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a b s t r a c t

We present techniques for maintaining subgraph frequencies in a dynamic graph, using
data structures that are parameterized in terms of h, the h-index of the graph. Our methods
extend previous results of Eppstein and Spiro for maintaining statistics for undirected
subgraphs of size three to directed subgraphs and to subgraphs of size four. For the directed
case, we provide a data structure to maintain counts for all 3-vertex induced subgraphs in
O(h) amortized time per update. For the undirected case, we maintain the counts of size-
four subgraphs in O(h2) amortized time per update. These extensions enable a number of
new applications in Bioinformatics and Social Networking research.
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1. Introduction

Deriving inspiration from work done on fixed-parameter tractable algorithms for NP-hard problems (e.g., see [5,6,18]),
the area of parameterized algorithm design involves defining numerical parameters for input instances, other than just
the input size, and designing data structures and algorithms whose performance can be characterized in terms of those
parameters. The goal, of course, is to find useful parameters and then design data structures and algorithms that are efficient
for typical values of those parameters (e.g., see [9,10]). In this paper, we are interested in extending previous applications
of this approach in the context of dynamic subgraph statistics—where one maintains the counts of all (induced and non-
induced) subgraphs of certain types—fromundirected size-three subgraphs [10] to applications involving directed size-three
subgraphs and undirected subgraphs of size four.

Upon cursory examination this contribution may seem incremental, but these extensions allow for the possibility
of significant computational improvement in several important applications. For instance, in Bioinformatics, statistics
involving the frequencies of certain small subgraphs, called graphlets, have been applied to protein–protein interaction
networks [16,21] and cellular networks [20]. In these applications, the frequency statistics for the subgraphs of interest
have direct bearing on biological network structure and function. In particular, in these graphlet applications, the undirected
subgraphs of interest include one size-two subgraph (the 1-path), two size-three subgraphs (the 3-cycle and 2-path), and
six size-four subgraphs (the 3-star, 3-path, triangle-plus-edge, 4-cycle, K4 minus an edge, and K4), which we respectively
illustrate later in Fig. 7 as Q4, Q6, Q7, Q8, Q9, and Q10.

In addition, maintaining subgraph counts in a dynamic graph is of crucial importance to statisticians and Social-
Networking researchers using the exponential random graph model (ERGM) [12,22,24] to generate random graphs. ERGMs
can be tailored to generate random graphs that possess specific properties, which makes ERGMs an ideal tool for Social
Networking research [24,22]. This tailoring is accomplished by a Markov Chain Monte Carlo (MCMC) method [22], which
generates random graphs via a sequence of incremental changes. These incremental changes are accepted or rejected based
on the values of subgraph statistics, which must be computed exactly for each incremental change in order to facilitate
acceptance or rejection. Thus, there is a need for dynamic graph statistics in ERGM applications.
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Typical graph attributes of interest in ERGM applications include the frequencies of undirected stars and triangles, which
are used in the triad model [13] to study friends-of-friends relationships, as well as other more-complex subgraphs [23],
including undirected 4-cycles and two-triangles (K4 minus an edge), and directed transitive triangles, which we illustrate
as graph T9 in Fig. 3. Therefore, there is a salient need for algorithms to maintain subgraph statistics in a dynamic graph
involving directed subgraphs of size three and undirected subgraphs of size four.

Interestingly, extending the previous approach, of Eppstein and Spiro [10], for maintaining undirected size-three
subgraphs to these new contexts involves overcoming some algorithmic challenges. The previous approach uses a
parameterized algorithm design framework for counting three-vertex induced subgraphs in a dynamic undirected graph.
Their data structure has running time O(h) amortized time per graph update (assuming constant-time hash table lookups),
where h is the largest integer such that there exists h vertices of degree at least h, which is a parameter known as the h-
index of the graph. This parameter was introduced by Hirsch [14] as a combined way of measuring productivity and impact
in the academic achievements of researchers. As we will show, extending the approach of Eppstein and Spiro to directed
subgraphs of size three and undirected subgraphs of size four involves more than doubling the complexity of the algebraic
expressions and supporting data structures needed. Ensuring the directed size-three procedure maintains the complexity
bounds of previous work required extensive understanding of dynamic graph composition. Developing the approach for
size-four subgraphs that would allow only the addition of a single factor of h required innovative work with the structure
of stored graph elements.

Other related work. Although subgraph isomorphism is known to be NP-complete, it is solvable in polynomial time for small
subgraphs. For example, all triangles and four-cycles can be found in an n-vertex graph withm edges in O(m3/2) time [15,3].
All cycles up to length seven can be counted (but not listed) in O(nω) time [2], where ω ≈ 2.376 is the exponent for the
asymptotically fastest known matrix multiplication algorithm [4]. Also, in planar graphs, the number of copies of any fixed
subgraph may be found in linear time [7,8]. These previous approaches run too slowly for the iterative nature of ERGM
Markov Chain Monte Carlo simulations, however.

Our results. In this paper, we present an extension of the h-index parameterized data structure design from statistics for
undirected subgraphs of size three to directed subgraphs of size three and undirected subgraphs of size four. We show that
in a dynamic directed graph one can maintain the counts of all directed three-vertex subgraphs in O(h) amortized time per
update, and in a dynamic undirected graph one can maintain the four-vertex subgraph counts in O(h2) amortized time per
update, assuming constant-time hash-table lookups (or worst-case amortized times that are a logarithmic factor larger).
These results therefore provide techniques for application domains, in Bioinformatics and Social Networking, that can take
advantage of these extended types of statistics. In addition, our data structures are based a number of novel insights into
the combinatorial structure of these different types of subgraphs.

2. Preliminaries

Asmentioned above, we define the h-index of a graph to be the largest h such that the graph contains h vertices of degree
at least h. We define the h-partition of a graph to be the sets (H, V \H), where H is the set of vertices that form the h-index.

The H-Index. It is easy to see that the h-index of a graph with m edges is O(
√
m); hence it is O(

√
n) for sparse graphs with

a linear number of edges, where n is the number of vertices. Moreover, this bound is optimal in the worst-case, e.g., for a
graph consisting of

√
n stars of size

√
n each. As can be seen in Fig. 1 Eppstein and Spiro [10] show experimentally that

real-world social networks often have h-indices much lower than the indicated worst-case bound. These indices, perhaps
more easily viewed in log–log scale in Fig. 2, were calculated on networks with a range of ten to just over ten-thousand
nodes. The h-index of these networks were consistently below forty with only a few exceptions, none greater than slightly
above one-hundred. Moreover, many large real-world networks possess power laws, so that their number of vertices with
degree d is proportional to nd−λ, for some constant λ > 1. Such networks are said to be scale-free [1,17,19], and it is often
the case that the parameter λ is between 2 and 3 in real-world networks. Note that the h-index of a scale-free graph is
h = Θ(n1/(1+λ)), since it must satisfy the equation h = nh−λ. Thus, for instances of scale-free graphs with λ between 2
and 3, an algorithmic performance of O(h) is much better than the worst-case O(

√
n) bound for graphs without power-law

degree distributions. For example, anO(h) time bound for a scale-free graphwith λ = 2would give a bound ofO(n1/3)while
for λ = 3 it would give an O(n1/4) bound. Likewise, an algorithmic performance of O(h2) is much better than a worst-case
performance of O(n) for these instances, for λ = 2 would give a bound of O(n2/3) while for λ = 3 it would give an O(n1/2)
bound. Thus, by taking a parametric algorithm design approach, we can, in these cases, achieve running times better than
worst-case bounds characterized strictly in terms of the input size, n.

Maintaining undirected size-3 subgraph statistics. As mentioned above, Eppstein and Spiro [10] develop an algorithm for
maintaining the h-index and the h-partition of a graph among edge insertions, edge deletions, and insertions/deletions
of isolated vertices in constant time plus a constant number of dictionary operations per update. Observing that the h-index
doubles after Ω(h2) updates, Eppstein and Spiro further show a partitioning scheme that partitions the graph into sets of
low- and high-degree vertices, which we summarize in Theorem 2.1. The partition is updated when the size of the high-
degree vertex set becomes 2h. This allows amortized O(1/h) partition changes per graph update.
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Fig. 1. Scatter plot of h-index and network size from Eppstein and Spiro [11].

Fig. 2. Scatter plot of h-index and network size, on log–log scale from Eppstein and Spiro [11].

Theorem 2.1 ([10]). Consider the partition (H, V \ H) such that for v ∈ H, degree(v) = Ω(h) and |H| = O(h); and for
u ∈ V \ H, degree(u) = O(h). For a dynamic graph G = (V , E), we can maintain such a partition in constant time per update,
with amortized O(1/h) changes to the partition per update.

Using this partitioning scheme, one can develop a triangle-counting algorithm as follows. For each pair of vertices i and j,
store the number of length-two paths P[i, j] that have an intermediate low-degree vertex.Whenever an edge (u, v) is added
to the graph, increase the number of triangles by P[u, v], and update the number of length-two paths containing (u, v) in
O(h) time. One can then iterate over all the high-degree vertices, adding to a triangle count when a high-degree vertex is
adjacent to both u and v. Since there are O(h) high-degree vertices, this method takes O(h) time. These same steps can be
done in reverse for an edge removal.

Whenever the partition changes, one must update P[·, ·] values to reflect vertices moving from high to low, or low to
high, which requires O(h2) time. Since there are amortized O(1/h) partition changes per graph update, this updating takes
O(h) amortized time per update. The randomization comes from the choice of dictionary scheme used. The data structure as
described requires O(mh) space, which is sufficient to store the length-two paths with an intermediate low-degree vertex.

Finally, to maintain counts of all induced undirected subgraphs of three vertices, it suffices to solve a simple four-by-
four system of linear equations relating induced subgraphs and non-induced subgraphs. This allows one to keep counts of
the induced subgraphs of every type with a constant amount of work in addition to counting triangles. Extending this to
directed subgraphs of size three andundirected subgraphs of size four requires thatwe comeupwith amuch larger systemof
equations (as can be seen at the end of sections three and four), which characterize the combinatorial relationships between
such types of subgraphs.

3. Directed three-vertex induced subgraphs

Using the partitioning scheme detailed in Theorem 2.1, we canmaintain counts for the all possible induced subgraphs on
three vertices (see Fig. 3) in O(h) amortized time per update for a dynamic directed graph. We begin by maintaining counts
for induced subgraphs that are a directed triangle, we then show how to maintain counts of all induced subgraphs on three
vertices.

Counting directed triangles. Let a directed triangle be a three-vertex directed graph with at least one directed edge between
each pair of vertices. There are seven possible directed triangles, labeled D0 to D6 in Fig. 4. We let dk denote the count of
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Fig. 3. The 16 possible directed graphs on three vertices, excluding isomorphisms, organized in left-to-right order by number of edges in the graph. We
label these graphs T0 to T15 .

Fig. 4. The 7 directed triangles, labeled D0 to D6 .

Fig. 5. The nine elbows with a fixed joint.

induced directed triangles of type Dk in the dynamic graph. We now show how to maintain each count di by extending
Eppstein and Spiro’s technique.

For a pair of vertices i and j, we define a joint to be a third vertex l that is adjacent to both i and j. Vertices i, l and j are said
to form an elbow. Fixing a vertex to be a joint, there are nine unique elbows which we label E0 to E8 (see Fig. 5). We store
a dictionary mapping pairs of vertices i and j to the number of elbows of type Ek formed by i and j and a low-degree joint,
denoted ek[i, j].

We now discuss how the directed triangle counts change when adding an edge (u, v). We do not discuss edge removal
since its effects are symmetric to edge insertion.

For directed triangles with a third low-degree vertex, we update our counts using the dictionary of elbow counts. If edge
(v, u) is not in the graph, directed triangle counts increase as follows.

d0 = d0 + e1[u, v]

d1 = d1 + e0[u, v] + e2[u, v] + e3[u, v]

d2 = d2 + e5[u, v] + e7[u, v]

d3 = d3 + e4[u, v]

d4 = d4 + e6[u, v]

d5 = d5 + e8[u, v].

If edge (v, u) is present in the graph, adding (u, v) will reduce the count of some directed triangles containing (v, u).
Therefore, the directed triangle counts update as follows.

d0 = d0 − e1[v, u]
d1 = d1 − (e0[v, u] + e2[v, u] + e3[v, u])
d2 = d2 + (e0[u, v] + e1[u, v]) − (e5[v, u] + e7[v, u])
d3 = d3 + e3[u, v] − e4[v, u]
d4 = d4 + e2[u, v] − e6[v, u]
d5 = d5 + (e4[u, v] + e5[u, v] + e6[u, v] + e7[u, v]) − e8[v, u]
d6 = d6 + e8[u, v].

To complete the directed triangle counting step, we iterate over the O(h) high-degree vertices to account for directed
triangles formed with u and v and a high-degree vertex, taking O(h) time.

If either u or v is a low-degree vertex, we must also update the elbow counts involving the added edge (u, v). We
consider, without loss of generality, the updates when u is considered as the low-degree elbow joint. For ease of notation,



48 D. Eppstein et al. / Theoretical Computer Science 447 (2012) 44–52

we categorize the different relationships between adjacent vertices as follows:

inneighbor(u) = {w ∈ V : (w, u) ∈ E ∧ (u, w) ∉ E}

outneighbor(u) = {w ∈ V : (u, w) ∈ E ∧ (w, u) ∉ E}

neighbor(u) = {w ∈ V : (u, w) ∈ E ∧ (w, u) ∈ E}.

We summarize the elbow count updates in Table 1.
Finally, when there is a partition change, wemust update the elbow counts. If nodew moves across the partition, thenwe

consider all pairs of neighbors of w and update their elbow counts appropriately. Since there are O(h2) pairs of neighbors,
and a constant number of elbows, this step takes O(h2) time. Since O(1/h) amortized partition changes occur with each
graph update, this step requires O(h) amortized time.

Subgraph multiplicity. Let the count for induced subgraph Ti be called ti. Furthermore, for a vertex v, let i(v) =

|inneighbor(v)|, o(v) = |outneighbor(v)| and r(v) = |neighbor(v)|.We can represent the relationship between the number
of induced and non-induced subgraphs using the matrix equation



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 2 2 2 3 3 3 3 4 4 4 4 5 6
0 0 1 0 0 0 1 1 0 0 2 1 1 1 2 3
0 0 0 1 0 0 1 1 3 1 2 2 2 3 4 6
0 0 0 0 1 0 0 1 0 1 1 1 2 1 2 3
0 0 0 0 0 1 1 0 0 1 1 2 1 1 2 3
0 0 0 0 0 0 1 0 0 0 2 2 0 1 3 6
0 0 0 0 0 0 0 1 0 0 2 0 2 1 3 6
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 2
0 0 0 0 0 0 0 0 0 1 0 2 2 1 3 6
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 3
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15



=



n
3


m(n − 2)

1
2 (n − 2)


v∈V r(v)

(u,v)∈E


(v,w)∈E,w≠u 1
v∈V

indegree(v)

2


v∈V

outdegree(v)

2




v∈V

r(v)

2


+ o(v) · r(v)




v∈V

r(v)

2


+ i(v) · r(v)


d0 + d2 + d5 + 2d6

d1 + d2 + 2d3 + 2d4 + 3d5 + 6d6
v∈V

r(v)

2


d3 + d5 + 3d6
d4 + d5 + 3d6
d2 + 2d5 + 6d6

d5 + 6d6
d6



=



n0
n1
n2
n3
n4
n5
n6
n7
n8
n9
n10
n11
n12
n13
n14
n15



.

On the right hand side, each ni is the count of the number of non-induced Ti subgraphs in the dynamic graph. Each ni
(excluding directed triangle counts) is maintained in constant time per update by storing a constant amount of structural
information at each node, such as indegree, outdegree, and reciprocity of neighbors. On the left hand side, position i, j in the
matrix counts how many non-induced subgraphs of type Ti appear in Tj. We are counting non-induced subgraphs in two
ways: (1) by counting the number of appearanceswithin induced subgraphs and (2) by using the structure of the graph. Since
the multiplicand is an upper (unit) triangular matrix, this matrix equation is easily solved, yielding the induced subgraph
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Table 1
Summary of updating elbow counts when u is considered as a low-degree joint.

(v, u) ∉ E (v, u) ∈ E

w ∈ inneighbor(u) \ {v}
e0[w, v] = e0[w, v] + 1
e1[v, w] = e1[v, w] + 1

e6[w, v] = e6[w, v] + 1
e5[v, w] = e5[v, w] + 1

w ∈ outneighbor(u) \ {v}
e2[v, w] = e2[v, w] + 1
e2[w, v] = e2[w, v] + 1

e4[v, w] = e4[v, w] + 1
e7[w, v] = e7[w, v] + 1

w ∈ neighbor(u) \ {v}
e4[w, v] = e4[w, v] + 1
e7[v, w] = e7[v, w] + 1

e8[w, v] = e8[w, v] + 1
e8[v, w] = e8[v, w] + 1

Fig. 6.We store counts of these eight non-induced subgraphs to maintain counts of four-vertex non-induced subgraphs Q3 to Q10 . The counts are indexed
by the labels of the white vertices, and the blue vertices indicate a vertex has low-degree.

counts. Thus, we canmaintain the counts for three-vertex induced subgraphs in a directed dynamic graph inO(h) amortized
time per update, and O(mh) space, plus the additional overhead for the choice of dictionary.

4. Four-vertex subgraphs

We begin by describing the data structure for our algorithm. It will be necessary to maintain the counts of various
subgraph structures. The data structure in whole consists of the following information:

• Counts of the non-induced subgraph structures,m3 throughm10 (for visual reference see Q3 through Q10).
• A set E of the edges in the graph, indexed such that given a pair of endpoints there is a constant-time lookup to determine

if they are linked by an edge.
• A partition of the vertices of the graph into two sets H and V \ H .
• A dictionary P1 mapping each vertex u to a pair P1[u] = (s0[u], s1[u]). This pair contains the counts for the structures

S0 and S1 that involve vertex u (see Fig. 6). That is, the count of the number of two-edge paths that begin at u and pass
through two vertices in V \H and the number of these paths that connect back to u forming a triangle. We only maintain
nonzero values for these numbers in P1; if there is no entry in P1[u] for the vertex u then there exist no such path from u.

• A dictionary P2 mapping each pair of vertices u, v to a tuple P2[u, v] = (s2[u, v], s3[u, v], s4[u, v], s5[u, v], s6[u, v]). This
tuple contains the counts for the structures S2 through S6 that involve vertices u and v (see Fig. 6). Again,we onlymaintain
nonzero values. The structures are
– s2 The number of two-edge paths from u to v via a vertex of V \ H
– s3 The number of three-edge paths from u to v via two vertices of V \ H
– s4 The number of structures in which both u and v connect to the same vertex in V \ H which connects to another

vertex in V \ H
– s5 The number of structures similar to the last in which the final vertex in V \ H shares an edge connection with u or

v
– s6 The number of structures such that, between u and v, there are two two-edge paths through vertices of V \ H in

which the two vertices in V \ H share an edge connection
• A dictionary P3 mapping each triple of vertices u, v, w to a number P2[u, v, w] = (s7[u, v, w]). This value is the count

for the structure S7 that involves vertices u, v, and w (see Fig. 6). This is, the number of vertices in V \ H that share edge
connections with all three vertices. As before, we only maintain nonzero values for these numbers.

Upon insertion of an edge between vertices v1 and v2 we will need to update the dictionaries P1, P2, and P3. If both v1
and v2 are in H , no update is necessary, as all the stored structures contain at least one vertex in V \ H .

If v1 and v2 are both in V \H then we will need to update the counts s0 through s6. s7 will not need to be updated as S7 is
formed by no edges of this type. First find which vertices in H connect to v1 or to v2. Increment s0 for these vertices. If both
vertices in V \ H connect to the same vertex in H then increment s1 for this vertex. Increment s2 for v1 and the vertices that
connect to v2, and for v2 and the vertices that connect to v1. Then increment s3 based on pairs of neighbors of v1 and v2 and
neighbors of neighbors in V \H . If either v1 or v2 connect to two vertices in H increment s4 for the vertices in H . Considering
v1 to be the vertex with edge connections to two vertices in H , for each vertex in H that connects to v2 increment s5. For two
vertices in H such that v1 and v2 each connect to both, increment s6 for the vertices in H .

If v1 and v2 are such that one is in V \H and the other inH wewill proceed as follows. Consider v1 to be the vertex in V \H .
First, determine the number of vertices in V \ H connected to v1 and increase s0 for v2 by that amount. Upon discovering
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Fig. 7. The 11 possible graphs on four vertices, excluding isomorphisms, organized in left-to-right order by number of edges in the graph.

these adjacent vertices in V \ H test their connection to v2. For each of those connected, increment s1 for v2. It is necessary
to determine which vertices in H share an edge with v1. After these connections have been determined increment the
appropriate dictionary entries. Form pairs with v2 and the connected vertices in H and update the s2 counts. Form triples
with v2 and two other connected vertices in H and update the counts in s7. The s5 update comes from determining the
triangles formed by the additional edge and using the degree of the vertices in H , and the count of the connected triangles,
which can be calculated by searching for attached vertex pairs in H and using s2. In order to update the count for s6 begin
with location of vertex pairs aswith the elbowupdate. For each of theH vertex pairs increase the stored value by the number
of vertices in V \ H that share an edge with v1 and with both of the vertices in H , which can be retrieved from s2.

Examining the time complexity we can see that in order to generate the dictionary updates the most complex operation
involves examination of two sets of connected vertices consecutively that are O(h) in size each. This results in O(h2)
operations to determine which updates are necessary. Since it is possible to see from the structure of the stored items that
no single edge insertion can result in more than O(h2) new structures, this will be the upper bound on dictionary updates,
and make O(h2) the time complexity bound.

These maintained counts will have to be modified when the vertex partition is updated. If a vertex is moved from H to
V \ H then it is necessary to count the connected structures it now forms. This can be done by examining all edges formed
by this vertex, and following the procedure for edge additions. When a vertex is moved into H it is necessary to count the
structures it had been forming as a vertex in V \ H and decrement the appropriate counts. This can be done similarly to the
method for generating new structures. In analysis of the partition updates we see that since we are working with a single
vertex with O(h) degree the complexity has an additional O(h) factor to use the edge-based dictionary update scheme. This
results in O(h3) time per update. Since this partition update is done an average of O(1/h) times per operation, the amortized
time for updates, per change to the input graph, is O(h2).

Subgraph structure counts. The following section covers the update of the subgraph structure counts after an edge between
vertices v1 and v2 has been inserted. Let these vertices have degree count d1 and d2 respectively. Recall thatmi refers to the
count of the non-induced subgraph of the structure Qi (see Fig. 7).

Them3 count will be increased by (m− (d1 + d2 − 2)), wherem is the number of edges in the graph. Since this structure
consists of two edges that do not share vertices, the increase of the count comes froma selection of a second edge to be paired
with the inserted edge. The second term in the update value reflects the number of edges that connected to the inserted
edge.

Them4 count will be updated as follows. Each of the two vertices can be the end of a claw structure. From each end two
edges in addition to the newly inserted edge must be selected. Thus the value to update the count is

d1−1
2


+

d2−1
2


.

The m5 count is updated by calculating the number of additional triangles the edge addition would add, which can be
donewith the Eppstein–Spiro [10]method, andmultiplying that by a factor of (n−3) to reflect the selection of the additional
vertex, where n is the number of vertices in the graph.

The total update form6 is completed by considering all positions in the structure the edge is forming. The increase to the
count for the new structures in which the additional edge is the center in the three-edge path is ((d1 − 1)(d2 − 1)).

This value will be increased by the count when the new edge is not the center of the structure. The process to calculate
the count increase will assume that v1 connects to the rest of this structure. The same process can be done without loss of
generality with the assumption v2 connects to the rest of the structure. These values will then both be added to form the
final part of the count update. If v1 is an element of H then we will sum the results from the following subcases. First we
consider the case where the vertex adjacent to v1 is in H . The number of these paths of length two originating at v1 can be
counted by summing the degree of these vertices minus 1. We must also subtract one for each of the adjacent vertices in H
that are adjacent to v2. If v1 is not an element of H , then it has h or fewer neighbors. Sum over all neighbors the following
value. If the vertex does not have an edge connecting it to v2 then the degree of the vertex; if it does the degree minus one.

The m7 count is updated as follows. An inserted edge can form the structure in three positions, so our final update will
be the sum of those three counts. For the first case let the inserted edge be the additional edge connected to the triangle.
For this case, we must do all of the following for both vertices and sum the result. If the vertex is in H retrieve s1. This gives
us the connected triangles through vertices in V \ H . Then determine which vertices in H connect to the vertex. Form the
triangle counts with all vertices in H . Form those with one additional vertex in H using s2. If the vertex is in V \ H , then
determine its neighbors connections and form a connected triangle count.
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In the second case the edge is in the triangle and shares a vertex with the additional edge. The count can be determined
in two parts. First the triangles. If either v1 or v2 are in V \ H then the triangle count can be calculated. If both are in H
then a lookup to s2 will determine the number of triangles. The number of additional edges can then be calculated using the
degrees of the vertices of the inserted edge, with care to not count the edges used to form the triangle. The product of the
triangle count and number of additional edges will form the increase for this case.

The final case occurs when the inserted edge is part of the triangle, but does not share a vertex with the additional edge.
If either v1 or v2 are in V \ H then the triangle count can be calculated, and the degree of the vertices used to form these
triangles can be used to calculate the count increase. If both v1 or v2 are in H then there are three remaining subcases. The
count if all vertices are in H can be determined. If the vertex on the additional edge that is not in the triangle is in H , then
using the three known vertices in H and a lookup from P2 can yield the counts. If both remaining vertices are in V \H this is
the structure stored in s4, and counts can be retrieved. Sum the counts for these subcases to calculate the total increase for
this case.

The count for m8 is increased upon edge update by a sum of the following. The count of the length three paths through
vertices in V \ H can be looked up in s3. There are two possible types of length three paths remaining. In the first, both
vertices are in H . These paths can be counted be examining the connections between v1, v2, and all vertices in H . The second
contains one vertex in H and one in V \H . These paths can be counted by establishing which vertices in H connect to either
v1 or v2, and then using the count in s2 of the length two paths from the vertices in H to v2 or v1 respectively.

The m9 count can be increased by an edge insert in two positions. The first is between the opposite ends of the cycle. If
either v1 or v2 is in V \ H then the edge connections can be determined and the count calculated. If both v1 and v2 are in H
then the count of the two two-edge paths that form the cycle must be determined. These paths will either pass through a
vertex in H or a vertex in V \ H . The former can be counted by examining the vertices in H , and the latter by a lookup to s2.

The second possible position for an edge insert is on the outer path of a cycle that already has an edge through it. If either
v1 or v2 are in V \H calculate the count as follows, summingwith an additional calculation considering the vertices reversed.
If the vertex connected to the triangle is in V \ H then the count can be determined by examining neighbors and their edge
connections. If the vertex not connected to the triangle is in V \ H then examine the neighbors. For those neighbors that
are in V \ H the count can be determined by examining additional edge connections of neighbors. For the neighbors in H a
lookup to s2 is required to completely determine the counts. If both v1 and v2 are inH then the count is calculated as follows.
If all vertices of the structure are in H , determine the count by examining edge connections. If both remaining vertices are
in V \ H the count can be determined by lookup to s5. Otherwise, one of the two remaining vertices is in H . This will leave a
structure that can be completed and provide a count by using a lookup to s2, or s7

Them10 count update is separated by themembership of v1 and v2. If either vertex is contained in V \H , consider v1, then
it is possible to determine which vertices connect to v1 and which of these share edges with v2 and each other. This count
can be calculated and the total count can be updated. If both v1 and v2 are inH thenwewill sum the values determined in the
following three subcases. First, all four vertices are in H . This count can be determined by examining the edge connections
of the vertices in H . If three vertices in H form the correct structure, the count of cliques formed with one vertex in V \ H
can be determined by a look up to s7. These counts should be summed for all vertices in H that form the correct structure
with v1 and v2. The final count, with both of the remaining vertices in V \ H can be determined by an s6 lookup.

The time complexity for the updates of the stored subgraphs is O(h2). Calculations and lookups can be performed in
constant time, and subcase calculations can be done independently. The most complicated subcase count computations
involve examination of two sets of connected vertices consecutively that are O(h) in size each. This results in O(h2)
operations. The space complexity for our data structure is O(1) for the maintained subgraph counts, O(m) for E, O(n) for the
partition to maintain H , and O(mh2) for the dictionaries, because each edge belongs to at most O(h2) subgraph structures.

Subgraph multiplicity. The data structure in the previous section only maintains counts of certain subgraph structures. With
the addition of m, n, and the count of length two paths, where m is the number of edges and n the number of vertices, it is
possible to use these counts to determine the counts of all subgraphs of four vertices. The additional values m, n, and the
count of length two paths can be maintained in constant time per update. Values for m and n are modified incrementally.
Adding an edge uv will increase the count of length two paths by du + dv , the degrees of u and v respectively. Removing the
edge will decrease the value by du + dv − 2.



1 1 1 1 1 1 1 1 1 1 1
0 1 2 2 3 3 3 4 4 5 6
0 0 1 0 3 3 2 5 4 8 12
0 0 0 1 0 0 1 1 2 2 3
0 0 0 0 1 0 0 1 0 2 4
0 0 0 0 0 1 0 1 0 2 4
0 0 0 0 0 0 1 2 4 6 12
0 0 0 0 0 0 0 1 0 4 12
0 0 0 0 0 0 0 0 1 1 3
0 0 0 0 0 0 0 0 0 1 6
0 0 0 0 0 0 0 0 0 0 1


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m0 =
n
4


m1 = m

n−2
2


m2 = (n − 3)


v∈V

degree(v)

2


m3
m4
m5
m6
m7
m8
m9
m10


.
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Similar to the matrix for size three subgraphs, we can use the counts of the non-induced subgraphs on the right and the
composition of the induced subgraphs to determine the counts of any desired subgraph.

5. Conclusion

The work we present here can maintain counts for all 3-vertex directed subgraphs O(h) amortized time per update.
This can be done in O(mh) space. For the undirected case, we maintain counts of size-four subgraphs in O(h2) amortized
time per update and O(mh2) space. Although we do not discuss the specifics in this paper, the methodology presented can
be used to count directed size-four subgraphs with similar complexity. These developments open significant possibility for
improvement in calculating graphlet frequencieswithin Bioinformatics and in ERGMapplications for social network analysis.
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