grocery
stores) is represented with a different color. While an individual is not likely to
use a computer implementation of a round-trip search algorithm to make such
local decisions (as he or she might use Google Maps to find the fastest route to a
distant city), retail and service corporations do make location decisions based on
such information: maximizing the size of the population for which the location
can be efficiently visited.

Figure 3 shows a gray-scale image of the 2-color round-trip Voronoi diagram
of the road network in the state of Vermont featuring hospitals as one “color”
site, and religious institutions as the other set of sites. For each pair of sites
including one hospital and one religious institution, there is a region (in most
cases empty) of the set of all vertices having that pair of sites closer than any
other pair. Each non-empty region is shaded with a particular shade of grey.
(This Voronoi diagram was generated using the algorithm developed in this
paper.)

1.3 Related Prior Work

Unlike prior work on graph-theoretic Voronoi diagrams, there is a abundance of
prior work for geometric Voronoi diagrams. It is beyond the scope of this paper

216 M.T. Dickerson et al.

Fig. 3. A 2-Color Round-Trip Voronoi Diagram for the Road Network of the State of
Vermont (Using Hospitals and Churches)

to review all this work and its applications. We refer the interested reader to
any excellent survey on the subject (e.g., see [3,4,16,24]) and we focus here on
previous work on multi-site geometric Voronoi diagrams and on graph-theoretic
Voronoi diagrams.

Lee [20] studies k-nearest neighbor Voronoi diagrams in the plane, which are
also known as “order-C Voronoi diagrams.” These structures define each region,
for a site p, to be labeled with the C nearest sites to p. These structures can
be constructed for a set of n points in the plane in O(n2 + C(n − C) log2 n)
time [9]. Due to their computational complexity, however, order-C Voronoi di-
agrams have not been accepted as practical solutions to C-nearest neighbor
queries. Patroumpas et al. [22] study methods for performing C-nearest neigh-
bor queries using an approximate order-C network Voronoi diagram of points in
the plane, which has better performance than its exact counterpart.

Two-site distance functions and their corresponding Voronoi diagrams were
introduced by Barequet, Dickerson, and Drysdale [7]. (See also [8] for a visual-
ization of this structure.) A two-site distance function is measured from a point
to a pair of points. In Euclidean space, it is a function Df : R2×(R2×R2) → R
mapping a point p and a pair of points (v, w) to a non-negative real number. In
a graph, it is a function mapping a vertex p and a pair of vertices (v, w)—usually
sites—to a R. Two-site distance functions Df are symmetric on the pair of points

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 217

(v, w), though not necessarily on p, thus Df (p, (v, w)) = Df (p, (w, v)). (For some
two-site distance functions, it is also true that Df (p, (v, w)) = Df (v, (p, w)) but
this is incidental.) The sum function, DS, results in the same Voronoi diagram
as the 2-nearest neighbor (order-2) Voronoi diagram, but the authors considered
a number of other combination rules as well including area and product. The
complexity of the round-trip two-site distance function Voronoi diagram was left
by [7] as an open problem, and remains open.

As we mentioned above, single-site graph-theoretic Voronoi diagrams were
considered by Mehlhorn [21], who presented an algorithm running in O(n log n+
m) time. More recently, Aichholzer et al. [2] study a hybrid scheme that combines
geometric distance with a rectilinear transportation network (like a subway),
and Abellanas et al. [1] study a similar approach where the subway/highway
is modeled as a straight line. Bae and Chwa [5,6] study hybrid schemes where
distance is defined by a graph embedded in the plane and distance is defined by
edge lengths.

As far as multi-site queries are concerned, Safar [23] studies k-nearest neighbor
searching in road networks, but he does so using the first-order Voronoi diagram,
rather than considering a multi-site Voronoi diagram for geographic networks.
Likewise, Kolahdouzan and Shahabi [19] also take the approach of constructing
a first-order Voronoi diagram and searching it to perform C-nearest neighbor
queries. Instead, de Almeida and Güting [11] compute C-nearest neighbors on
the fly using Dijkstra’s algorithm. None of these methods actually construct a
multi-site or multi-color graph-theoretic Voronoi diagram, however, and, to the
the best of our knowledge, there is no previous paper that explicitly studies
multi-site or multi-color Voronoi diagrams on graphs. In [12], Dickerson and
Goodrich study two-site Voronoi diagrams in graphs, but without employing
any techniques that could improve running times beyond repeated Dijkstra-like
algorithms.

1.4 Our Results

In this paper, we focus on two-site and two-color Voronoi diagrams on graphs
using the round-trip function DP for defining these concepts, although we also
discuss the sum distance function, DS , as well. In particular, for a vertex p or a
point p on an edge e and a pair of sites v, w, our two-site distance functions are
defined as follows:

DS(p, (v, w)) = d(p, v) + d(p, w)
DP (p, (v, w)) = d(p, v) + d(p, w) + d(v, w)

The sum function can easily be extended from 2 to k sites: DS(p, (v1, . . . , vk)) =∑
1≤i≤k d(p, vi). Note that with k-site distance functions, we also have a sim-

ilar rule for breaking ties in distances. In the case that D(p, (v1, . . . , vk)) =
D(p, (w1, . . . , wk)) for sites vi, wi and function D, as a means of breaking ties
we consider p closer to whichever of (v1, . . . , vk) and (w1, . . . , wk) has a smaller
lexicographical ordering of indices.

218 M.T. Dickerson et al.

We prove several new properties of two-site round-trip distance function Voronoi
diagrams on geographic networks, and make use of these properties to provide
a new family of algorithms for computing these diagrams. We extend our proofs
for the two-color variant, which is arguably more applicable than the one-color
variant. (Though as noted above, there are cases when one might wish to visit
several grocery stores on one trip, it is easier to imagine a case where we want
the shortest tour visiting both a grocery store and a post office.)

One property we explore relates to the doubling densities of various types of
POI sites on a geographic networks. The doubling density of a class of sites from
a vertex v is the number of sites of that type within twice the distance from
v as the closest site to v of that type. The run-times of our algorithms depend
in part on the average doubling density of various sites from other sites. They
also depend on the related density of the total number of edges within twice
the distance from one site to the nearest other site of that type. (This latter
property could be thought of as a different kind of doubling density.) We will
prove a property that allows us to prune our search based on doubling distances,
and will also provide experimental results about the doubling densities of various
POIs on a set of states.

The algorithms have run times whose expected case is asymptotically faster
than the algorithm of [12] under realistic assumptions of how sites are distributed
in the network.

Finally, we show how to extend two-site Voronoi diagrams to multi-site and
multi-color diagrams, under the sum function, while only increasing the running
time by a factor of C, where C is the multiplicity we are interested in.

2 Constructing Graph-Theoretic Voronoi Diagrams

In this section, we review the approach of Mehlhorn [21] and Erwig [15] for
constructing a (single-site) graph-theoretic Voronoi diagram of a graph G, having
n vertices and m edges, which runs in O(n log n+m) time, and, for completeness,
we also review the two-site sum function algorithm of [12], but with one minor
correction.

Given a geographic network, G = (V, E), together with a set of sites, K ⊆ V ,
and a non-negative distance function on the edges in E, the main idea for con-
structing a graph-theoretic Voronoi diagram for G is to conceptually create a new
vertex, a, called the apex, which was originally not in V , and connect a to every
site in K by a zero-weight edge. We then perform a single-source, shortest-path
(SSSP) algorithm from a to every vertex in G, using an efficient implementation
of Dijkstra’s algorithm. Intuitively, this algorithm grows the Voronoi region for
each site out from its center, with the growth for all the sites occurring in paral-
lel. Moreover, since all the Voronoi regions grow simultaneously and each region
is contiguous and connected by a subgraph of the shortest-path tree from a, we
can label vertices with the name of their Voronoi region as we go.

In more detail, the algorithm begins by labeling each vertex v in K with
correct distance D[v] = 0 and every other vertex v in V with tentative distance

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 219

D[v] = +∞, and we add all these vertices to a priority queue, Q, using their
D labels as their keys. In addition, for each vertex v in K, we label v with the
name of its Voronoi region, R(v), which in each case is clearly R(v) = n(v). In
each iteration, the algorithm removes a vertex v from Q with minimum D value,
confirming its D label and R label as being correct. It then performs a relaxation
for each edge (v, u), incident to v, by testing if D[v] + w(v, u) < D[u]. If this
condition is true, then we set D[u] = D[v]+w(v, u), updating this key for u in Q,
and we set R(u) = R(v), to indicate (tentatively) that, based on what we know
so far, u and v should belong to the same Voronoi region. When the algorithm
completes, each vertex will have its Voronoi region name confirmed, as well as
the distance to the site for this region. Since each vertex is removed exactly
once from Q and each key is decreased at most O(m) times, the running time
of this algorithm is O(n log n + m) if Q is implemented as a Fibonacci heap. In
addition, note that this algorithm “grows” out the Voronoi regions in increasing
order by distance from the apex, a, and it automatically stops the growing of
each Voronoi region as soon as it touches another region, since the vertices in an
already completed region are (by induction) closer to the apex than the region
we are growing.

2.1 Two-Site Distance Functions on Graphs

In this section, we discuss algorithms for two-site Voronoi diagrams, which we
then generalize in a subsequent section to multi-site and multi-color Voronoi
diagrams. The advantage of this approach is that it highlights the additional
complications needed to go from single-site to two-site Voronoi diagrams, while
also showing the perhaps surprising result that we can construct two-site Voronoi
diagrams with only a small, constant factor blow up in the running time. As men-
tioned above, the two-site sum function Voronoi diagram is equivalent to the sec-
ond order two-nearest neighbor Voronoi diagram, which identifies for each vertex
v in our graph, G, the two nearest sites to v. We state and prove the equiva-
lence of these two types of Voronoi diagrams in the following simple lemma, the
proof of which holds for both Voronoi diagrams in the plane and on weighted
undirected graphs.

Lemma 1. If v and w are the two closest sites to a vertex p in G, then the pair
(v, w) minimizes DS(p, (v, w)).

Proof. Suppose that v and w are the two closest sites to a vertex p in G, but
that the pair (v, w) did not minimize DS(p, (v, w)). Without loss of generality, let
d(p, v) ≤ d(p, w). By our assumption, there exists a vertex x such that d(p, x) <
d(p, w). It follows immediately that DS(p, (v, x)) < DS(p, (v, w)) which is a
contradiction.

It follows that the two-site Voronoi diagram is equivalent to the two-nearest
neighbor Voronoi diagram for a set of points in the plane or a graph.

So we are ready to formally define our construction problem.

220 M.T. Dickerson et al.

Problem 1. Given a graph G = (V, K, E) of n vertices V , m edges E, and a
subset K ⊂ V of s special vertices called “sites”, compute the two-site Sum
function Voronoi diagram of G; that is, label each vertex v ∈ V with the closest
pair of sites in K according to the two-site Sum distance function.

Intuitively, the algorithm of [12] for constructing a two-site Voronoi diagram un-
der the sum function is to perform a Dijkstra single-source shortest-path (SSSP)
algorithm from each site, in parallel, but visit each vertex twice—once for each
of the two closest sites to that vertex.

More specifically, we begin by labeling each vertex v in K with correct first-
neighbor distance D1[v] = 0 and every other vertex v in V with tentative first-
neighbor distance D1[v] = +∞, and we add all these vertices to a priority queue,
Q, using their D1 labels as their keys. We also assign each vertex v ∈ V (including
each site in K) its tentative second-neighbor distance, D2[v] = +∞, but we don’t
yet use these values as keys for vertices in Q. In addition, for each vertex v in K,
we label v with the name of its first-order Voronoi region, R1(v), which in each
case is clearly R1(v) = n(v). In each iteration, the algorithm removes a vertex
v from Q with minimum key. How we then do relaxations depends on whether
this key is a D1 or D2 value.

– Case 1: The key for v is a D1 value. In this case we confirm the D1 and R1

values for v, and we add v back into Q, but this time we use D2[v] as v’s key.
We then perform a relaxation for each edge (v, u), incident to v, according
to the following test:
Relaxation(v, u):

if u has had its R2 label confirmed then
Return (for we are done with u).

else if u has had its R1 label confirmed then
if R1(v) 	= R1(u) and D1[v] + w(v, u) < D2[u] then

Set D2[u] = D1[v] + w(v, u)
Set R2(u) = R1(v)

if D2[v] + w(v, u) < D2[u] then
Set D2[u] = D2[v] + w(v, u)
Set R2(u) = R2(v).

else
if D1[v] + w(v, u) < D1[u] then

Set D1[u] = D1[v] + w(v, u)
Set R1(u) = R1(v).

In addition, if the D1 or D2 label for u changes, then we update this key for
u in Q. Moreover, since we are confirming the D1 and R1 labels for v, in this
case, we also do a reverse relaxation for each edge incident to v by calling
Relaxation(u, v) on each one.

– Case 2: The key for v is a D2 value. In this case we confirm the D2 and R2

values for v, and we do a relaxation for each edge (v, u), incident to v, as
above (but with no reverse relaxations).

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 221

When the algorithm completes, each vertex will have its two-site Voronoi region
names confirmed, as well as the distance to each of its two-nearest sites for this
region.

The correctness of this algorithm follows from the correctness of the SSSP
algorithm and from Lemma 1. The SSSP algorithm guarantees that vertices
will be visited in increasing order of distance from the origin(s) of the search.
Lemma 1 states that the closest two sites to v are also the closest pair according
to the sum two-site distance function.

For the analysis of this algorithm, first note that no vertex will be visited more
than twice, since each vertex is added to the queue, Q, twice—once for its first-
order nearest neighbor and once for its second-order nearest neighbor. Moreover,
once a vertex is added to Q, its key value is only decreased until it is removed from
Q. Thus, this algorithm requires O(n log n + m) time in the worst cast when Q
is implemented using a Fibonacci heap, where n is the number of vertices in G
and m is the number of edges. By the same reasoning, the priority queue Q won’t
grow larger than O(n) during the algorithm, so the space required is O(n).

3 Properties of Round-Trip Voronoi Diagrams on Graphs

Using the sum distance function for a two-site graph-theoretic Voronoi diagram
allows us to label each vertex in G with its two nearest neighbors. Such a labeling
is appropriate, for example, for fire stations or police stations, where we might
want agents from both locations to travel to our home, or if we need to take
separate trips to different sites. If instead we want to leave our home, travel to
two nearby sites on the same trip, and return home, then we will need to use the
round-trip function. Before presenting a new algorithm for this function, we first
prove several properties of the round-trip distance function diagram on graphs.

Our first lemma is relatively straightforward, but provides an important prop-
erty for pruning searches in our algorithms.

Lemma 2. Let v be any vertex in a geographic network G, (s, t) a pair of sites
in G minimizing the round-trip distance function DP from v. Then for any sites
p, q in G:

d(v, s) ≤ (d(v, p) + d(v, q) + d(p, q))/2
d(v, t) ≤ (d(v, p) + d(v, q) + d(p, q))/2

Proof of Lemma 2: By assumption, DP (v, (s, t)) ≤ DP (v, (p, q)). By the tri-
angle inequality, 2d(v, s) ≤ d(v, s) + d(v, t) + d(s, t)) = DP (v, (s, t)). Combining
these, we get, d(v, s) ≤ 1

2DP (v, (p, q)) = 1
2 (d(v, p) + d(v, q) + d(p, q)). The argu-

ment for d(v, t) is symmetric. End Proof.
What this means is that if we know of some tour from vertex v through sites

p and q—that is, we have a candidate pair (p, q) to minimize the round-trip
distance from v— then our algorithms can safely ignore any other site s that
is further from v than 1

2DP (v, (p, q)) because s cannot be a part of a pair that
minimizes the round-trip distance from v.

222 M.T. Dickerson et al.

This lemma combined with the triangle inequality d(p, q) ≤ d(v, p) + d(v, q)
leads to the following corollary, which is a weaker condition, but one easily
implementable as a pruning technique on a SSSP search.

Corollary 1. Let p, q be the two sites closest to some vertex v under normal
graph distance, and (s, t) the pair of sites minimizing the round-trip function
DP from v. Then d(v, s) ≤ d(v, p) + d(v, q) and d(v, t) ≤ d(v, p) + d(v, q).

The following double distance lemma provides a similar but less obvious condition
that can also be used for pruning.

Lemma 3. (Doubling Distance Property) For any pair of sites s, t in a ge-
ographic network G, if there exists any other sites p, q ∈ G such that d(s, t) >
2d(s, p) and d(s, t) > 2d(t, q)), then (s, t) cannot minimize the round-trip dis-
tance function for any vertex v ∈ G.

Ct

Cs

s t

v

p

Fig. 4. Illustrating the proof of Lemma 3. The edges represent shortest paths, not
single edges.

Proof of Lemma 3 (by contradiction): (See Figure 4.) Assume that there
is some vertex v such that (s, t) is the closest pair of sites in the round-trip
distance—that is, v is in the Voronoi region for (s, t). Assume also that there
are sites p, q ∈ G such that d(s, t) > 2d(s, p) and d(s, t) > 2d(t, q)). Without
loss of generality, let d(v, s) ≤ d(v, t). (Otherwise reverse the role of s and t.)
We now consider the round-trip distance DP (v, (s, p)). Applying the triangle
inequality, we get: DP (v, (s, p)) = d(v, s) + d(s, p) + d(p, v) ≤ d(v, s) + d(s, p) +
(d(v, s) + d(s, p)). By assumption, 2d(s, p) < d(s, t) and d(v, s) ≤ d(v, t) and
thus: DP (v, (s, p)) < d(v, s) + d(v, t) + d(s, t) = DP (v, (s, t)), contradiction our
assumption that (s, t) is the closest pair to v. End Proof

Note that Lemma 3 holds even if if s and t both meet the condition of
Lemma 2—that is, even if for some vertex v, s and t are both closer to v than
1
2DP (v, (p, q)) for all sites p, q, the pair (s, t) cannot minimize the round-trip

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 223

distance from v. Thus if the conditions of Lemma 3 hold, it follows immediately
that the Voronoi region for (s, t) is empty in the two-site round-trip distance
function Voronoi diagram.

We now state a final property of round-trip function Voronoi diagrams on
graphs.

Lemma 4. Let s be any site in a geographic network G, and v, w any vertices
in G such that a shortest path from s to v goes through w. If there exist any sites
p, q ∈ G such that d(w, s) > 1

2 (d(w, p) + d(w, q) + d(p, q)) then s cannot be part
of a nearest round-trip pair to v.

(d(w,p)+d(w,q)+d(p,q))/2

s

w

v

p

q

t

Fig. 5. Illustrating the proof of Lemma 4. The edges represent shortest paths in the
graph, and not single edges. The edges (s, w) and (w, v) represent (by assumption) the
shortest path from s to v.

Proof of Lemma 4: (See Figure 5.) For any t we know the following by the
triangle inequality and the fact that w is on the shortest path from s to v:

d(v, t) + d(t, s) ≥ d(v, w) + d(w, s) (1)

Also by assumption

2d(w, s) > d(w, p) + d(w, q) + d(p, q). (2)

Using Equations 1 and 2, we now show that DP (v, (p, q)) < DP (v, (s, t)) for s
and any other site t.

DP (v, (p, q)) = d(v, p) + d(v, q) + d(p, q)

224 M.T. Dickerson et al.

DP (v, (p, q)) ≤ [d(v, w) + d(w, p)] + [d(v, w) + d(w, q)] + d(p, q)
DP (v, (p, q)) ≤ 2d(v, w) + d(w, p) + d(w, q) + d(p, q)
DP (v, (p, q)) < 2d(v, w) + 2d(w, s)
DP (v, (p, q)) < 2d(v, t) + 2d(t, s)
DP (v, (p, q)) < d(v, t) + d(t, s) + d(v, s)
DP (v, (p, q)) < DP (v, (s, t))

End Proof.
We could rephrase this in the contrapositive, in a form similar to that of

Lemma 2. Let v be any vertex in a geographic network G, (s, t) a pair of sites
in G minimizing the round-trip distance function DP from v, w a vertex on a
shortest path from s to v, and p, q any sites in G, then d(w, s) ≤ (d(w, p) +
d(w, q) + d(p, q))/2. What this Lemma means is that even if the pair of sites
(s, t) meet the condition of Lemma 2 for some vertex v—that is, s is a candidate
site to be part of the closest pair to v—if the shortest path from s to v goes
through some vertex w for which s does not meet that condition, then not only
is s not part of a closest pair for w, s also cannot be part of a closest round-trip
pair to v. Together, these three lemmas are sufficient to prove the correctness of
the algorithms in the following section.

3.1 Two-Color Variants

These lemmas can all be extended to apply to the two-color variant. The two
color versions are given below. In the follow lemmas, we let G = (V, E, S, T)
be a geographic network, with S ⊂ V and T ⊂ V two disjoint sets of sites (of
different colors). The two-color round-trip distance is from a vertex in V to a
pair of sites (s, t) with s ∈ S and t ∈ T . The proofs of these lemmas are directly
analogous to the proofs above.

Lemma 5. Let v be any vertex in G. Let s ∈ S and t ∈ T be a pair of sites such
that (s, t) minimizes the two-color round-trip distance function DP from v. Let
p ∈ S and q ∈ T be sites in G. Then:

d(v, s) ≤ (d(v, p) + d(v, q) + d(p, q))/2
d(v, t) ≤ (d(v, p) + d(v, q) + d(p, q))/2

Corollary 2. Let p ∈ S and q ∈ T be the sites in S and T respectively that are
closest to some vertex v under normal graph distance, and let (s, t) (with s ∈ S
and t ∈ T) be the pair of sites minimizing the two-color round-trip function DP

from v. Then d(v, s) ≤ d(v, p) + d(v, q) and d(v, t) ≤ d(v, p) + d(v, q).

Lemma 6. For any pair of sites s ∈ S and t ∈ T in a geographic network G,
if there exists any other sites p ∈ T and q ∈ S such that d(s, t) > 2d(s, p) and
d(s, t) > 2d(t, q)), then (s, t) cannot minimize the round-trip distance function
for any vertex v ∈ G.

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 225

Lemma 7. Let s be any site in a geographic network G, and v, w any vertices
in G such that a shortest path from s to v goes through w. If there exist any sites
p ∈ S and q ∈ T such that d(w, s) > 1

2 (d(w, p) + d(w, q) + d(p, q)) then s cannot
be part of a nearest round-trip pair to v.

4 Round-Trip Voronoi Diagram Algorithms

We now provide algorithms to compute the round-trip function Voronoi diagram
for a geographic network and set of sites G = (V, K, E). Specifically, the algo-
rithm labels each vertex v ∈ V with a pair of sites in K minimizing the two-site
round-trip distance function from v.

4.1 A Brute Force Algorithm

An algorithm for this problem was first presented in [12]. The algorithm, in Step
1, performs a complete SSSP algorithm on G from each of the k sites in K.
(Unlike in the Sum function algorithm above, these searches do not need to be
interleaved—that is, performed in parallel—as the algorithm searches the entire
graph from each site.) It records the distances from v to every site in K, and
then creates a table of distances between all pairs of sites (p, q) ∈ K, allowing
constant time access to d(p, q). Then, in Step 2, for each vertex v ∈ V and each
pair of sites (p, q) ∈ S, the algorithm explicitly computes the round-trip distance

DP (v, (p, q)) = d(v, p) + d(v, q) + d(p, q)

and labels each v with pair (p, q) minimizing this function.
This brute force approach uses the SSSP algorithm to efficiently compute all

distances between pairs of vertices, and then explicitly compares all round-trip
distances. The algorithm requires O(k2n+km+kn logn) time and O(nk) space
when we implement it using Fibonacci heaps as discussed above.

4.2 Improving the Brute Force Method: A Revised Algorithm

We now show how the properties of the previous section can be used to prune
the search depth of the brute force algorithm of [12]. Our new algorithm has
three steps, or phases.

Step 1 corresponds to Step 1 of the brute force approach above, except that
we interleave the SSSP searches (as is done with the sum function) and we bound
the number of sites that visit each vertex using some value B. In practice, this
bounds the SSSP search outward from each site in K. The specific value of
B–possibly determined as a function of n, m, k –will be described in the next
section; the algorithm is correct regardless of the value of B, but its run time will
depend on B. Ideally, the SSSP of Step 1 provides enough information for most
(or all) of the vertices to determine the pair of sites minimizing the round-trip
distiance. However the pruning may result in some vertices having incomplete
information.

226 M.T. Dickerson et al.

In Step 2, we need to complete information for each of these vertices that still
have incomplete information by preforming an addition SSSP search outward
from that vertex until it reaches all the sites satisfying Lemma 2. In particular,
the smaller the value of B, the less work is done in Step 1, but the more potential
work will need to be done in Step 2.

By Step 3, we have all the distance information needed to compute DP (v, (s, t))
for all pairs of sites (s, t) satisfying Corollary 1, and Lemmas 3 and 4. We need
only explicitly compute these distances from the information computed in Steps
1 and 2. Note that the pruning of Step 1 reduces not only the time required by
each SSSP search, but also the number of explicit distances computed.

We start with the basic three-phase revised algorithm to compute the round-
trip distance function two-site Voronoi diagram on a graph G = (V, K, E).

– Step 1: Perform parallel Dijkstra SSSP algorithm from each site p ∈ K.
For each vertex v ∈ V , record the distances from the first B + 1 sites whose
SSSP search visits v. Any subsequent search (after the B + 1st) visiting v
is not recorded and the search is terminated. (As we will show, the result
of Step 1 is that for each vertex, we have a list of the B + 1 closest sites in
sorted order.

– Step 2: For each vertex v ∈ V , let p, q be two closest sites in K, and compute
dv = d(v, p) + d(v, q). By Corollary 1, no site further than dv from v is a
candidate to be part of a pair minimizing the round-trip distance from v. So
we consider two cases:
case i: If the final site p on the sorted list of B+1 closest sites to v is further
from v than dv, then we have found all sites closer to v than dv and no work
needs to be done on vertex v in this Step; the list of sites at v contains all
possible candidate sites that could be part of a closest pair in the round-trip
function.
case ii: If the final site on the sorted list for v is not further than dv, then we
cannot guarantee that v was visited by all the candidate sites. In this case,
we perform a SSSP algorithm from v and halt when we reach any vertex
further from v than dv. (Note that this is done also for those vertices that
are also sites in K. Since dv is at least as great as twice the distance from
v to its nearest site, we will compute distances between all pairs of sites
satisfying Lemma 3.)

– Step 3: For each vertex v ∈ V , compute DP (v, (s, t)) = d(v, s) + d(v, t) +
d(s, t) for all sites s, t for which d(v, s) and d(v, t) are stored at v and d(s, t)
is stored at either s or t. (If d(s, t) was not computed, then (s, t) is not a
candidate pair and may be ignored.) Store at v the pair (s, t) minimizing
DP (v, (s, t)).

Correctness. Since the first B + 1 SSSP searches that reach any vertex will
continue through the vertex, by induction each vertex is guaranteed to be reached
by the SSSP from at least its closest B + 1 sites in Step 1. In Step 2, therefore,
by looking at the first two and the last site in the list for each vertex v, we
can determine if all sites meeting Corollary 1 have visited v. If not, then an

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 227

SSSP from v (in case ii) will reach those sites. So by Corollary 1 and Lemma 4,
any sites s, t for which the algorithm does not explicitly computer DP (v, (s, t))
cannot be a candidate to minimize the round-trip distance from v.

Worst Case Analysis. We now analyze the algorithm. In Step 1, we visit each
vertex B+1 times. (If a search arrives at a vertex v that has already been visited
B + 1 times, we count that work to the edge along which the SSSP came to v.)
An edge can be traversed at most B + 1 times from the vertices on each end,
for a total of O(B) visits. So Step 1 requires O(Bm + Bn log n) time because
we are overlapping B SSSP searches. We are storing B + 1 sites and distances
at each vertex, as well as a list of O(k2) distances between each pair of sites, so
the space required is O(Bn + m + k2).

In step 2, we need to store distances between pairs of sites s, t that are candi-
dates to minimize round-trip distance for some vertex. If we use a table, we need
worst case O(k2) space with O(1) time access for any pair (s, t). We also store dis-
tances between vertex v and its candidate sites in sorted order; there are at most
B sites per list in Step 1, and though in Step 2 the lists can grow to size O(k) we
only need to store one list at a time, and so space required is O(Bn + m + k2).

In step 2, if for a vertex v, the B + 1 vertices on its list includes all the sites
within distance dv, then we are in case i, and the total amount of work for that
vertex in step 2 is O(1) and in step 3 is O(B2) to explicitly compute all possible
round-trip distances of candidate pairs (since for each pair of sites (s, t) the
distance d(s, t) has already been computed and can be retrieved in O(1) time.)
The total run time for these sites is thus O(B2n).

For the rest of the vertices v, those in case ii, we must do a new SSSP from
v. This requires O(m + n log n) time per vertex for the search and O(k2) time
per vertex to look at all pairs of sites. Let A be the number of sites processed in
case ii. The run time for all of them is O(Am + An log n + Ak2).

The overall run time is thus O((A + B)(m + n logn) + B2n + Ak2) and the
space required is O(nB + m + k2).

In the next section, we formalize this and also provide some experimental data
on values of A and B. First, however, we provide a further revision showing how
for many real world networks such as road networks, we can make fuller use of
Lemma 2 for an algorithm whose run time is significantly better.

4.3 Further Revisions: A Dynamic Variation

It is possible that we can further reduce the depth of our SSSP searches, and
thus the number of candidate pairs examined in our algorithm. Lemma 2 gives
a stronger condition than Corollary 1 that must be met by any site that is a
candidate to minimize the round-trip distance from a vertex v.

Specifically, instead of using a static bound that prunes the depth of our
searches in Step 1, and then simply computing the distance from vertex v to its
two nearest sites, we would like to keep an updated minimal value of DP (v, (s, t))
for all sites s, t whose SSSP searches have visited v. By Lemmas 2 and 4, we
can then prune any search that reaches v from any site further away than the
minimum value of 1

2DP (v, (s, t)).

228 M.T. Dickerson et al.

Unfortunately, using this stronger condition requires that we dynamically up-
date the minimum value of DP (v, (s, t)) which in turn requires that we precom-
pute or preprocess the values of d(s, t) for all pairs of sites meeting the condition
of Lemma 3. This leads to the following two-step algorithm.

– Step 1: Perform a SSSP algorithm from each site p ∈ K, terminating the
search at the first vertex whose distance from p is greater than 2d(p, q) where
q is the closest other site to p (discovered in the SSSP). Store the values of
d(p, q) for all pairs of sites reached in all of the searches.

– Step 2: Perform interleaved SSSP searches from each site p ∈ K, as in Step
1 of the previous algorithm. At each vertex v, store the sites s whose searches
reach v along with the distance d(v, s). Using this information and the table
from Step 1, once a second site search has visited v, also compute and main-
tain the distance DP (v, (s, t)) = d(v, s)+ d(v, t)+ d(s, t) that minimizes this
function among all pairs of sites s, t which have visited v (as well as the pair
(s, t) minimizing that distance). Terminate the search from any site farther
from v than 1

2DP (v, (s, t)) for the minimum value of DP (v, (s, t)) seen so far.

Worst Case Analysis. In the worst case, Step 1 will require O(m + n log n)
time and O(n + m) space for each SSSP for a total of O(km + kn logn) time,
plus an extra O(k2) space to store the table of distances between pairs of sites,
for a total of O(k2 + m + n) space.

Similarly, in the worst case in Step 2, each of the k SSSP algorithm may
require O(m + n log n) time, but since the searches are interleaved we may need
extra O(nk) space to have k searches active at once. We also need to compute
O(k2) distances at each vertex in the worst case, but k ≤ n and so we have a
total of O(km + kn logn) time and O(nk + m) space.

As we will see in the following section, however, road networks and many types
of POI sites have properties that result in a much more efficient algorithm.

4.4 The Two-Color Variant

The algorithms of the previous section can be extended to the two-color variant,
where for each vertex v we want to find the pair of sites (or POIs) of two
different types–say a grocery store and a post office–that minimize the distance
of the shortest round-trip from v. The same basic approaches of both the revised
algorithm and the dynamic variant of the revised algorithm work for the two-
color version. Lemmas 5, 6, and 7 suffice as proof.

Other than the obvious change that the two-color versions of the algorithms
compute and minimize the round-trip distances to pairs of sites of different types,
there are only two other primary changes that are necessary. In the first stage,
we still perform the interleaved SSSP algorithms from all sites (of both types).
However at each vertex v we store separate lists of the sites of the two different
types that visit v. This doubles the worst-case memory requirement.

Second, the application of Lemma 6 two-color variant is slightly different than
that of Lemma 3 to the standard round-trip distance function. In the dynamic

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 229

version we need to pre-compute only the distances between sites of different
type. In particular, if our two sets of sites are S and T , we need to compute the
distance from each t ∈ T to all the sites in S no more than twice the distance of
the closest site in S to t, and symmetrically from each s ∈ S to all the sites in
T no more than twice the distance of the closest site in T to s.

In terms of run-times, what this means for the two-color variant of the round-
trip distance function Voronoi diagram is that we care about the doubling density
of sites in T with respect to sites in S and vice versa–rather than the doubling
density of sites in one set to other sites in the same set, as is the case with the
standard round-trip two-site distance function.

5 Empirical Analysis on Doubling Density and Dynamic
Pruning on Road Networks

The actual run time of our algorithms when they are run on real world data such
as road networks with sites coming from standard points-of-interest (POI) files
(fire departments, educational institutions, etc.) may be much better than the
worst case asymptotic analyses presented in the previous section. In particular,
the Lemmas of Section 3 enable each SSSP search in both of our algorithms to
be terminated (pruned) well before a linear number of edges and vertices have
been visited.

In the first algorithm, for example, the algorithm balances work between the
first two phases by a careful choice of the value of B, where B is an expected
number of sites that are “close” to most vertices, where “close” for a vertex v
is defined by the value of dv: the sum of the distances to the two nearest sites
to v. If the distance to the two nearest sites is, in general, a good indication
of how densely packed sites are in the proximity to a vertex v, then the first
algorithm—the static version—will perform well.

When the first algorithm does not do well is when there are large rural or
wilderness areas that have roads (vertices and edges on the network) but no
sites. Consider, for example, a southwest desert area on the edge of an urban
area, or a large northeastern or northwestern forest near a city. It might be 50
miles to the nearest gas station site, which sits in a city on the edge of the
dessert, but there might be several dozen or even a few hundred gas stations
within 100 miles of that rural vertex. In terms of the notation of the previous
section, distance from v to the nearest two sites is very large, resulting in a large
value of dv, thus also resulting in a large number of sites—more than B—within
a distance of dv of v.

By contrast, the second algorithm—the dynamic variant—uses the stronger
version of the lemma to handle even instances of these poorly distributed sites ef-
ficiently, though at the cost of more overhead and a possibly costly preprocessing
phase. Consider a vertex v in a rural area that is a large distance from its nearest
sites. In real world applications of read networks, however, it is likely that its
two nearest sites p and q are close to one another, even though they are far from v.

230 M.T. Dickerson et al.

We thus prune using the dynamically updated value of 1
2 (d(v, p)+d(v, q)+d(p, q))

which is never greater than d(v, p) + d(v, q) and in the example described above
is likely to be much smaller.

We ran a variety of experiments to determine empirical performance of both
the static and dynamic versions of the algorithm, for both one-color and two-
color variants of the problem. In particular, we ran experiments to determine the
empirical values of A and B in the static variant, and to determine the doubling
densities and the expected number of edge and vertex visits in the dynamic
variant. Our experiments included 22 different U.S. states: AK, CT, DC, DE,
HI, ID, IL, IN, LA, MA, MD, ME, ND, NH, NJ, NY, OH, RI, TN, UT, VT
and WY. The state road networks ranged in size from Hawaii, with only 64892
vertices and 76809 edges to New York, with 716215 vertices and 897451 edges.
They also varied greatly in terrain, urban areas, and presence of large areas of
wilderness with sparse roads.

Between the one- and two-color variants, we also experimented on a variety of
POIs as our sites including: educational institutions, recreational sites, hospitals,
shopping centers, fire stations, and religious institutions accessed from a pub-
licly available collection of POIs. (Multiple POIs of the same type at the same
address were combined into one site. However POIs in close proximity but at
different vertices were treated separately.) The number of sites in a file ranged to
a maximum of 7640 (educational institutions in TN). In addition to being pub-
licly available POIs, the variety of sites also made a good choice because some of
them are intuitively distributed in a way that could lead to poor performance.
Educational institutions—unlike, for example, post offices or fire stations—are
unevenly distributed; a large campus for a single institution may contribute to
the POI file numerous buildings in close proximity but with different addresses.

We report first on the empirical values for A and B, and then on doubling
densities of these POIs for both the one- and two-color variants. We also report
on the depths to which the SSSP searches need to go before they can be pruned
by Lemmas 4 and 7.

5.1 Empirical Values for A and B on Road Networks

To study the distributions impacting the run time of our first algorithm, we
ran ten trials that tested four northeastern states (VT,ME,NJ,NH), plus Hawaii
(HI), testing each state on two available data sets of POI sites: where fire depart-
ment data was publicly available (ME and VT), we used fire departments and
religious institutions; in the other three states we used educational institutions
and religious institutions. The size of the data sets had the number n of vertices
ranging 64892 (HI) to 330386 (NJ), with the number m of edges ranging from
to 76809 (HI) to 436036 (NJ), and the number k of POI sites ranging from 144
(educational sites in HI) to 759 (religious institutions in ME). For various values
of B (the bound at which the first phase of the search is pruned) we computed
the value of A (the number of vertices whose information is incomplete after the
first phase).

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 231

Results were somewhat divergent and seemed to depend considerably on the
geographic nature of the road network as described in the introduction to this
section. With respect to the efficiency of our algorithm, Maine was the worst
state, and performance for religious institutions in New Hampshire was also
bad. For both fire departments and religious institutions in Maine, and religious
institutions in New Hampshire, setting B = 5 logn results in values of A =
11.6

√
n (NH, religious institutions), A = 12.3

√
n (ME, religious institutions),

and A = 4.47
√

n (ME, fire departments). This is easily explained because Maine
has thousands of square miles (known as the North Maine Woods) that are
tracked by hundreds of miles of lumber roads, but without any real towns or
villages, and thus no POIs. New Hampshire also has a large wilderness area in
the White Mountains and northern forests. However on the edge of these large
wilderness areas are population centers (e.g. Gorham and Conway, NH, Bangor,
ME), with relatively dense distributions of POIs. If we generalize these results
to other states comparable in nature to Maine and New Hanpshire, we have an
algorithm with run time O(mn

1
2 + n

3
2 log n + k2

√
n) and the space required is

O(n log n + m + k2).
By contrast, for the seven other data sets (which use road networks on Hawaii,

Vermont, New Hampshire, and New Jersey), if we set B = log n log k, then we
find that A = 0—that is, the first step is sufficient to provide complete infor-
mation for all vertices, and no additional work is required in the second step.
The first algorithm therefore requires O(m log n log k + n log2 n log2 k) time and
O(n log n log k + m + k2) space, which is a significant asymptotic time improve-
ment over the previous best known algorithm of [12].

5.2 Doubling Density

As noted above, the preprocessing in Step 1 of the dynamic variant of the al-
gorithm must compute a table of distances between pairs of sites that define
potential Voronoi regions. In the worst case, this may take O(km + kn log n)
time to compute and additional O(k2) space to store the table, where k is the
number of sites. However by Lemmas 3 and 6, we only need to store pairs of
sites (s, t) if s is no more than twice as far from t as the nearest other site to t,
or vice versa. This improved efficiency for Step 1 thus depends on a property we
call the doubling density, which is defined as follows: for a given vertex v and set
of sites S, the doubling density of v is the number of sites in S no further from
v than twice the distance to the nearest other site to v (not counting v if v ∈ S.)

For the one-color two-site tour-distance problem, Lemma 3 indicates that
the space and time required by our dynamic algorithm depend on the average
doubling density from all sites in the current POI data set to other sites of
the same type. For the two-color version where we have one set of sites K1

and another set K2, Lemma 6 tells us that the algorithm’s space and time
depend on the average doubling density of sites of type K1 from sites of type
K2, and the average doubling density of sites of type K2 from sites of type
K1. Empirical results of average doubling density for for both the one-color and
two-color version are promising.

232 M.T. Dickerson et al.

Let d be the total double density—that is, the number of “candidate pairs” of
sites, one of each type or “color”, that might have non-empty Voronoi regions. In
the worst case, in the one-color case, d could be Ω(k2) where k is the number of
sites. However empirical results suggest that d is O(k); or, rephrased, the average
doubling density per site, d/k, is constant.

We ran nine trials for the one-color version using three POI types (religious
and educational institutions and fire stations) on a mix of states. Results were
very consistent. In all trials, the average doubling density for sites of a single
type was found to be less than 4.1. As a result, for values of k tested up to 1783,
the number of pairs of sites whose distances need to be stored for use in Step
2—that is, pairs that are candidates by Lemma 3 to minimize the round-trip
distance for at least one vertex, and thus are candidates to have a non-empty
Voronoi region–is empirically less than 5k, or O(k) . These values appear to
be independent of n. However the data does indicate a possible logarithmic
relationship to k, the number of sites. In particular, for several different road
networks and POI files, the average doubling density appears to be Θ(log k),
meaning the total number of pairs to be stored is Θ(k log k) rather than O(k),
though for practical purposes on the POIs examined, the number of candidate
pairs is < 5k. (Much larger POI files for the same sets of states would be needed
to verify this result.) To avoid using a sparse direct table of size Θ(k2), we can
use a hash table to store these pairs in O(k) or O(k log k) space, and provide
O(1) expected time access in Step 2.

Though the doubling density of sites (and, in particular, the size of the table
computer in Step 1) impacts the size and run time of later steps, the run time
of Step 1 itself is actually determined by the total number of edge visits in
all of the SSSP searches used to compute the table. We kept track of the number
of times each edge in the graph was visited in Step 1. In all trials for the one-
color version, the average number of visits per edge was less than 5. In fact,
while for fire department POIs the value was between 4 and 5, for religious and
educational institutions, the number was less than 3 in all trials. These values
appear to be true constants, independent of either n or k. As a result, all of the
SSSPs in Step 1 of the second algorithm combined require only O(m + n log n)
time—only a small constant factor more than a single SSSP search—and this
holds whether the doubling density is O(1) or O(log k)).

For the two-color variant, we also ran trials on numerous states and a variety of
different points-of-interest for the sites, to empirically determine the values of the
double densities. The states (and district) tested included: AK, CT, DC, DE, HI,
ID, MD, ME, ND, NH, RI, UT, VT, and WY. The types of POIs tested included
education institutions, religions institutions, recreational centers, hospitals, and
shopping malls.

Again, let d be the total double density—that is, the number of “candidate
pairs” of sites, one of each type or “color”, that might have non-empty Voronoi
regions. In the worst case, as with the one-color case d could be Θ(k1k2), or
simply Θ(k2) where k1 and k2 are the number of sites of each type, and k is
the total number of sites. However for most combinations of types of sites, the

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 233

Fig. 6. The number of candidate Voronoi regions divided by k (the number of sites)
as a function of k for fourteen states

average doubling density, given by the ratio d/k of the total number of candidate
pairs to the total number of sites, ranged from 2.92 to 5.06. A graph of the
number of candidate pairs of religious institutions and educational institutions,
for the fourteen states listed above is shown in Figure 6.

For the same two types of sites, we also computed the number of times edges
were visited on all of these searches, which determines the efficiency of the pre-
processing step. The average number of times each edge is visited in computing
this table, in the total of both types of searches, was less than 22 in all trials.
See Figure 7.

Some combinations of POIs had a somewhat higher average double density.
For churches and schools, the average doubling density was as high as 14. How-
ever it still appears to be a constant; the doubling density does not increase as
the number of vertices or sites increases, but rather the constant seems related
to the types of sites and the way they are distributed related to each other.
Figure 8 shows the average doubling densities for all five types of POI sites and
fourteen states described above.

Thus empirical results suggest a constant average doubling density, a table
of candidate pairs that is linear in the number of input sites, and a total run
time of O(m + n log n) and total space of O(n + m) for all the SSSP searches to
compute this information.

5.3 Dynamic Pruning on Road Networks

Results for Step 2 are equally promising for the one-color variant, though not for
the two-color variant. For all vertices in all trials for one-color, the total number
of sites whose SSSP visited the vertex—that is, the number of sites closer to
each vertex v than half of the distance of the best known round-trip distance
pair yet found—is bounded by 13.

234 M.T. Dickerson et al.

Fig. 7. Based on the doubling density, the average number of times each edge is visited
(in the search for candidate pairs) visited as a function of n (for fourteen states)

Fig. 8. The average doubling densities of five types of POIs for fourteen states

Thus the total run time of Step 2 is also O(m + n log n). Empirically, then,
the overall run time of the dynamically pruned Algorithm 2 is O(m + n log n)
and the space required is O(m + n + k log k) when used on road networks with
standard POI files.

Results on the level of pruning are equally promising, though less immediately
so; an amortized approach is required to see the efficiency. In particular, when
sites of one type are much denser than sites of another—as is the case, for
example, when there is a large educational campus that contributes numerous
entries to a POI file in a small area—then the number of pairs of sites satisfying
Lemma 2 and 5 may be large, prohibiting an early pruning of the searches and
requiring distance calculations for numerous pairs of sites.

However in the two-color variant, there is no second phase of the algorithm
when we must perform a SSSP search from each vertex with incomplete infor-
mation. Instead, the SSSP searches from the original sites continue until all of
them have been pruned. So we can bound the overall run time of these searches

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 235

simply by the total number of times that a search continues through a vertex—
or, equivalently, by the average number of times that each vertex is visited. In all
trials except Hawaii, the average number of such vertex visits was less than 10
per vertex, which is linear on the size of the graph. (For Hawaii, which had the
smallest graph, the number was 16.) That is, each vertex was visited an average
of O(c) SSSP searches for a total of O(n) vertex visits, before further searches
are dynamically pruned by Lemma 7.

Equally importantly for the efficiency of the algorithm, the number of pairs
of sites of different colors that are are tested for each vertex empirically appears
to converge to 10 as the number n of vertices grows. Thus, empirically the total
number of distances explicitly computed to find the minimum was O(n).

This immediately implies that the space complexity of all the SSSPs never
exceeds O(n). So empirical data suggests that Step 2 also requires O(m+n log n)
time and O(n + m) space.

6 Multi-site and Multi-color Sum Function Extensions

In this section, we discuss how to extend our two-site distance function algo-
rithms to multi-site and multi-color variants, beginning with the multi-site sum
function problem. The C-site distance function DC from a vertex p to a set of
C sites v1, v2, . . . , vC is defined as:

DS(p, (v1, v2, . . . , vC)) = d(p, v1) + d(p, v2) + · · · + d(p, vC)

Our next goal is to extend our sum function algorithm to solve the following
problem.

Problem 2. Given a graph G = (V, K, E) of n vertices V , m edges E, a subset
K ⊂ V of k special vertices called “sites”, and an integer C ≤ S, compute the
C-site sum function Voronoi diagram of G; that is, label each vertex v ∈ V with
the closest C sites in K according to the C-site Sum distance function.

As we already showed to be the case when C = 2, it is simple to show that
for general C ≥ 2 that the C-site sum function Voronoi diagram is equivalent
to the C nearest neighbors Voronoi diagram. This is sufficient argument for the
correctness of the following algorithm.

6.1 The Multi-site Sum Algorithm

Our algorithm is a relatively straightforward extension of the two-site algorithm.
Perform a Dijkstra single-source shortest-path (SSSP) algorithm from each site
in K, in parallel. But visit each vertex only from the first C searches to reach
it. Any search to reach a vertex that has already been visited C times by closer
sites will not ”visit” that vertex or proceed past it. Label each vertex v with the
C sites from K that are the closest, namely the sites described above through
which the SSSP algorithm from s first passed.

236 M.T. Dickerson et al.

Since no vertex will be visited more than C times, no edge will be traversed
more than 2C times (C times from each side). Essentially, the algorithm takes
at most C times as many steps as the standard SSSP algorithm. The Dijkstra
algorithm requires O(m + n log n) time in the worst cast when implemented
using Fibonacci heaps and when visiting each vertex once. In the multi-site
case, we visit each vertex C times. In order to avoid an O(C2) or O(C log C)
term in our running time, we need to maintain, for each vertex, the number of
nearest-neighbor sites that we have already completed. The total running time
is O(Cn log n + Cm). By a similar technique we used in our two-site algorithm,
we can keep a single copy of each vertex in our priority queue and just insert
each vertex C times, but we keep C labels for each vertex, so the space required
by our algorithm is O(Cn).

6.2 The Multi-color Sum Algorithm

As discussed in our introduction, another extension of our algorithm is to a
multi-color variant. Each of the K sites is colored with a color from 1 to C (for
some C ≤ S). Our goal for each vertex p is to compute the closest site of each
color. The result for each vertex is a C-tuple (v1, . . . , vC) such that the C colors
of the vi are unique, and that minimizes the distance DS(p, (v1, v2, . . . , vC)) =
d(p, v1) + · · · + d(p, vC) among all such possibilities.

Again, our algorithm is a relatively straightforward extension of the standard
graph Voronoi diagram algorithm. For each color c, we perform a Dijkstra single-
source shortest-path (SSSP) algorithm from each site in K labeled c, visiting
each vertex only from the first site to reach it. That is, we perform the Voronoi
diagram algorithm once for each color. Label each vertex v with the C sites
from K representing the closest site for each color. The result is that each vertex
is colored with the closest site for each color; we have C overlapping Voronoi
diagrams, one for each color.

Essentially, the algorithm takes at most C times as many steps as the standard
Voronoi diagram graph algorithm discussed earlier. For each color, the algorithm
requires O(m + n logn) time in the worst case. The total run time is therefore
O(Cn log n + Cm). Since each search is conducted independently, the priority
queue won’t grow larger than O(n) and only O(C) information is stored at each
vertex/edge, so the space required is O(Cn).

7 Conclusion

We have given complete and efficient algorithms for multi-site and multi-color
Voronoi diagrams, under both the Sum and round-trip combination functions.
The only variants that we have omitted are the multi-site and multi-color Voronoi
diagrams under the round-trip function. The reason we have omitted these vari-
ants here, beyond the two-site case, is that computing multi-site or multi-color
distance values under the round-trip function requires that we solve miniature
versions of the Traveling Salesperson Problem, which is NP-hard. For a small

Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks 237

number p of “colors”, an extension to the pruning lemmas might provide some
added efficiency in minimizing the number of candidate p-tuples (p-tuples of
sites with potentially non-empty p-order Voronoi regions) but the overhead of
computing the least-cost tour and dynamically updating the data set would be
high. So it is unlikely that we will be able to solve these variants efficiently.

References

1. Abellanas, M., Hurtado, F., Sacristán, V., Icking, C., Ma, L., Klein, R., Langetepe,
E., Palop, B.: Voronoi diagram for services neighboring a highway. Inf. Process.
Lett. 86(5), 283–288 (2003)

2. Aichholzer, O., Aurenhammer, F., Palop, B.: Quickest paths, straight skeletons,
and the city Voronoi diagram. In: SCG 2002: Proceedings of the Eighteenth Annual
Symposium on Computational Geometry, pp. 151–159. ACM, New York (2002)

3. Aurenhammer, F.: Voronoi diagrams: A survey of a fundamental geometric data
structure. ACM Comput. Surv. 23(3), 345–405 (1991)

4. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.)
Handbook of Computational Geometry, pp. 201–290. Elsevier Science Publishers
B.V., North-Holland, Amsterdam (2000)

5. Bae, S.W., Chwa, K.-Y.: Voronoi Diagrams with a Transportation Network on
the Euclidean Plane. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS,
vol. 3341, pp. 101–112. Springer, Heidelberg (2004)

6. Bae, S.W., Chwa, K.-Y.: Shortest Paths and Voronoi Diagrams with Transporta-
tion Networks Under General Distances. In: Deng, X., Du, D.-Z. (eds.) ISAAC
2005. LNCS, vol. 3827, pp. 1007–1018. Springer, Heidelberg (2005)

7. Barequet, G., Dickerson, M.T., Drysdale, R.L.S.: 2-point site Voronoi diagrams.
Discrete Appl. Math. 122(1-3), 37–54 (2002)

8. Barequet, G., Scot, R.L., Dickerson, M.T., Guertin, D.S.: 2-point site Voronoi
diagrams. In: SCG 2001: Proceedings of the Seventeenth Annual Symposium on
Computational Geometry, pp. 323–324. ACM, New York (2001)

9. Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing kth-order
Voronoi diagrams. IEEE Trans. Comput. C-36, 1349–1354 (1987)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

11. de Almeida, V.T., Güting, R.H.: Using Dijkstra’s algorithm to incrementally find
the k-nearest neighbors in spatial network databases. In: SAC 2006: Proceedings
of the 2006 ACM Symposium on Applied Computing, pp. 58–62. ACM, New York
(2006)

12. Dickerson, M.T., Goodrich, M.T.: Two-site voronoi diagrams in geographic net-
works. In: GIS 2008: Proceedings of the 16th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 1–4. ACM, New
York (2008)

13. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

14. Dirichlet, G.L.: Über die Reduktion der positiven quadratischen Formen mit drei
unbestimmten ganzen Zahlen. J. Reine Angew. Math. 40, 209–227 (1850)

15. Erwig, M.: The graph Voronoi diagram with applications. Networks 36(3), 156–163
(2000)

238 M.T. Dickerson et al.

16. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Du, D.-Z., Hwang,
F.K. (eds.) Computing in Euclidean Geometry, 1st edn. Lecture Notes Series on
Computing, vol. 1, pp. 193–233. World Scientific, Singapore (1992)

17. Goodrich, M.T., Tamassia, R.: Algorithm Design: Foundations, Analysis, and In-
ternet Examples. John Wiley & Sons, New York (2002)

18. Knuth, D.E.: Sorting and Searching. The Art of Computer Programming, vol. 3.
Addison-Wesley, Reading (1973)

19. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial
network databases. In: VLDB 2004: Proceedings of the Thirtieth International
Conference on Very Large Data Bases, pp. 840–851. VLDB Endowment (2004)

20. Lee, D.T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans.
Comput. C-31, 478–487 (1982)

21. Mehlhorn, K.: A faster approximation algorithm for the Steiner problem in graphs.
Information Processing Letters 27, 125–128 (1988)

22. Patroumpas, K., Minogiannis, T., Sellis, T.: Approximate order-k Voronoi cells
over positional streams. In: GIS 2007: Proceedings of the 15th Annual ACM In-
ternational Symposium on Advances in Geographic Information Systems, pp. 1–8.
ACM, New York (2007)

23. Safar, M.: K nearest neighbor search in navigation systems. Mob. Inf. Syst. 1(3),
207–224 (2005)

24. Sugihara, K.: Algorithms for computing Voronoi diagrams. In: Okabe, A., Boots,
B., Sugihara, K. (eds.) Spatial Tesselations: Concepts and Applications of Voronoi
Diagrams. John Wiley & Sons, Chichester (1992)

25. Voronoi, G.M.: Nouvelles applications des paramètres continus à la théorie des
formes quadratiques. premier Mémoire: Sur quelques propriétés des formes quadra-
tiques positives parfaites. J. Reine Angew. Math. 133, 97–178 (1907)

	Round-Trip Voronoi Diagrams and Doubling Density in Geographic Networks
	Introduction
	Graph-Theoretic Voronoi Diagrams
	Round-Trip Distance
	Related Prior Work
	Our Results

	Constructing Graph-Theoretic Voronoi Diagrams
	Two-Site Distance Functions on Graphs

	Properties of Round-Trip Voronoi Diagrams on Graphs
	Two-Color Variants

	Round-Trip Voronoi Diagram Algorithms
	A Brute Force Algorithm
	Improving the Brute Force Method: A Revised Algorithm
	Further Revisions: A Dynamic Variation
	The Two-Color Variant

	Empirical Analysis on Doubling Density and Dynamic Pruning on Road Networks
	Empirical Values for A and B on Road Networks
	Doubling Density
	Dynamic Pruning on Road Networks

	Multi-site and Multi-color Sum Function Extensions
	The Multi-site Sum Algorithm
	The Multi-color Sum Algorithm

	Conclusion
	References

