
COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 49, 152-170 (1990)

Stabbing Parallel Segments with a Convex Polygon

MICHAEL T. GOODRICH

Department of Computer Science, The Johns Hopkins University, Baltimore, Maryland 21218

AND

JACK SCOTT SNOEYINK*

Department of Computer Science, Stanford University, Stanford, California 94305

Received June 22, 1988; accepted April 14, 1989

We present an algorithm that, given a set of n parallel line segments in the plane, finds a
convex polygon whose boundary intersects each segment at least once or that determines that
none exists. Our algorithm runs in O(n log n) steps and linear space, which is optimal. Our
solution involves a reduction to a bipartite stabbing problem, using a "point-sweeping" or
"chain-unwrapping" technique. We use geometric duality to solve bipartite stabbing. We also
indicate how to extend our algorithm to find the convex polygon with minimum area or
perimeter that intersects each segment. ~, 1990 Academic Press, Inc.

1. INTRODUCTION

Collections of parallel line segments appear in many facets of image processing.
Objects displayed on a CRT are composed of segments of parallel scan lines. Bilevel
images, such as characters in Pavlidis [1], can be stored and processed using run
length encoding, which represents a line segment by storing its length and one
endpoint. A robot forming an image of a part moving on a conveyor belt, such as
the CONSIGHT system [2], can use structured lighting and a linear camera array to
take pictures of parallel strips of the part as it passes by. In this paper we investigate
the geometry of collections of parallel line segments. In particular, we look at when
a straight line or convex polygon can be fitted to such a collection. Let us make this
more precise before we motivate the problem.

Let 5: = (Sl, s 2 s n) be a collection of parallel line segments in ~R 2. A straight
line is said to stab 6 : if it intersects every line segment in 50 [3]. We generalize this
to convex polygons, saying that a convex polygon stabs 5 a if its boundary intersects
each segment in 5:. This gives rise to the following problem: given a set 50 of
segments in the plane, find a convex polygon P that stabs 5 #, if such a polygon
exists, and report failure otherwise. We call this the convex stabbing problem.

Stabbing segments with a straight line is an important subproblem in vectorizing
scanned images, computing visibility for graphical display, and finding shortest
paths for motion planning. It has been considered by mathematicians such as
Gfiinbaum [4] and Katchalski, Lewis, and Liu [5], who were studying the existence
of transversals. In 1982, Edelsbrunner and others [3] developed an algorithm to
compute the line stabbing a set of line segments. Since then, algorithms have been
developed to stab other geometric objects as well [6, 7].

The convex stabbing problem is a natural variation on stabbing geometric objects
with a line. It was originally posed for arbitrary segments by Tamir at the Fourth

*Research supported by a National Foundation Graduate Fellowship.

152

0734-189X/90 $3.00
Copyright cc~ 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

STABBING WITH A POLYGON 153

N YU Computational Geometry Day [8]. For the important special case of stabbing
n parallel segments, O'Rourke reports that Suri and Ke have developed an algo-
ri thm that runs in O(n 2 log 2 n) time [9].

Our algorithm solves the convex stabbing problem for n parallel line segments in
O(n log n) time and linear space. By reduction from sorting, any algorithm that
outputs the stabbing polygon in clockwise order must take ~(n log n) steps to find a
stabber of n points on a circle. Thus, our algorithm is optimal.

The investigation of the geometry of parallel line segments also leads to an
algorithm to find minimal perimeter or minimal area stabbing polygons in O(n 2)
time and linear space. Thus we can find the smallest convex object that could be
manufactured to fit given parallel tolerances, or find the euclidean shortest convex
vectorization of an image.

We will solve the convex stabbing problem for parallel line segments as follows.
Based on a notion of wrappers, which we define in the next section, we distinguish
two non-trivial cases for stabbing polygons. One case occurs when either the upper
or lower chain of a canonical stabbing polygon is a single line segment, and the
other occurs when the upper and lower chains each contain at least two segments. In
both cases, we solve the convex stabbing problem by transforming it to an instance
of a problem we call bipartite stabbing. Our reductions are based on what can be
called a "point-sweeping" or a "chain-unwrapping" paradigm.

In the next section we present some geometric preliminaries that will be needed
throughout this paper, and discuss stabbing with a straight line, which is the trivial
case of the convex stabbing problem. In Section 3 we give a method for reducing the
two non-trivial cases to bipartite stabbing. We show how to use duality to solve the
bipartite stabbing problem in Section 4, and discuss the minimum area and
perimeter problems in Section 5.

2. GEOMETRIC PRELIMINARIES

Given a point p in ~2, let x (p) and y (p) denote the x and y coordinates of p,
respectively. Thus, p = (x (p) , y (p)) . Denote the line segment from a point p to a
point q by the pair (p , q). Sets of segments will be denoted by script letters.

Suppose we are given a set 6 : = (sl, s 2 s n } of vertical line segments in
~ 2 - - t h a t is, s i = (ai, bi) with x(ai) = x(bi) and y(ai) >_ y(bi). We define A(S :)
= (a l , a 2 , an} and B(5 :) = (bz, b 2 bn} to be the set of upper segment
endpoints and lower segment endpoints, respectively. If the set 5 p of segments is
clear from the context, then we simply use A and B to denote the sets of endpoints.
We also distinguish the leftmost segment, sl, and the rightmost, s r. For purposes of
explanation, assume that these segments are uniquely determined.

The boundary of any convex polygon can be decomposed into two vertically
monotone chains, an upper hull and a lower hull. Algorithms to find the convex hull
of a set of points frequently exploit this fact to find the upper and lower hulls
independently [10]. Given a set of points Q in ~R 2 we denote the upper hull of Q by
U H (Q) and the lower hull of Q by LH(Q). We say that a polygonal chain C is
upper convex if C = UH(C) and lower convex if C = LH(C).

Given a set 6: of vertical line segments, we define the upper wrapper to be the
upper hull of the lower endpoints, UH(B), and the lower wrapper to be the lower
hull of the upper endpoints, LH(A). Any optimal convex hull algorithm can be used

154 GOODRICH AND SNOEYINK

to construct the upper and lower wrappers of 6 a in O(n log n) time [10]. The
following lemma establishes an important fact about wrappers.

LEMMA 2.1. Suppose P is a convex polygon that stabs the set of segments 5 °. No
point on the upper wrapper UH(B) lies directly above a point on the upper chain of P.

Proof Since P stabs 5 a, it contains points on s r and s v Thus any vertical line
through U H (B) intersects the upper chain of P. Suppose the lemma is false. Then
there is a vertical line ! intersecting UH(B) at a point q and the upper chain of P at
a point p such that y (p) < y (q) . Let e be a non-vertical edge of U H (B)
containing q, and let b i and bj be the two endpoints of e, with x(bi) < x(bb). Since
P stabs 5 #, it must stab s i and s b. This in turn implies that b i and bj are on or
below the upper chain of P. But if the endpoints of edge e are below the upper
chain of P, then, by upper convexity, e lies below the chain; contradicting the fact
that y (p) < y(q) . Thus UH(B) is never above the upper chain of P. []

Similarly, each point on the lower wrapper LH(A) must lie on or above the lower
wrapper of a convex stabbing polygon. We define W, the double wrapper of 5P, to be
the union of the upper and lower wrappers of 5#: W = U H (B) U LH(A). If the
upper wrapper and lower wrapper do not intersect in exactly two points the double
wrapper is said to be degenerate. We study the degenerate cases in the following
lemma.

LEMMn 2.2. Suppose the double wrapper of the set of n segments 5 a is degenerate.
Then the 5P can be stabbed by a degenerate convex polygon consisting of a single line
segment. In addition, given the wrappers, the segment can be found in O(n) time.

Proof There are a number of cases. We consider each one in turn.

Case 1. s 1 and s x have the same x coordinate. Then all the segments in 5e have
this same x coordinate, and the line segment from U H (B) (a single point) to LH(A)
(also a single point) stabs all the segments in 6 a.

Case 2. The upper wrapper and lower wrapper do not intersect. Since both
endpoints of s I and s r appear in the double wrapper, if the upper and lower
wrappers do not intersect, then LH(A) is entirely above UH(B) . Thus, the wrappers
are separable by a line ! that, using a method by Edelsbrunner [11], can be found in
O(log n) time given UH(A) and LH(B). Since l is below the points of A and above
the points of B, the segment of l between s 1 and s~ stabs each segment in 5 a.

Case 3. U H (B) and LH(A) intersect at only one vertex or along an edge. Then
some line through the intersection will intersect every segment just as in Case 2.
Since the intersection can be found in linear time (see [10 or 12], for example), this
case can also be dealt with quickly. []

From now on we assume the double wrapper W is non-degenerate; the wrappers
intersect in two points as shown in Fig. 1 These intersection points define three
po lygons- - two "tails," bounded by the segments s r and Sl, and a convex "body."
If any segment in 5 # lies strictly inside the body of W, then Lemma 2.1 proves no
stabbing polygon exists. We will mention in Section 3 how our algorithm tests this
condition implicitly; until that point we assume that there are no segments in 5P
that are in the body of W.

STABBING WITH A POLYGON

FIG. 1. A non-degenerate double wrapper.

155

Note that if s r and s 1 both degenerate into points, then W is a convex polygon.
By the construction of the wrappers, no segments of 50 lie strictly outside of W. If
we assume there are no segments strictly inside W, then W is a stabbing polygon.
This suggests that if we can make the endpoints of the two wrappers coincide at
well-chosen points on the left and right, then we will be done. We will prove this as
Theorem 2.3. Intuitively, we can think of shrinking s~ and s r in an at tempt to
eliminate the tails.

Given points p ~ s 1 and q ~ Sr, we define the double wrapper from p to q,
denoted W(p, q), to be the double wrapper defined by shrinking s 1 to p and s r to
q. In other words, W(p, q) is the double wrapper of the set (S - (Sl, s~})U
((P, P),(q, q)}-

THEOREM 2.3. A set of segments 50 can be stabbed by a convex polygon if and only
if there exist points p on the leftmost segment, sl, and p on the rightmost, Sr, such that
W(p, q) stabs 5:.

Proof. The if direction is i m m e d i a t e - - W (p , q) is a convex stabbing polygon.
For the only if direction, suppose a convex polygon P stabs 6 a. We need to show
that W(p, q) is a convex stabber for some p ~ s 1 and q ~ s r. P stabs s 1 and st, so
P n s ~ and P A s t each contain at least one point. Choose p ~ P N s ~ and
q ~ P n s r and let 5 : ' = (5 : - (sl, Sr}) U { (p , p),(q, q)}.

Since P stabs p, q, and 5 °, P stabs 5: ' . By Lemma 2.1, W(p, q) does not
intersect the exterior of P. Suppose there is a segment si in 5 ° not stabbed by
W(p,q). sg is neither s 1 nor s~, since W(p, q) stabs the former at p and the latter at
q. Thus s i ~ S' and is not stabbed by W(p, q). Since P stabs s~, s i must be in the
exterior o f W (p , q). But that means that either a~ lies below LH(A(S : ')) or b~ lies
above U H (B (5 : ')) , both of which are contradictions. Therefore 50 can be stabbed
by a convex polygon if and only if W(p, q) stabs 5:. []

We will use this theorem in the following section, in which we give a method to
find a convex stabber for the non-degenerate case. But first, let us define the
bipartite stabbing problem (BSP): We are given two sets U = { °//1, °//2 , q/l} and
V = { Y/'I, Y:2 ~e'}. Each element q/i (resp. ~ /) is a collection of line segments
in ~ 2 (not necessarily parallel). The q/ ' s and Y/" 's are pairwise independent in the
following sense: for any i and j , i ~ j , either no line stabs q/i u q/j (resp. ~ U ~)
or all the lines that stab o/l i U q/j (resp. ~ U ~) intersect in a common point. We
want to report a line l such that l stabs the segments q/i u ~ , for some i and j , or
report that no such line exists.

156 GOODRICH AND SNOEYINK

Intuitively, we can consider the q/i and ~ as vertices of a graph G that contains
an edge if and only if a line simultaneously stabs the sets of segments associated
with each endpoint of the edge. The independence condition means that G is
bipartite. The BSP asks if there exists an edge of G.

When n is the total number of segments represented in the two groups, we will
see in Section 4 how to solve this problem in O(n log n) time and O(n) space using
the concept of geometric duality [3, 12]. In the next section, we reduce both
non-trivial cases of the convex stabbing problem to instances of BSP in O(n log n)
time and O(n) space, where n is the number of segments in 5p, thus solving the
convex stabbing problem in the same bounds.

3. R E D U C I N G CONVEX STABBING TO BIPARTITE STABBING

Let us review the problem that remains after the trivial cases are eliminated. We
are given a collection 5 ° of vertical line segments in the plane such that the double
wrapper W is non-degenerate and no segment of 6 p lies entirely in the body of W.
We wish to find a convex stabber of 5 a if one exists, otherwise we report, "none
exists."

Our method employs the following paradigm, which can be regarded as either
sweeping with a point or unwrapping a chain. Consider moving the lower endpoint
of s I upwards, leaving all other points unchanged, in an attempt to shrink the left
tail. We begin to unwrap the upper wrapper, UH(B). Two kinds of events occur as
we sweep upward: drop events and unwrap events. At a drop event we cause the
upper wrapper UH(B) to sweep past the upper end of a segment that previously
intersected the upper wrapper. At an unwrap event we lose a vertex from the upper
wrapper U H (B) by passing the lower end of a segment. Both types of events will
give us information about where the points p and q can be placed on the segments
sl and s r such that W(p, q) is a convex stabbing polygon.

As we unwrap the upper wrapper from the left, we can locate the drop and
unwrap events on the vertical line containing s~; denote the y coordinate of the drop
and unwrap events for segment s~ by d] u and ~u respectively. Analogously, we can Ui ,
move the upper endpoint of s 1 downward to find the drop and unwrap events for
unwrapping the lower wrapper from the left. We denote the y coordinates for these

n Not surprisingly, we must also locate events on the line events by d] 1 and u~.
containing s r. Events d/ru and u~ are caused by unwrapping the right end of the
upper wrapper and d[l and u~ 1 are caused by unwrapping the right end of the lower
wrapper. When the segment and wrapper are clear from the context, the supersfripts
will be dropped. In the lemma that follows we show how to compute the events for
all segments in 5 a.

LEMMA 3.1. The drop and unwrap events for all n segments in 5 a can be
determined in O(n log n) time and O(n) space.

Proof We concentrate on determining all the events for sweeping the bottom
endpoint of s I upward; similar methods find the other three kinds of events. Let
(b i t , bi2 , bim } be the vertices of the upper wrapper U H (B) in the left to right
order. It is easy to determine where the unwrap event ui~ occurs as we sweep
upward; simply extend the upper hull edge (b~, bi~+l) until it crosses the line

sweep

direction

do
d2

U8

dt

U7

d3

ds

U3

U1

U0

STABBING WITH A POLYGON

H10

FIG. 2. Locating the events on s 1.

157

s,

containing s 1. Added edges are called extension edges and are illustrated in Fig. 2.
By simply "walking" along the upper wrapper from left to right, we obtain the
ordered list of unwrap events along x = x 1 in O (n) steps.

The extension edges partition the plane above the wrapper into triangles, where
triangle ~'ik has the point bik a s its apex and the interval [uik_l , u~k] of the line
containing s 1 as its base. As long as the sweeping point p is in this interval, the
upper wrapper will contain the vertices { p , b i , , . . . , b~m). As p moves within the
interval, only the edge (p , bik) will change. We can say that the apex will be used as
a pivot point for unwrapping the chain UH(B) . Since the location of the drop
events depend on the pivot point of the wrapper, these triangles help us to locate the
drop events.

If the upper endpoint a i of segment s i falls in triangle ~j, then there is a drop
e v e n t d i located where the line from the apex bj through a~ intersects the base of ~j.
For if the lower endpoint of s I is at or below di, then the upper wrapper intersects
segment s~; above di it does not. If a~ is in no triangle, then it lies below the upper
wrapper. In that case, the upper wrapper misses s i and d i is defined to be - oo.

For each segment s i the triangle containing a i can easily be found in O(log n)
steps by a binary search of the list of extension edges causing unwrap events. We
then compute the y coordinate for drop event d i in constant time. By repeating this
procedure with each segment, we determine all the drop events in O (n log n) time.
Once we have obtained them, we can sort them in the same time bound. We obtain
ordered list of drop events for sweeping the left endpoint of the lower wrapper
downward by a similar process--except if segment s i is entirely above the wrapper,
we assign d/11 = + oo. Determining the events d/~ and d[1 for the point sweeping on
the right is analogous. []

158 GOODRICH AND SNOEYINK

Our method of reducing a convex stabbing problem to a bipartite stabbing
problem depends on the following observations. Let p be the left endpoint of both
the upper and lower wrappers. By the definition of drop event d~ u, the upper
wrapper intersects the segment sg only if y(p) ~ (- ~ , dlu]. Similarly, the lower
wrapper intersects the segment s~ only if y(p) ~ [d n, + oe). If we wish to form a
convex stabbing polygon, any segment dropped by the upper wrapper must intersect
the lower wrapper and vice versa. We can apply this insight, once we have located
the events on s~, to define regions in which the left endpoint p of the upper and
lower wrappers may lie. We shall utilize the regions from the left and right, together
with some other constraints, in the reduction.

A convex polygon P is one-sided if either the upper chain U H (P) or the lower
chain L H (P) is a single segment. Otherwise P is two-sided. We investigate one- and
two-sided wrappers in Subsections 3.1 and 3.2. In case one we check if there exist
points p and q on s 1 and st, respectively, such that W(p, q) is a two-sided stabber.
Failing that, we check in case two if there exist p and q such that W(p, q) is a
one-sided stabber. Theorem 2.3 permits us to restrict ourselves to these two cases.

As long as W(p, q) is two-sided, moving point p does not affect the portion of
the wrapper in the vicinity of q. We cannot place points p and q independently,
however; there remains a subtle interaction between the two endpoints that we will
make precise below. Restricting W(p, q) to be one-sided leaves a knottier problem
- - t h e r e are many degrees of freedom for placing the endpoints of the segment.
Nevertheless, in both cases, we can either find p and q such that W(p, q) is a
stabbing polygon or determine that no solution exists by solving an instance of the
biparti te stabbing problem.

3.1. Case 1 - -W(p ,q) Is Two-Sided

Let us restrict our search to that of finding a p ~ s 1 and q ~ s r such that
W(p,q) is a two-sided convex stabber. This condition implies that W(p,q)
intersects both the upper and lower wrappers of 50 at points other than p and q.
F rom the point of view of p on s I it is irrelevant whether the rightmost segment s r
has shrunk to q or not. We can almost decouple the problems of finding p and q.

To find p and q, we must combine the information given by the drop and unwrap
events. As before, we concentrate on the problem of combining events on s~; the
method for combining events on s t is similar. We summarize it here: First, utilize
the events to divide the line containing s I into intervals in which p may lie. Lemma
3.2 states that it is enough to consider these intervals. Second, eliminate certain
infeasible intervals by combining information from drop events on the left. The
eliminate all intervals not on s v The set ~ will consist of the feasible intervals of s 1
that remain and ~ will be the intervals of s r. Finally, construct an instance of
biparti te stabbing based on the events from the left and the right. The solution to
this problem, if it exists, will stab La at p and ~ at q such that W(p, q) is a convex
stabbing polygon.

Let 11, I 2 I m be the closed intervals, ordered by increasing y coordinate,
between consecutive events on the line x = x 1 containing Sl. Since there are at most
n of each type of event, m < 4n + 1. This definition means that I i is a vertical
segment. However, to avoid confusion with the segments of 5 ° , we shall continue to
call the I i ' s "intervals." Let Ja, J2 Jm' be the intervals between events on

STABBING WITH A POLYGON 159

X = X r. By the following lemma, it is enough to find a pair of intervals that can
contain the extreme points of a convex stabber.

LEMMA 3.2. Let p ~ I i and q ~ Jj be points in intervals on the leftmost and
rightmost segments, respectively. I f W(p , q) is a convex stabbing polygon then
W(p', q') is a convex stabber for all p' ~ I i and q' ~ Jj.

Proof Follows from the definition of drop and unwrap events. []

Some of these intervals are infeasible-- they cannot contain the point p because
of the observation following the proof of Lemma 3.1: If p is the left endpoint of
both the upper and lower wrappers, then the upper wrapper intersects segment si
only if y (p) ~ (- oo, d] u] and the lower only if y (p) ~ [d n, + oo). If d~ u < d]' for
segment s i then y (p) cannot lie in (d~ u, d]a). Hence, all intervals that lie between
d] u and d] l can be discarded. Notice that this means that if segment si is missed by
both wrappers, then d] u = - oo and d] 1 = + oo so y (p) ~ (+ oo, - oo). Thus, if a
segment is missed by both wrappers, all of the intervals I1, 12 , I,n on the left will
be discarded and we can report that no stabber exists.

If each event knows which segment caused it and each segment knows its events,
we can mark the intervals feasible or infeasible by scanning the list of intervals in
order. The algorithm described in the following paragraphs does so by alternating
between feasible and infeasible modes and tagging intervals with the mode. I t looks
at each interval once and thus runs in O(n) time.

Begin in feasible mode and consider the intervals lx, 12 I m in increasing y
coordinate order. Suppose first that the lower end of the interval under considera-
tion is the event d~ u and d] u < d] ~. If we are currently in feasible mode, switch to
infeasible mode and remember that we switch back when we encounter d] 1. If
instead we are in infeasible mode and, because of an earlier encounter with
d) u < d) 1 < d], we are planning to switch to feasible mode at d) 1, then we should
switch back at d] 1.

Otherwise, the lower end must be a drop event d] 1 or an unwrap event. At a d] 1
event we may need to switch from infeasible to feasible mode. No matter what the
lower end of the interval is, we tag the interval under consideration with the current
mode and proceed to the next interval.

After eliminating the intervals tagged infeasible by the algorithm, we also elimi-
nate the intervals that do not intersect the segment s~--since p must lie on s 1 for s 1
to be stabbed by W(p, q). Let £~o= (L1, L2 , Lk} (resp. ~ = (RI , R2 , Rk,})
be the ordered set of intervals of s 1 (resp. Sr) that were tagged feasible.

Now we are looking for a pair of feasible intervals that can contain p and q such
that W(p , q) is a convex stabber. Unfortunately, there might be ~ (n 2) pairs of
intervals to consider, so we cannot afford the luxury of testing every pair. Instead,
we use them to help us construct an instance of the bipartite stabbing problem
(BSP).

Recall that, in an instance of BSP, we are looking for a line l that stabs the union
of two collections of segments, ~i t3 ~s" We will describe how to reduce our
problem to BSP in an incremental fashion. We define our first BSP instance to
enforce the requirement that p ~ ~ and q ~ ~ . We then add segments to enforce
the property that W(p, q) is two-sided. Finally, we add more segments to the
problem instance to enforce the property that W(p, q) is a stabbing polygon.

160 GOODRICH AND SNOEYINK

We begin by setting q/i = { Li) and ~ = (Rj }. If we ask that our solution line 1
define the points p and q - - tha t is, p = L i N l and q = Rj N / - - t hen we will force
p to lie in ~ and q to lie in ~ . In order for this to be a valid instance of BSP, the
0l/'s and Y/" 's must satisfy the pairwise independence property that, if i 4= j , all
stabbers of a//i U q/j intersect at a common point. However, since the intervals of ~v
all lie on a common vertical line, if there is a non-vertical stabber of ag i U q/j then
q/i n q/j is non-empty. But intervals L i and Lj can only intersect at one endpoint
- - a l l stabbers of q/~ U q// intersect this point and the condition is satisfied.

Next, we must ensure that W(p, q) remains two-sided. Any point p ~ s~ defines
a tangent line, also known as a supporting line, to the upper wrapper U H (B) and
another to the lower wrapper LH(A). Let tU(p) denote the point of tangency on the
upper wrapper and t l(p) denote the point of tangency on the lower wrapper. We
have the following lemma:

LEMMh 3.3. Let a collection of vertical segments 6 # with a non-degenerate wrapper
and points p ~ s 1 and q ~ s r be given. The double wrapper from p to q, W(p, q), is
two-sided if and only if the segment (p, q) intersects the segment (tU(p), t l(p)).

Proof We shall first prove the if direction. Suppose (p , q) intersects
(tU(p), t l (p)) , then tU(p) is above (p , q) and t l (p) is below. This implies that
neither the upper nor the lower chain of W(p, q) can be the segment (p , q); both
are non-trivial. Therefore W(p, q) is two-sided.

For the converse, suppose (p , q) does not intersect (tU(p), t l (p)) ; without loss
of generality, tU(p) lies below (p , q). Then W(p, q) contains segment (p , q) as an
edge. Since p and q are the extremal points of W(p, q), W(p, q) is one-sided. []

Note that tangencies change only at unwrap events; since unwrap events never
occur in the middle of an interval, we can uniquely associate upper and lower points
of tangency with each interval. Define t~(L~) = t~(p) and tl(L~) = t l(p) for any
point p E L~. We call these the points of tangency for Li. If we include the segment
(tU(L~), tl(Li)) with L~ in our BSP instance we will ensure that W(p, q) is
two-sided.

The upper point of tangency tU(L~) is simply the apex of the triangle ~-j whose
base contains the interval Z i. The points of tangency for all the intervals in .~e can
be recovered in linear time from the triangles used to find unwrap events on s 1.

Thus, we have achieved the following by our construction of an instance of BSP:
Restricting p and q to their respective feasible regions prevents us from dropping a
segment from both wrappers on the left or on the right. In addition, Lemma 3.3
gives a method for enforcing the property that W(p, q) is two-sided. This is not
enough to solve the convex stabbing problem, however. Even if we satisfy the
lemma and restrict p and q, we still might not stab all the segments in 6:. Figure 3
illustrates such a case. We need at least one more criterion to cleverly place p on s l
and q on s r.

The problem arises when a segment is dropped from the upper wrapper by the
placement of the left endpoint, p, and from the lower wrapper by the placement of
the right endpoint, q - - o r vice versa. We must use the segments dropped by the
placement of p to restrict the placement of q.

Let ~ (L i) be the set of segments dropped by the upper wrapper when its left
endpoint is in L i, and the right end of the upper wrapper is left unchanged. In other

S T A B B I N G W I T H A P O L Y G O N 161

FIG. 3.

o'; b __X":¢o;

1

T h o u g h ~ = s I and ~ = Sr, i f we choose p ~ L 2 and q ~ R 1 then segment 2 is dropped.

words, -@(Li) = (s j : d: u < y (p)) , where p ~ L r Let o~(Li) be those dropped by
the lower wrapper. We can prove the following technical lemma.

LEMMA 3.4. Let points p ~ t i and q ~ ~ be given such that W(p, q) is two-sided.
Let the following segments exist: s d ~ ~ (Li) ands e ~ ff(Zi). W (p , q) stabs segment
s d if and only i f dJ l < y(q) . W(p , q) stabs segment s e if and only i f y (q) < de ru.

Proof Suppose W(p , q) stabs Sd--since s d ~ .@(Li), it must do so with the
lower wrapper. If q is chosen such that y(q) is less than the y coordinate dJ 1 of the
drop event for losing segment s d from the right end of the lower wrapper, then
segment s d will be dropped by W(p , q). Therefore, d~ 1 < y(q) .

Conversely, suppose W(p , q) does not stab Sd--it is dropped by both wrappers.
Since s d ~ ~ (L i) , s d is dropped by the upper one by the placement of p. Li is
feasible, however, so it is not dropped by the lower one because of the placement of
p. Therefore, it is dropped because y (q) < d~ I.

The proof for segment s e is symmetric. []

Thus, we must guarantee that q will be chosen with y coordinate greater than or
equal to the maximum d rl drop event of the segments in ~(L~) and less than the
minimum d ru drop event of the segments in o~(L~). Define

rl dmax(t i) = m a x [d r l)
s j E ~ (L D t J '

dmr~n(Li) = rain { d ~ } .
S j ~ (L i)

I f rl ru dmax(Li) > dmin(Li) , then, by Lemma 3.4, nomat t e r where we place p in L~ and
q in ~ there will be a segment that is not stabbed by W(p , q). Thus, we remove
from ~ all intervals Li such that rl ru dmax(Li) > dmin(Li). For the intervals we do not
remove, we will add the segment rl (dmax(Li), dmin(Li)) to our instance of BSP.

First, however, we will see how to calculate these quantities for all intervals. If we
process the intervals in increasing y coordinate order, we add segments to ~(L~) to

rl form ~ (L i+ I) . Segments are never removed. Thus, we can find dma x for each
interval by maintaining the maximum d rl event as we visit the intervals in order.
Total time required is O(n). We find d~n for each interval by processing intervals
in decreasing y coordinate order.

162 G O O D R I C H A N D S N O E Y I N K

Now we can associate two segments with each segment L i that remains in £~o;
defining q/i and ~ as follows:

aft i = (L i , (t U (L i) , t l (L i)) , (d r l m a x (L i) , d m ~ n (L i)) } ,

= (R ,) .

Adding these two segments to each q/i does not cause any new lines to stab q/v
Therefore the independence condition still holds and this is an instance of BSP. In
the next theorem we show that this instance essentially solves the convex stabbing
problem for the case of a two-sided convex stabber.

THEOREM 3.5. Let 6: be a set of segments with leftmost s 1 and rightmost s r. Let
the sets of segments ql I , ~k and Y/'l Y/'k' be defined as above. There is a pair
of points (p , q), with p ~ s I and q ~ s r, such that W (p , q) is a two-sided convex
stabber of 6: if and only if the line through p and q stabs ql i U ~ for some i and j.

Proof Use Lemmas 3.3 and 3.4. Assume there is a pair (p , q) such that W (p , q)
is a two-sided stabber. We will see that the line through p and q stabs a//i u ~ for
some i and j .

Let the points p ~ s~ and q ~ s r lie in intervals L i and R j, respectively. We
observed that p and q must lie in feasible intervals for W(p , q) to be a stabbing
polygon, so L i ~ ~ and Rj ~ ~ . As a consequence of Lemma 3.4, we saw that

rl ru dm~x(Li) must be greater than or equal to dmin(Li) for W(p , q) to be a stabber.
Therefore there exist sets ~ and ~ containing the intervals L~ and R j, respec-
tively.

By Lemma 3.3, the line through p and q intersects (tU(Li), t l (Li)) . By Lemma
3.4, the point q satisfies rl ru . rl dmax(Li) < y (q) < dmin(Li), meaning q lies on (dmax(Li) ,
dmrUin(Li)). But the union 0"~ i ~.) ~j contains these two segments, L~, Rj and no other
segments. Therefore the line through p and q stabs the union.

To prove the converse, assume the line l stabs ag i U Y/~j. Let p = l :3 s 1 and
q = l :3 s r. We will see that W(p , q) is a two-sided convex stabber of 6 v.

Notice that p ~ Li and q ~ R j . The segment (p , q) stabs (tn(Lg), tl(Lg)); thus
Lemma 3.3 proves W(p , q) is two-sided. Without loss of generality, suppose
segment s k is dropped from the upper wrapper. By Lemma 3.4, W (p , q) stabs s k if
dr, l < y(q) . But since l stabs the segment rl r u (d m a x (L i) , dmin(Li)), we have d/~ 1 _<

rl dmax(Li) < y (q). Therefore W(p, q) stabs 6:. []

We have created an instance of BSP in O(n log n) steps; if it has a solution, we
can obtain the convex stabber W(p , q) by the above theorem. Furthermore, the
instance of BSP uses at most three segments for each feasible interval--using O(n)
segments in total. In Section 4 we show how to solve an instance of the bipartite
stabbing problem in O(n log n) steps. So, in O(n log n) time and O(n) space we can
find a two-sided stabber W(p , q) if one exists. I f none is found, then we move to the
second case and look for a one-sided stabbing polygon.

3.2. Case 2 - - W (p , q) Is One-Sided

Figure 4 shows a collection of segments that admits a one-sided convex stabber
but no two-sided stabber. Thus, if the method of Section 3.1 fails, we use the
method of this section to see if there is a stabbing polygon that misses one of the

STABBING WITH A POLYGON 163

LH(A)

stabbing polygon

• feasible r e-~,, S

UH(B)

FIG. 4. An example with no two-sided stabbing polygon.

wrappers. Assume that we wish to look for a W(p, q) in which (p , q) is the lower
chain. The other case is symmetric. The problem is still to find points on s 1 and s r
such that any segments dropped by one polygonal chain are picked up by the other.
We will again be able to transform this case of the problem into a bipartite stabbing
problem, and find a stabber in O(n log n) steps if one exists.

Since we have assumed that the lower chain is a single segment, and, in Lemma
2.2, we have eliminated the case when all the segments can be stabbed by a single
line, we know that the upper chain is non-trivial. We can use the events from the
upper wrapper to define intervals. Let LI, L 2 L m (m = O(n)) be closed inter-
vals between consecutive drop events from the upper wrapper; Lj =
((xl , d] u), (x D d]U)). Note that these are slightly different intervals than those of

j 1 j

case one - - t he y do not use unwrap events, for example.
As before, let -~(Li) be the set of segments dropped by the upper wrapper when

its left endpoint is in L~. Similarly define R1, R 2 , . . . , R k and ~ (R j) . Let ~ , j
denote the union ~(L~) U ~ (R i) . If the points p ~ Lg and q ~ R s are to induce a
one-sided stabbing polygon W(p, q) then the line through p and q must intersect
every segment in ~ , j. This allows us to make the following trivial reduction to an
instance of the bipartite stabbing problem (BSP):

LEMMA 3.6. The instance of BSP with ggi = (Li) U ~(Li) and ~ = (R j} U
~ (Rj) has a solution if and only if the collection 5 ° has a one-sided convex stabbing
polygon W (p , q) with points p ~ s I and q ~ s r such that the segment (p , q) is the
lower chain of W(p , q).

164 GOODRICH AND SNOEYINK

Proof Assume that the line l is a solution; l stabs ag i U ~j for some i and j.
We construct a one-sided stabber. Let p = l A s~ and q = l A s r and notice that
p ~ Li and q ~ Rj. Suppose a segment s k is dropped by the upper wrapper of
W(p, q). Then s k is in ~(L~) or in ~(Rj) . But since / stabs q/i U ~ the segment
(p, q) stabs the union ~cj- Therefore, the upper wrapper of W(p, q) and the
segment (p, q) stab the collection 5:.

We must show that W(p, q) is a convex stabbing polygon with (p, q) as its lower
chain. Since the upper wrapper of W(p, q) is upper convex from p to q, the union
of this wrapper and the segment (p, q) is a convex polygon that stabs 5:. By
Lemma 2.1 the lower chain of any convex polygon stabbing 5 '~ through p and q
must lie on or below the lower chain of W(p, q). Therefore, the segment (p, q) is
the lower chain of W(p, q).

Conversely, assume W(p, q) is the desired stabber. Let p and q lie in L~ and R j,
respectively. The segment (p, q) stabs ,~ (L i) U .@(R j), therefore the line through
p and q stabs ~, u ~ and provides a solution for the instance of BSP. []

This gives us a method of finding one-sided stabbers; unfortunately, the reduction
uses f~(n=) segments. Solving the bipartite stabbing problem would take O(n= log n)
time and quadratic space rather than the desired O(n log n) time and linear space.
We must identify a few crucial segments of N(L~) and N(Rj) and include only
those in our BSP instance--we begin to do so by looking at the conditions that the
stabbing line must satisfy.

Recall that A(5:') and B(5:') denote the sets of upper and lower endpoints of
the collection of vertical segments 5:'. We abbreviate the notation for the upper hull
of the lower endpoints of the dropped segments, UH(B(N(Li))), by UD(Li).

By Lemma 2.1, the line containing the segment (p, q) must be below or tangent
to LH(A), the lower wrapper of 5:. In addition, since it stabs every segment in ~i, j
it must be above the upper hull UH(B(Ni, j)). But the line lies above this hull if and
only if it is above both UD(L~) and UD(Rj). We want to find two small sets of line
segments, o(L~) and p(Li), with the property that a line l through L i lies between
the convex chains LH(A) and UD(Li) if and only if l stabs L~, o(L~), and o(Li).

Let a and fl be the tangent lines from the upper and lower endpoints of the
interval L~ to the convex chain LH(A). Let { ai,, a~2,..., aic } be the vertices on the
portion of LH(A) between the points of tangency of a and fl with LH(A),
inclusive. A line that passes through L i lies below LH(A) if and only if it lies below

0~" " " .

L~

FIG. 5. A line through L i lies below LH(A) if it lies below ail ai4.

STABBING WITH A POLYGON 165

the portion of LH(A) between the two points of tangency, as illustrated in Fig. 5.
Similarly, let a' and fl' be the tangent lines from the ends of the interval Li to
UD(L~). Let (bjl, bj2 bj~ } be the vertices on the portion of this hull between the
points of tangency of a' and 13' with UD(Li), inclusive. A line through L~ lies above
UD(L~) if and only if it lies above the portion between the two points of tangency.

Let o(L~) denote the set of segments (s,1, s~2 s~c } with endpoints between the
points of tangency on LH(A). Let p(Li) denote the segments (sjl, sj2 si, } with
lower endpoints between the points of tangency on UD(Li). Note that o(L,.) u
0(Lg) _c ~(Lg). Define o(Rj) and 0(R j) analogously. For a new instance of BSP,
take q/i = (Li} u o(Li) U o(Li) and ~ / = (R i } U o(Ri) U p(Ri). We show later
how to construct all the q/i's and ~ 's in O(n log n) time. Because each ~i contains
a n L i and each ~ contains a n Ri, both collections satisfy the pairwise-indepen-
dence condition. We summarize the above discussion in the following theorem.

THEOREM 3.7. Let 5: be a collection of segments with leftmost s 1 and rightmost s r.
There is a pair (p, q) with p • s 1 and q • s r such that W(p , q) is a one-sided convex
stabber with lower chain (p, q) if and only if there is a solution to the BSP instance
with ~i = (t i) g o(Li) U P(Li) and ~i = (Ri) U o(Ri) U p(Ri).

Proof By Lemma 3.6 it is enough to show that the above instance of BSP is
equivalent to the one with q / / = {L~} U ~(L~) and ~¢~j' = {R j} U ~(Rj) . That is,
I is a solution to one iff it is a solution to the other.

Assume l stabs q/i U ~ for some i and j. Then l passes through interval L i and
lies above the portion of UD(Li) between the points of tangency of a' and B'. By
the preceding discussion, l lies above UD(Li). Also, l passes through Rj and lies
above U D (R j) I t h U s l lies above UH(B(~i, j.)). Similarly, l lies below LH(A). As
a result, l intersects every segment in ~i, j and stabs q/i' U ~ ' .

Assume l stabs q/i' U ~j ' for some i and j. Since q/i --- q// and ~ ___ ~j ' , l also
stabs q/~ U ~ . Thus we have shown the two instances are equivalent and established
the theorem. []

Thus we have a smaller instance of bipartite stabbing that gives us a solution to
the convex stabbing problem. To complete the algorithm we must find the segments
of U and V in O(n log n) time and show that there are at most O(n) segments in
total.

To count or to compute the segments of o(Li) for all Li is not hard. Each
interval L i contributes at least the segment whose endpoint is the point of tangency
of the line a; additional segments are contributed because of, and only because of,
edges of LH(A) that intersect L~ when extended. (See Fig. 5.) But these intersec-
tions correspond precisely to the unwrap events u n contained in interval L~. Since
the intervals are disjoint, each unwrap event contributes only one segment to U- - in
total there are O(n) segments. We can find o(Lg) for each interval L~ in O(n) time
by "walking" along LH(A) from left to right and processing the intervals in order
of decreasing y coordinate.

To compute and count the segments of p(Li) requires more machinery--the hulls
change from interval to interval. If we process the intervals in order of increasing y
coordinate, however, the only difference between ~(Li_I) and -@(Li) is that a
single segment is added to the latter--no segments are ever removed. This means

166 GOODRICH AND SNOEYINK

that we can use the on-line convex hull algorithm of Preparata [13] to compute the
sequence of hulls UD(L1) UD(Lm).

Preparata's hull algorithm relies on the fact that, when a new point is added to a
convex hull, it causes at most two new hull edges. These edges are the two tangent
lines, or supporting lines, through the new point to the hull; they can be found by
binary search in O(log n) time. Thus, the total time to find all the hulls in the
sequence is O(n log n). The tangents a' and fl' can also be found in O(log n) time
per interval, and, if we show that the total number of segments in p(Li) for all
intervals L i is O(n), then they can all be computed in O(n log n) total time.

The number of vertical segments in the p's is one for each interval, plus the
number of unwrap events of UD(L~) that fall in L i for each interval L r This is
certainly less than m plus the total number of unwrap events over all hulls
U D (L 1) , . . . , UD(Lm). But adding a vertex to a hull adds only two new hull edges,
thus there are at most 2n unwrap events and m + 2n = O(n) segments associated
with the intervals.

Therefore, the instance of bipartite stabbing in Theorem 3.7 has O(n) segments
and can be solved in O(n log n) time. This completes case two--finding a one-sided
stabbing polygon. We summarize the results of this section in the following theorem.

THEOREM 3.8. Given a set 5 a of n vertical fine segments in the plane, we can
reduce the problem of finding a convex polygon stabbing 5 a to three bipartite stabbing
problems of size O(n) in O(n log n) time and O(n) space.

Proof There is one bipartite stabbing problem for case one, and two for case
two- -one each for the two kinds of one-sided polygons. []

In the next section we show how to solve the bipartite stabbing problem in
O(n log n) time in O(n) space.

4. THE BIPARTITE STABBING PROBLEM

Recall the problem we wish to solve: Suppose we are given two sets U =
(dffl , 0~/2, . . . , % } and V = { ~ ' 1 ' ~ 2 , ¢/',, }, where each q// (resp. ~/) is a collec-
tion of line segments in ~R 2 that are pairwise independent in the following sense: for
any i and j it is either the case that no line stabs qli U qlj (resp. ~ U ¢/~j) or all the
lines that stab q/i u q/j (resp. ~/t_J ~¢'~j) intersect in a common point. We wish to
report a line l that stabs q/i U ~j, for some i and j. If no such line exists, we report
that fact. Let n be the total number of segments represented in U and V. In this
section, we show how to use the notion of geometric duality [3, 12] to map BSP to a
problem that we can solve in O(n log n) time and O(n) space. This is optimal in the
algebraic computation tree model [14] by a trivial reduction from the set disjointness
problem.

We solve an instance of BSP using three steps:

1. For each set of segments ~i, form the stabbing region Stab(q/i): a represen-
tation of the lines that stab ql i. Form S t a b (~) similarly.

2. Form Stab(U) and Stab(V) from the stabbing regions for the ~i 's and ~ ' s ,
respectively.

S T A B B I N G W I T H A P O L Y G O N 167

(-1,-2)

(a)

f b

/

(b)

a f .

.::::.,:sh::.::::~,::.,~:;:~::.::::!::~::::.:
:~i..,:.::i~..~::.~ :!:.::.:

FIG. 6. A l ine segment maps to a double wedge, a set of segments to a s t abb ing region,

3. Find a point in the intersection Stab(U) N S tab(V) - - this will correspond
to a line that stabs both q/i and ~ for some i and j.

We will elaborate on these steps in the following paragraphs.
Geometric duality maps problems on one kind of geometric variety to another

kind. Frequently, our intuition is better for the transformed problem [15, 3]. In our
case, we use a duality transform T that maps points to lines and lines to points and,
in the process, maps lines stabbing a set of segments to points in a region.
Specifically, T maps the point (a, b) to the line y = ax + b, and the line y = k x + d
to the point (- k , d). Stolfi, with his work on oriented projective geometry [12],
shows how vertical lines can map to points at infinity to avoid special cases.

We know that a line l stabs a segment s if it lies between the endpoints of s. In
the dual plane, the endpoints of s map to a pair of intersecting lines that partition
the plane into four wedges. The primal line l stabs s if and only if the point T~ lies
above one dual line and below the other. Thus, T maps the line segment s onto a
double wedge T~; two opposite wedges that do not contain a vertical line (see Fig.
6a). The following facts are contained in [3]:

FACT 4.1. A line l intersects a line segment s i f and only if the point T l lies in the
double wedge T r

168 GOODRICH AND SNOEYINK

FACT 4.2. The stabbing lines for a set of line segments stand in one-to-one
correspondence with the set's stabbing region--the points in the intersection of their
double wedges (Fig. 6b).

FACT 4.3. The stabbing region of m segments has no more than 8m + 4 edges and
can be computed in O(m log m) time.

Now we can perform step 1 of the algorithm and analyze its cost. Each set
determines a stabbing region, Stab(qli), which is the intersection in the dual plane
of all the double wedges for the segments in q/i. So, Stab(qli) is a collection of
polygons and every point in Stab(agi) corresponds to a line in the original plane
that stabs all the segments in q/;. Since the total number of segments is O(n), we can
find the stabbing regions for all the q/i's in O(n log n) steps by the divide-and-con-
quer method used by Edelsbrunner et al. [3] to establish Fact 4.3. We find the
stabbing regions for the ~ ' s in a similar fashion.

The pairwise independence condition makes step 2 easy; it implies that the
intersection of Stab(qli) and Stab(qlj), for any i 4=j is at most a collection of
co-linear line segments. Define Stab(U) = U~=lStab(qli). Then Stab(U) consists of
a collection of (possibly unbounded) polygons, no two of which intersect except
possibly at a vertex or along an edge. Moreover, the total number of edges in
Stab(U) is O(n) by Fact 4.3. Thus Stab(U) can be constructed in linear time by
simply grouping together the stabbing regions for the individual q/i's. Again, we
form Stab(V) similarly.

We can consider Stab(U) and Stab(V) as two subdivisions of the plane or as two
collections of polygons. In either case, any point p that lies in the intersection
Stab(U) n Stab(V) must lie in Stab(qli) and Stab(Y~j) for some indices i and j.
This point maps to a line Tp that stabs both q/i and ~j. and solves the instance of
BSP. If we can find such a point quickly, we can perform step 3 of the algorithm.

Shamos and Hoey [16] developed a sweep-line algorithm that finds a point
common to two sets of line segments if the segments in each set are disjoint. Their
algorithm places the endpoints of the segments in priority queue, ordered by
increasing x coordinate. Then it passes a sweeping line over the plane from left to
right, maintaining the order in which the segments cross the sweep. By testing for
intersections between adjacent line segments whenever a segment is hit or dropped
by the sweep, they find an intersecting pair of segments or report that none exist in
O(n log n) time.

It is not hard to modify this algorithm to find a point p in Stab(U) n Stab(V) in
O(n log n) time or show that no such point exists. Simply treat the regions as
polygons defined by line segments, use the same priority queue, and maintain the
intervals of the sweep that are contained in Stab(U) and Stab(V). If, during the
sweep, a segment bounding Stab(U) appears in an interval of Stab(V) or vice versa,
then the point p at which it first appears may be reported as the solution. The
algorithm of Shamos and Hoey must be modified slightly to handle the case when
two segments in Stab(U) (or Stab(V)) intersect at a vertex or partially overlap, but
this can be done.

This completes the description of the algorithm and allows us to end this section
with the following theorem.

THEOREM 4.4. Given collections U and V of sets of line segments in the plane that
satisfy the pairwise-independence condition and contain n segments in total, the

STABBING WITH A POLYGON 169

bipartite stabbing problem for U and V can be solved in O(n log n) time and O(n)
space. []

5. MINIMAL STABBING POLYGONS

The framework we have established allows us to find convex stabbing polygons
that have minimum area or perimeter. (For the latter we give our computational
model the ability to compute square roots). In this section we will show that the
minimal polygons are among the wrappers W(p, q). Then we will add a measure
function to a bipartite stabbing problem so that the minimal polygon will be a
solution with minimal measure. Finally, we show how to solve this modified BSP in
O(n 2) time.

The proof of theorem 2.3 shows that if a set of segments SP has a convex stabbing
polygon P, then 6a is stabbed by a convex polygon W(p, q) that is contained inside
P. From this we know that the polygons with minimum area or perimeter will be the
double wrappers W(p, q) of 6 a.

In an instance of BSP, define the measure mij of a pair q/~ and ~j to be the
minimal perimeter or area of the all double wrappers W(p, q) such that the line
from p to q stabs q/~ u ~e~j. The measure is defined to be infinite if no wrapper
exists. With a small amount of preprocessing, we can obtain a formula for finite
m e a s u r e s mij that can be evaluated in constant time.

Consider first the instance of BSP used in Theorem 3.5 to solve the two-sided
case. Since q/i and ~ include intervals of s~ and s r that contain no unwrap events,
all wrappers W(p, q) such that ~p, q) stabs ~i u ~ have the same vert ices--only
the placement of the points p and q varies. The perimeter of such a wrapper is a
constant plus a term that depends on the lengths of the segments adjacent to p and
q; the area depends on the area of the triangles defined by the pairs of the segments
adjacent to p and q. It is not hard to find in constant time the placement of points
that minimizes the appropriate measure mq. Furthermore, if, at each chain vertex,
we store the length of the chain to the left of the vertex, then we can compute the
perimeter measure in constant time. (Here we assume that we can compute and
store square roots.) Similarly, if we store the area under a chain and to the left of a
vertex, then we can compute the areas under the upper and lower chains and
subtract to find the area measure in constant time.

Next, consider the instance of BSP used in Theorem 3.7 to solve the one-sided
case. If we use the unwrap events from the upper wrapper to define intervals for this
case, as we did in the two-sided case, then we can compute finite measures m~j in
constant time in the manner of the previous paragraph.

Since finite measures mij can be computed in constant time, we can find a
minimal area or perimeter polygon by enumerating all pairs q,¢~ and ~ with finite
measure and taking the smallest. Using the notation of the previous section, the
pairs with finite measure are exactly those pairs satisfying Stab(qli) ~ Stab(Y/~j)
~ . Thus, we must compute the intersection Stab(U) n Stab(V), which is a planar
subdivision with at most O(n=) polygonal regions, and find the minimal measure
over all regions. This can be accomplished in O(n 2) time and linear space by a
sweeping algorithm [16].

6. CONCLUSION

In this paper we have investigated problems of stabbing parallel line segments.
We gave an algorithm for solving the following problem: given a set 5 ° of n vertical

170 GOODRICH AND SNOEYINK

line segments in the plane, find a convex polygon whose boundary intersects each
segment in 5 p, if such a polygon exists, and report failure otherwise. Our algorithm
runs in O(n log n) time and O(n) space, which is optimal. Our solution involved
reducing two different cases of the convex stabbing problem to a problem we called
bipartite stabbing, which is an interesting problem in its own right. We also show
how to use our algorithm to stab parallel line segments with a polygon of minimum
area or perimeter in O(n 2) time and O(n) space.

There are several directions for further work. We are most interested in stabbing
arbitrary (non-parallel) segments in the plane--this is a simplification of Tamir's
original problem [8] that is still open. An algorithm for stabbing the maximum
number of segments would also be interesting for certain pattern matching applica-
tions.

ACKNOWLEDGMENTS

We thank John Hershberger, Joseph O'Rourke, and Subhash Suri for helpful discussions.

REFERENCES

1. T. Pavlidis, A vectorizer and feature extractor for document recognition, Comput. Vision Graphics
Image Process. 35, 1986, 111-127.

2. M. R. Ward, L. Rossol, and S. W. Holland, CONSIGHT: An adaptive robot with vision, Rob.
Today, Summer 1979, 26-32.

3. H. Edelsbrunner, H. A. Maurer, F. P. Preparata, A. L. Rosenberg, E. Welzl, and D. Wood, Stabbing
line segments, BIT 22, 1982, 274-281.

4 B. Griinbaum, On common transversals, Arch. Math., 9, 1958, 465-469.
5. M. Katchalski, T. Lewis, and A. Liu, Geometric permutations and common transversals, Discrete

and Computa. Geom. 1, 1986, 371-377.
6. H. Edelsbrunner, Finding transversals for sets of simple geometric figures, Theoret. Comput. Sci. 35,

1985, 55-69.
7. M. Atallah and C. Bajaj, Efficient algorithms for common transversals, Inform. Process. Lett. 25, No.

2, 1987, 87-90.
8. A. Tamir, Problem 4-2, Dept. of Statistics and Operations Research, New York University, in

Problems Presented at the Fourth NYU Computational Geometry Day (3 / 13 / 87), 1987.
9. J. O'Rourke, Computational geometry column No. 3, Comput. Graphics 21, No. 5, 1987, 314-315.

10. F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York, 1985.
11. H. Edesbrunner, Computing the extreme distances between two convex polygons, J. Algorithms 6,

1985, 213-224.
12. J. Stolfi, Oriented projective geometry, in Proceedings, 3rd ACM Syrup. on Computational Geometry,

Waterloo, 1987, pp. 76-85.
13. F. P. Preparata, An optimal real time algorithm for planar convex hulls, Commun. ACM 22, No. 7,

1979, 402-405.
14. M. Ben-Or, Lower bounds for algebraic computation trees in, Proceedings 15th ACM Syrup. on

Theory Comput., Boston, 1983, pp. 80-86.
15. K. Q. Brown, Geometric transforms for fast geometric algorithms, Ph.D. thesis, Rep. CMU-CS-80-101,

Dept. Computer Science, Carnegie-Mellon University, Pittsburg, PA, 1980.
16. M. I. Shamos and D. Hoey, Geometric intersection problems, in Proceedings, 17th IEEE Syrup. on

Foundations of Computer Science, Houston, 1976, pp. 208-215.

