
6726 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012

Learning Character Strings via Mastermind Queries,
With a Case Study Involving mtDNA

Michael T. Goodrich, Fellow, IEEE

Abstract—We study the degree to which a character string
leaks details about itself any time it engages in comparison proto-
cols with a strings provided by a querier, Bob, even if those pro-
tocols are cryptographically guaranteed to produce no additional
information other than the scores that assess the degree to which
matches strings offered by Bob. We show that such scenarios

allow Bob to play variants of the game of Mastermind with so
as to learn the complete identity of . We show that there are a
number of efficient implementations for Bob to employ in these
Mastermind attacks, depending on knowledge he has about the
structure of , which show how quickly he can determine . In-
deed, we show that Bob can discover using a number of rounds of
test comparisons that is much smaller than the length of , under
reasonable assumptions regarding the types of scores that are re-
turned by the cryptographic protocols and whether he can use
knowledge about the distribution that comes from. We also pro-
vide the results of a case study we performed on a database of mi-
tochondrial DNA, showing the vulnerability of existing real-world
DNA data to the Mastermind attack.

Index Terms—Character strings, Mastermind, mitochondrial
DNA (mtDNA).

I. INTRODUCTION

M ASTERMIND [1], [2] is a game played between two
players—a codemaker and a codebreaker—using col-

ored pegs.
Viewed mathematically, Mastermind is abstracted as a game

where the codemaker selects a plaintext string1 , of length
, whose elements are selected from an alphabet of size .

For consistency with the board game, the members of this al-
phabet are often referred to as “colors.” The codemaker and
codebreaker both know the values of and , and play con-
sists of the codebreaker repeatedly making guesses, ,
about the identity of . For each guess, the codemaker pro-
vides a score on how well matches . In double-countMas-
termind, which is the standard version based on the board game,
this score consists of a pair of two numbers.
1) A black count, , which is the number of elements
in and that match in both value and location. That is

Manuscript received April 13, 2010; revised October 26, 2011; accepted De-
cember 16, 2011. Date of publication July 13, 2012; date of current version
October 16, 2012. This work was supported in part by the National Science
Foundation under Grants 0724806, 0713046, and 0847968.
The author is with the Department of Computer Science, University of Cali-

fornia, Irvine, CA 92697-3435 USA (e-mail: goodrich@ieee.org).
Communicated by K. M. Martin, Associate Editor for Complexity and

Cryptography.
Digital Object Identifier 10.1109/TIT.2012.2208581

1Throughout this paper, we use the terms “string,” “sequence,” and “vector”
synonymously.

2) A white count, , which is the number of elements
in that appear in but in different locations than
their locations in . That is, letting denote an arbitrary
permutation

In single-count Mastermind, which has been less studied, the
codebreaker is given only the black count, , for each
guess, . (Note that it is impossible, in general, to solve the
problem in polynomial time given onlywhite-count scores.) The
goal is for the codebreaker to discover using a small a number
of guesses.

A. Previous Related Work

The original Mastermind game was invented in 1970 by
Meirowitz, as a board game having holes for vectors of length

and colored pegs. Knuth [2] subsequently
showed that this instance of the Mastermind game can be
solved in five guesses or less. Chvátal [1] studied the combina-
torics of general Mastermind, showing that it can be solved in
polynomial time, in the case, using
guesses, and Chen et al. [3] showed how this bound can be
improved, in this case, to
guesses. Stuckman and Zhang [4] showed that is NP-com-
plete to determine if a sequence of guesses and responses in
general double-count Mastermind is satisfiable. Goodrich [5]
shows that single-count (black-peg) Mastermind satisfiability
is NP-complete and that a specific vector can be guessed
using a single-count (black-peg) query vector that is of length

.
Several researchers have explored privacy-preserving data

querying methods that can be applied to character strings (e.g.,
see [6]–[8]). In particular, Atallah et al. [6] and Atallah and Li
[9] studied privacy-preserving protocols for edit-distance string
comparisons, such as in the longest common subsequence
(LCS) problem [10]–[12], where each party learns the score
for the comparison, but neither learns the contents of the string
of the other party. Such comparisons are common in DNA
sequence alignment comparisons, for example. Troncoso-Pas-
toriza et al. [13] described a privacy-preserving protocol for
searching for a certain regular-expression pattern in a DNA
sequence. Jha et al. [14] give privacy-preserving protocols
for computing edit distance similarity scores between two
genomic sequences, improving the privacy-preserving edit
distance algorithm of Szajda et al. [15]. Single-count matching
results between two strings can be done in a privacy-preserving
manner, as well, using privacy-preserving set intersection, e.g.,
using the method of Freedman et al. [8], Vaidya and Clifton
[16], or Sang and Shen [17], [18]. The string matching problem

0018-9448/$31.00 © 2012 IEEE

GOODRICH: LEARNING CHARACTER STRINGS VIA MASTERMIND QUERIES, WITH A CASE STUDY INVOLVING MTDNA 6727

can also be done using privacy-preserving dot product compu-
tations [19] or even general multi-party computation protocols
(e.g., see [20]–[22]) or systems [23]. Jiang et al. [24] study a
secure multiparty method for comparing a genomic sequence
against every sequence in a genomic database, providing a
score indicating the match strength between the query sequence
and each sequence in the database.
In terms of the framework of this paper, the closest previous

work is that of Du and Atallah [25], who studied a privacy-pre-
serving protocol for querying a string in a database of strings
where comparisons are based on approximate matching (but

not sequence-alignment). Their protocols assume that the par-
ties are honest-but-curious, however, so that, for instance, the
database owner cannot introduce fake strings in his database
whose intent is to discover the identity of the query string .
The attack model we explore in this paper, on the other hand,
allows for “cheating” in the comparison protocol, so that can
introduce strings whose sole purpose is to help him discover the
identity of .

B. Attack Scenarios

In this paper, we study the Mastermind attack on string data,
which is a way that a genomic querier, Bob, can “play” a type
of Mastermind game with an unknown string, —for which
’s owner, Alice, thinks that she is comparing with Bob in a

privacy-preserving manner—but instead Bob is discovering the
full identity of .
The attack scenario is that Alice repeatedly participates in

privacy-preserving comparisons of to iteratively compare
with strings provided by Bob. All that is learned from each
comparison is the score measuring the similarity of the two
strings (and a string provided by Bob), with the score for
each string comparison being revealed to Bob (and possibly also
Alice) before the next comparison begins. Bob’s goal is to learn
the complete identity of with a reasonably small number of
comparisons.
We distinguish two versions of this attack scenario. In the

first scenario, the comparison between and each string pro-
vided by Bob is scored according to the single-count (black-peg)
straight-match score

In our second scenario, which is more common in genomic
databases, the comparison between and each provided by
Bob is scored according to a sequence-alignment score

where is an ordered index set of pairs of integers so that if
appears before in , then and . This

is also known as the LCS [10]–[12] score between and .
(See Fig. 1.) Incidentally, as we observe below, Levenshtein edit
distance scores are strongly related to the LCS score, and our
attack scenarios should be able to be translated to this other
measure, as well.
There are a number of motivating usage environments that

could be susceptible to Mastermind attacks. For example, Bob
could be a genomic database owner, storing genomic strings for

Fig. 1. Illustrating two types of matches between two DNA sequences.
(a) Single-count (black-peg) straight-match. Note that the second “A” in the
bottom string is not matched, since it does not line up exactly with the second
“A” in the top string. (b) Sequence-alignment match. In going from the top
string to the bottom string, the first “C” in the top string corresponds to a
deletion event, the first “C” in the bottom string corresponds to an insertion
event, and the penultimate characters in each string correspond to a substitution
event.

a number of individuals, and Alice could be a database user who
is searching Bob’s database to find the closest match to a string
of interest. Bob could, for instance, be the owner of a data-

base of DNA from every male attending a certain university
and Alice could be an FBI agent searching through that data-
base for a match with DNA evidence gathered after a sexual
assault. Both parties in this example are likely to be under legal
restrictions not to reveal the complete identity of their strings
unless there is a match. In another example, Alice could be the
owner of a database of genomic sequences and Bob could be
an attacker trying to learn the identity of a string in Alice’s
database, e.g., which Bob can identify only by an anonymized
index, . In this case, Bob repeatedly does queries with each of
his strings, , indexing into Alice’s database using the name
“ ” to locate and get Alice to do a privacy-comparison of
with . Bob could, for instance, be an employer trying to learn
the genomic sequence of a prospective employee, Charlie, by
querying a university DNA sequence database owned by Alice,
which he could query simply knowing the index of Charlie’s
DNA in Alice’s database (e.g., Bob might be able to infer this
index from Charlie’s student number). In every case, Bob gets
to ask Alice to compare her string to each of his query strings
in a privacy-preserving manner until these comparisons have

leaked enough information that he can easily infer the identity
of .

C. Our Results

In this paper, we study various aspects of the Mastermind
attack, deriving the following results.
1) We show that the problem of determining whether a se-
quence of Mastermind responses has a valid solution is
NP-complete even if each response is a sequence-align-
ment response.
At first, this might seem to provide some security for the
privacy of the unknown string for it implies a degree
of intractability to the problem of learning a query string
just from Mastermind responses involving . Unfortu-

nately, as was learned with Knapsack cryptosystems [26],
having the security of a system be based on the difficulty
of solving an NP-complete problem is no guarantee that it
is safe in practice. Indeed, such is the case for the security
of genomic sequences being susceptible to the Mastermind
attack. We show that character strings can be discovered
by surprisingly short sequence of guesses. In particular, we
also provide the following results:

2) We show that an arbitrary query string of length
from an alphabet of size , can be discovered with

6728 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012

queries, each of which reports the result of a se-
quence-alignment (LCS) test. Such queries are common in
genomic applications. We also show that this bound can be
further improved if the distribution of characters in the al-
phabet follows Zipf’s Law [27].

3) We show how aMastermind attacker can take advantage of
known distributional information for genomic data. Armed
with distributional knowledge about a query string, , with
respect to a reference string, , such as the Revised Cam-
bridge Reference Sequence (rCRS) (GenBank accession
number: AC 000021), the Mastermind attacker can dis-
cover much quicker than in the general cases, using ei-
ther single-count or sequence-alignment responses.

4) We provide experimental analysis of the distribution-based
Mastermind attack for genomic data, showing that, for a
case study involving mitochondrial DNA (mtDNA), either
single-count responses or sequence-alignment responses,
the attack works surprisingly well. Given the relative
abundance of mtDNA data, and its ethnic sensitivity, we
focus our experiments on 1000 human mtDNA sequences,
showing that most can be discovered with a Mastermind
attack of just a few hundred guesses, even though mtDNA
sequences are typically over 16,500 bp long. Given
that current mtDNA databases already have thousands
of members (e.g., see [28]), this experimental analysis
shows that it would be relatively easy for an attacker,
Bob, to interleave an undetected Mastermind attack with
privacy-preserving responses to actual sequences.

We conclude by discussing some of the issues that would
have to be addressed in order to defeat Mastermind attacks on
genomic data, as well as some possible directions for future
research.

II. ALTERNATIVE SEQUENCE COMPARISON SCORES

Throughout this paper, we assume that the attacker, Bob, can
learn the value of either a straight-match score, , or a se-
quence-alignment score, , between the unknown string
and each of his given strings, . These are not the only types

of scores of interest with respect to genomic data, however. So,
before we discuss the privacy risks of genomic data from Mas-
termind attacks that use the or functions as scores, let us
discuss two other kinds of score functions and how they could
alternatively be used for similar attacks.
There are a number of score functions that measure the simi-

larity between two strings. We review two here, including how
they can be reduced to similarity measures using the functions
or , for comparing two strings: and .
1) Hamming distance: The Hamming distance be-
tween and is given by

That is, the two strings and are aligned in way
that disallows insertions and deletions, and a score is
computed based on the number of substitutions needed
to convert to . Note that, given a Hamming distance
score, , we can compute a straight-match score
as .

2) Levenshtein distance: The Levenshtein distance, ,
between and , which is a kind of edit distance, is
the minimum number of insertions, deletions, and substi-
tutions needed to convert into (or vice versa). Note
that, given a Levenshtein distance score, , we can
compute a sequence-alignment score as

Thus, the Mastermind attacks we mention in this paper apply
equally well to systems that support string comparisons using
Hamming distance or Levenshtein distance.

III. NP-COMPLETENESS OF SEQUENCE-ALIGNMENT
MASTERMIND SATISFIABILITY

As mentioned previously, Stuckman and Zhang [4] show
that double-count Mastermind satisfiability is NP-complete and
Goodrich [5] shows that single-count (black-peg) Mastermind
satisfiability is also NP-complete (which applies equally well
for Hamming distance).
In the sequence-alignment Mastermind satisfia-

bility problem, we are given a collection of Mas-
termind queries, , and the responses,

, each of which is said to
report the sequence-alignment (LCS) score between each
and an unknown vector, . We are asked to determine if there
indeed exists a vector that satisfies all of these responses.

Theorem 1: Sequence-alignment Mastermind satisfiability is
NP-complete.

Proof: Our proof is an adaptation of the NP-completeness
proof of Goodrich [5] showing that single-count (black-peg)
Mastermind satisfiability is NP-complete. It is easy to see that
sequence-alignment Mastermind satisfiability is in NP. For ex-
ample, we could nondeterministically guess a vector and then
test in polynomial time whether it satisfies all the responses,

.
To prove that sequence-alignment Mastermind satisfia-

bility is NP-hard, we provide a reduction from 3-D Matching
(3DM), which is a well-known NP-complete problem (e.g.,
see [29]). In the 3DM problem, we are given three sets,

, and ,
of elements each. In addition, we are given a set of
triples, , whose elements
are, respectively, taken from the three sets, , and . The
problem is to determine if there is a subset of triples such that
each element in , and appears in exactly one triple in
this subset.
Suppose, then, that we are given an instance of the 3DM

problem, as described previously. We consider the unknown
vector to consist of the following vector of variables:

where the semicolons are used for the sake of notation to sep-
arate the four sections in the unknown vector, . We perform
our reduction by constructing a sequence of guess vectors,

, together with their sequence-alignment re-
sponses, , so that there is a

GOODRICH: LEARNING CHARACTER STRINGS VIA MASTERMIND QUERIES, WITH A CASE STUDY INVOLVING MTDNA 6729

satisfying vector for these responses if and only if there is a
solution to the given instance of the 3DM problem.
Our construction begins by setting the number of colors, ,

to be . Intuitively, there is a color associated with each
triple in , plus a “null” color, , which is guaranteed to appear
nowhere in our unknown vector and a separator color which
occurs in every other (even-indexed) position of . We begin
our sequence of queries with four special “enforcer” queries.
The first two of these are

which has response , and

which has response . Intuitively, en-
forces the fact that the null color appears nowhere in the un-
known vector, and enforces the fact that the separator color,
, appears exactly often enough to separate every other (non-)
character in the unknown vector. So as to better understand the
characteristics of the other queries, let us set ,
the number of colors in our unknown vector . We then de-
fine two additional enforcer queries

which has response , and

which has response . Intuitively,
enforces a counting rule that exactly of the ’s will be set to
1, and enforces a counting rule that the remaining of
the ’s will be set to 0. For each triple, , we
construct three query vectors, as follows:

where the is in position in the first group and the 0 is
in position in the fourth group. This vector has response,

where the is in position in the second group and the 0 is
in position in the fourth group. This vector has response,

where the is in position in the third group and the
0 is in position in the fourth group. This vector has re-
sponse, . Intuitively, these three responses
collectively form a “chooser” gadget, where we will either have

or the three variables , and ,
will each be set to have color (and). Moreover,
note that there are odd-index positions in the , and each of
them has to match either a 0 or 1 color.
This reduction can clearly be done in polynomial time. So all

that remains is for us to show that it works. Suppose, then, that
there is a possible solution to the given instance of 3DM. Then,
for each chosen triple, , we can assign colors

, and , which
will satisfy each of the , and vector responses for
this value of . Likewise, setting will satisfy each of
the , and vector responses for a triple that
is not chosen. Finally, given that there are chosen vectors, we
will satisfy the four preliminary vector responses as well.
Suppose, alternatively, that we have a vector that satisfies

all our vector responses.We know that each , and must
be assigned a color other than . Moreover, every even-indexed
position in must be assigned the color and every odd-in-
dexed position must be a color other than , because there are
exactly instances of in and we have in-
troduced a query that enforces the fact that there is exactly one
non- color between every consecutive pair of -colored posi-
tions. Since there are only colors, this implies each odd-in-
dexed position , and must be assigned a
color corresponding to a triple number, , that is, it is not as-
signed or . If the corresponding , then in order
to have satisfied the vectors , and , we must have
set , and , which im-
plies we can include the triple in our matching. If

, then we do not include this triple in our matching.
By the vector responses and , we know that the number of
triples chosen in this way is exactly . Thus, we have found a
valid 3DM.

Thus, it is extremely unlikely that we will be able to find a
polynomial-time algorithm that can always find a satisfying
Mastermind sequence-alignment query string. Unfortunately,
this is not the same as a guarantee of security for the kinds of
query strings that would result from an interaction between
a Mastermind attacker, Bob, and a character string owner,
Alice, where Bob is trying to learn Alice’s string through
a sequence of privacy-preserving string comparisons. For we
show, in the sections that follow, that such query strings can
be discovered fairly efficiently using the Mastermind attack.

IV. MASTERMIND ATTACK FOR

SEQUENCE-ALIGNMENT QUERIES

Recall that in a sequence-alignment query we wish to com-
pare two strings and , where the score for a match is the
length of the LCS [10]–[12] between and . Several re-
searchers have studied this problem and have come up with pri-
vacy-preserving protocols to determine such scores (e.g., see
[6]). In this section, we show that performing such a series of

6730 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012

Fig. 2. Sequence-alignment learning algorithm.

sequence-alignment queries with Bob is susceptible to a type of
Mastermind attack of its own.
Suppose we are given an unknown string of length over

an alphabet of size , where is a constant, with the mem-
bers this alphabet called “colors.” Suppose further that we are
going to engage in a protocol with Bob to test against strings
provided by Bob, where each test returns the length of an LCS
between and one of Bob’s strings. That is, we score matches
using the sequence-alignment scoring function, , for a
guess vector , which is the length of an LCS between and .
We are interested in this section on studying an efficient scheme
for Bob to discover using this query scheme.
A Mastermind-attack algorithm for Bob begins as follows.
1) Bob begins by guessing vectors, , with
each vector consisting of elements of all the same color,
.

The subsequence alignment score for each of the initial
guesses will tell Bob the cardinality of each color in . Let
us now imagine that we reorder the colors so that they are
listed 1 to in nondecreasing order of how often they each
appear in . Thus, color 1 is now the least frequent color in
and is the most frequent color. Our algorithm continues

by incrementally building up a vector , such that either
completely matches all its characters with (in the specified
order) or it misses by just one character. Initially, we set
to be a vector consisting of exactly elements of color 1,
so that if we were to guess , then we would get a score of

. We allow indexing and insertion into so that
we can add a character before the th element in for
to (with an insertion “before” position taken
to mean an insertion just after position , the last position
in). Our algorithm for Bob’s Mastermind attack continues
shown in Fig. 2.
Note inductively that, at the end of each iteration of the while-

loop, every character in matches in , that is,
. Thus, any time the if-statement finds that ,

then we have just added an item of color in a place where it
cannot match any item without causing a previously matched
neighboring item to mismatch what it previously could match.
Therefore, in each iteration of the for-loop, the algorithm cor-
rectly finds all the places where items of color fit with respect
to items of colors 1 to . So, when the algorithm completes,
we have ; that is, we have learned .

Consider now the analysis of this algorithm. Note that in each
iteration of the while-loop, we increment , our index into ,
and that at the end of the while loop the length of is

, where is the index of the for-loop. Thus, the
total number of queries made is at most

which is the same as

since each term appears times in the double
sum. Let us perform a substitution of variables, where we let

denote the cardinalities of the colors in in
nonincreasing order, so is the most frequent color and
is the least frequent. Then, we can rewrite the total number of
queries performed to be bounded by

Note that, by definition, , for otherwise, could not
be the th largest cardinality color. Thus, the total number of
queries is at most

This is the number of tests done by Bob, the Mastermind at-
tacker, making no additional assumptions about the distribution
of colors in the query string, .
This analysis can be refined, however, if the colors are dis-

tributed in according to Zipf’s Law [27], which in this con-
text would imply that

where is the th Harmonic number of order

and is between 1 and 2, inclusive. In this case, the total number
of guesses done by Bob would be at most

for . Thus, we have the following.

Theorem 2: Given an unknown length- string , defined
on an alphabet of size , where is a constant, a malicious
Mastermind attacker can discover in polynomial time using

sequence-alignment tests against , each of which
reveals only the length of an LCS between and the test string
match. If the cardinalities of elements of follow Zipf’s Law,
with parameter , then a maliciousMastermind attacker can

GOODRICH: LEARNING CHARACTER STRINGS VIA MASTERMIND QUERIES, WITH A CASE STUDY INVOLVING MTDNA 6731

discover using at most sequence-alignment
tests.

V. EXPLOITING DATA DISTRIBUTIONS

Up to this point, we have focused on how the Mastermind
attacker, Bob, could learn a general string using the types
of queries typically asked of genomic databases, even if those
queries are privacy preserving. In this section, we explore how
Bob can significantly improve the effectiveness of the Master-
mind attack if he exploits information, which is publicly avail-
able, about the distributions of the character strings of interest.
Moreover, to drive the point home, we provide a case study
showing the effectiveness of such Mastermind attacks on a real-
world genomic database, in the section that follows.
Genomic sequences typically have a great deal of similarity.

Indeed, recent compression schemes have shown that it is ef-
fective to view a genomic sequence with respect to a compres-
sion scheme that represents a sequence in terms of its differ-
ences with a reference sequence, (e.g., see [30]). That is, we
can start from a reference sequence, , which contains the most
common components of a typical genomic sequence. Then, we
define each other sequence, , in terms of its differences with
. Each difference is defined by an index location, , in and

an operation to perform at that location, such as a substitution,
insertion, or deletion.
This difference pattern is present, for example, in human

mtDNA, which is the type of genomic data we use in our case
study. This type of DNA, which, as we have already mentioned,
is inherited only through the maternal line and is already avail-
able in sequenced form in sizeable enough quantities to support
obfuscated Mastermind attacks. Moreover, because it is passed
only though the maternal line, it functions as a highly tuned
notion of race, allowing researchers in some cases to trace a
person’s ancestry to individual villages. Thus, mtDNA is highly
sensitive from a privacy-protection viewpoint.
As shown in recent work of Baldi et al. [30], mtDNA se-

quences can be encoded in significantly compressed form by
using a standard reference sequence [31], [32]. This reference
sequence, , is 16 568 bp long. So, in terms of the no-
tation used above, we have and , since there
are four types of base pairs possible. But these parameters sug-
gest that there is more variation in the data than actually occurs.
In fact, the vulnerability of DNA sequences to the Master-

mind attack is much worse than this in practice. For example,
there are a limited number of locations along the reference se-
quence where any changes appear statistically in the mtDNA
data. So let us use to denote the number of different pos-
sible locations where any query sequence might differ from
the reference sequence, . Worse yet, from a privacy-preserva-
tion standpoint, the average number of difference between any
human DNA sequence and the reference is orders of magnitude
smaller than in practice. (We explore these statistics in de-
tail below.) Here we show how a Mastermind attack can exploit
these statistical properties of genomic data.

A. Substitution-Only Case

In this section, we explore the version of the Mastermind at-
tack where the attacker, Bob, engages in a series of privacy-pre-

serving protocols with Alice, each of which reveals only the
single-count straight-match score betweenAlice’s string, , and
strings provided by Bob, in an iterative online fashion [recall
Fig. 1(a)]. In the attack model, we consider, Bob is allowed to
use self-constructed sequences in comparisons with , from
which he learns the value of for each of his query
strings, .
Given additional knowledge of the distributional properties

of DNA data, we can construct a Mastermind attack to take
this knowledge into consideration. In this case, we make the as-
sumption that the unknown string, , differs from a reference
string only through a relatively small number substitutions,
which is true for example, for 45% of the mtDNA data. (We
will explore the more general case later in this section.)
Our algorithm is an adaptation of an algorithm of Goodrich

[5] for solving the board game version of Mastermind to the
specific case of a Mastermind attack on a string relative to a
reference string .
We begin the attack for Bob by having him perform a query

against with a reference sequence, . For any string, , let
denote the number of substitutional differences has with

the reference sequence, . Note, then, that our first query (for
the reference string itself) allows us to determine the value of

, using the formula

For example, could be a genomic sequence derived from a se-
quencing of the DNA of a specific reference human or it could
be a canonical genomic reference sequence derived from an-
alyzing commonalities among a number of human sequences.
Even though few humans have presently had their complete
genomes sequenced [33]–[35], any of these could serve as a
reference for a Mastermind attack on a complete genome
sequence. For the more wide-spread instances of mtDNA, the
rCRS (GenBank accession number: AC 000021) is commonly
used as a mtDNA reference sequence [31], [32], [36], and it
could serve as the sequence in a Mastermind attack on a
mtDNA sequence.
Imagine that we cyclically order the characters in our al-

phabet, so, for instance, if our alphabet is , then
we could use the cyclic ordering .
Note that this ordering allows us to choose any character as a
base color, i.e., a “color 0,” and then specify all other characters
as offsets from that base. For example, in the DNA case, we
could pick “C” as the base, color 0, in which case “G” becomes
color 1, “T” becomes color 2, and “A” becomes color 3. Or we
could pick “T” as the base, color 0, in which case “A” becomes
color 1, “C” becomes color 2, and “G” becomes color 3.
In the context of a Mastermind attack, we consider each char-

acter, , in the reference sequence, , to be color “0” for that
position, . Viewed mathematically, we can then number the

remaining characters, according to our cyclic ordering,
as offsets from these respective color 0’s. Assuming that Bob’s
first guess, of , is not a perfect match for the query sequence,
, then we can view Bob’s remaining task as that of determining

the cardinality and location of all the nonzero offset values for
positions in . In fact, if we think of the characters in the respec-

6732 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012

tive positions of as the respective color 0’s for those positions,
then we can view the remaining task as that of determining the
locations of the colors 0 through .
After Bob makes his initial guess using , we then have him

perform additional queries, each of which is a vector of
elements that are all the same offset from , i.e., a vector of all
the same “colors” with respect to , but only at the places
that are statistically possible locations for a substitution. Thus,
let us assume we can view as now consisting of just the
places where substitutions may occur (for the other locations
we simply repeat a guess for color 0 every time). This allows
us to initially know the cardinality, , of every
(offset) color in the (compressed) unknown vector, . If any

, then we remove the color from our alphabet of colors,
and update the value of accordingly. The remainder of Bob’s
computation proceeds as a recursive divide-and-conquer algo-
rithm, which is similar in structure to the approach of [1] and
[5].
The generic problem is to determine the offset values of all

the elements in a range , which initially is the entire
vector , assuming we know the values of

, of every color in , and each . If
, we are done; so let us assume without loss of generality

that . In addition, we assume inductively that we know, ,
the number of instances of color 0 outside of the range .
Initially, of course, .
Given this initial setup, we split into and

, where is in the middle of the interval . The
main challenge, then, is to provide for and
the same setup we had for . This setup can be accom-
plished by determining the cardinalities, and

, of every color that respectively appears in
and . We do this with a series of ad-

ditional queries, where we guess that the elements in
are of color , for , and that the rest of
is of color 0. Let the values of these queries be denoted

as , and note that, at this point, we know the
following:

(1)

(2)

(3)

Thus, we can determine , as

for is counted times in the sum of and all the ’s,
and the sum of the ’s is , by (3). Given the value of
, we can then determine all the values, by using (1) for

and (2) for . Moreover, once we have all these
values, we can determine the values, , using

(1). Finally, we can determine the values and
and use these respectively for the role of in

and . This gives us all the values necessary to then
recursively determine and . Of course, if
the values for either of these subproblems are all 0, except
for one (which would be equal to the size of this problem), then

there is no need to recursively solve this problem; so we would
not perform a recursive call in this case.
Let us, therefore, analyze the number of vector guesses per-

formed by this algorithm. Ignoring for the time being the initial
set of guesses, note that we only continue to search if we are
guaranteed to be honing in on a substitution. Thus, adding back
the initial guesses, we get that the total number of guesses is
at most

Thus, we have the following.

Theorem 3: Given an unknown length- sequence , de-
fined on an alphabet of size , where is a constant, with
having possible locations of deviation from a reference

sequence, , a malicious Mastermind attacker can discover
in polynomial time using guesses, each of
which reveals only the number of positions where and the test
sequence match and where denotes the number of substi-
tutions that would transform into .
As we note in Section VI, this performance is more than ad-

equate to show that nearly half of all mtDNA data in our case
study are vulnerable to this version of the Mastermind attack.
Before we provide those statistics, however, let us study how
the Mastermind attack with sequence-alignment queries can be
streamlined to exploit DNA data distributions.

B. Sequence-Alignment Case

Asmentioned previously, roughly half of the sequences in the
mtDNA dataset include insertions and/or deletions in addition
to substitutions in the reference sequence . Thus, we discuss
in this section how we can modify the Mastermind attack algo-
rithm of Section IV to take advantage of the distributional prop-
erties common in genomic datasets, so as to discover a query
sequence that can have arbitrary kinds of differences with the
reference sequence, . In this case, we view differences with
procedurally as events, each of which is either a singleton dele-
tion, or an arbitrary-length insertion, which would transform
into the query sequence . (Note: for this algorithm, we view
a substitution as actually occurring as a deletion event followed
by an insertion event.)
In this case, we run the attack algorithm in two phases. In

Phase 1, we aim to discover all the deletion events, and in Phase
2, we aim to discover all the insertion events. In both phases,
we make the simplifying assumption that insertion and dele-
tion events are disjoint. That is, they do not overlap or inter-
fere with one another. This assumption is based on the fact that
these events come from a statistical characterization of genomic
sequences, which is designed to keep events disjoint (for over-
lapping events are better subdivided further and considered as
separate sub-events). So, for example, we assume that there is
no insertion event that is then followed by a deletion event that
then removes part of the sequence that was just inserted.
We begin by performing a guess for the reference sequence
. Armed with the sequence-alignment score, , for ,

we then perform a divide-and-conquer computation to find all
the deletion events that occur in going from to . Note that if
we next perform a guess for a collection of deletion events at

GOODRICH: LEARNING CHARACTER STRINGS VIA MASTERMIND QUERIES, WITH A CASE STUDY INVOLVING MTDNA 6733

some subset of the statistically possible (deletion) locations
in , then we can detect how many deletions actually occurred
at these locations. Moreover, note that the insertion events do
not change this score, since the insertions and deletions do not
interfere, by assumption. For each deletion event that is present
in one of the queried locations, our score will not change with
respect to the score for , and for each location that should
not be deleted, we will record a score for that is one worse
than that for . Thus, we can determine the number of deletion
events for any test we do by the difference between the score
we observe and the score we would expect if all of the dele-
tions are removing actual matches. That is, if we test for sin-
gleton deletion events in , then the number that actually occur
is , where is the sequence-alignment
score function.
Let be a set of Boolean variables,

such that is 1 if and only if the th statistically possible
deletion event in actually occurs in going from to .
We can perform a divide-and-conquer search in to
determine which of the ’s are 1. We begin by testing for
all the deletion events in . This gives us the number of
1’s in . We then perform a test for every deletion event
in , which by deduction gives us
the number in . We then
recursively determine the number in either or both of these
two sets so long as there is at least one deletion event in that
set. Thus, we perform a divide-and-conquer parallel “binary”
search for each of the exact locations of singleton deletions.
Once we have completed this computation for , with queries
against , we will have determined the locations of all the
deletion events from to , including those deletions that are
really substitution events. Thus, this set of guesses uses at most

tests, where is the set of (singleton)
deletion events in going from to .
Once we know the locations of all the deletions in going from
to , we perform a second set of binary searches, just among

these locations, to find the locations among this group that are
actually the sites of substitution events. Let us now define to
be the reference sequence resulting from performing the events
we discovered in Phase 1. In particular, we perform a binary
search for each of the colors, with respect to , searching,
for each color , in the statistically possible insertion locations
in where we improve our score by adding a single character
of color . Note that there may be more than a single character of
color inserted at this location, but it is sufficient to do a single
character query to determine that there is an insertion here, since
there is a nondeleted element between every possible insertion
location in .
Since we continue to perform recursive binary-type searches

for any insertion locations that actually cause insertions, the set
of additional guesses we do in this part of the second phase is at
most , where is the number of insertion
events.
At this point in the algorithm, we knowwhere all the insertion

events are located, but we do not know the full extent of each of
their sizes. So for each location, we perform a set of guesses
of length 2 to see if we get a higher score by considering a longer
insertion. If there are no differences from the singleton queries,

then we can infer the length of the insertion from the previous
queries. Otherwise, we perform a set of guesses of length
3, 4, and so on, until we observe no change from the previous
set of guesses. Thus, with a total number of guesses equal to

, where is the total size of all the insertion events,
we discover the length of each insertion event. To complete the
computation, we perform a miniature version of our algorithm
from Section IV at each location determined to be to site of
an insertion event. Each such computation requires
guesses, where is the length of the insertion. Thus, the total
number of guesses made in this part of Phase 2 is .
Therefore, we have the following.

Theorem 4: Given an unknown length- sequence , de-
fined on an alphabet of size , with having possible lo-
cations of deviation from a reference sequence, , a malicious
Mastermind attacker can discover in polynomial time using

guesses, each of
which reveals only the number of positions where and the test
sequence match, using sequence-alignment LCS tests, where:
1) is the number of deletion events;
2) is the number of insertion events;
3) is the total length of all insertion events.

VI. CASE STUDY FOR MTDNA

We are at the point where hundreds of thousands of people
have had their mtDNA sequenced [28], [37], which is typically
about 16 500 base pairs (bp) long, whereas the entire diploid
human genome is roughly 6 billion bp long. Interestingly, since
mtDNA is transferred only along the maternal line, scientists
have used differences from a reference mtDNA sequence as
a way to plot human migration from the earliest days of the
modern human species. (See Fig. 3.)
Because of this knowledge of migration patterns and its cor-

relation to known mtDNA mutations, given someone’s mtDNA
sequence, it is possible to trace their maternal ancestry back to
individual villages [28], just by identifying differences in their
mtDNA to a reference sequence, e.g., rCRS (see Fig. 4). In other
words, mtDNA alone is sufficient to determine a person’s ethnic
background with incredible accuracy. Thus, we are at a point
where privacy is a real concern with respect to genomic se-
quences, and this concern is sure to increase in the future.
In addition to ethnicity, there are, of course, other privacy

concerns with respect to genomic data, including sensitive in-
formation related to disease susceptibility, and possible genetic
influences on sexual orientation, personality, addiction, and in-
telligence. Concerns that employers or insurers will use genetic
information to screen those at high risk for a disease are already
a public concern and stories involving such risks are widespread
in the press. Indeed, the U.S. government and several states have
already created laws dealing with DNA data access, and many
more are considering such legislation. Thus, there is a need for
technologies that can safeguard the privacy and security of ge-
nomic data.
Fortunately, several researchers have started exploring pri-

vacy-preserving data querying methods that can be applied to
genomic sequences (e.g., see [6]–[8]). That is, cryptographic
techniques can be used to allow for queries to be performed

6734 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012

Fig. 3. Confluent illustration [38] of the pattern of human migration implied by mtDNA mutations [28], [37]. Each letter stands for a major human mitochondrial
haplogroup, that is, a canonical set of genetic mutations from a common ancestor.

Fig. 4. Portion of the rCRS (GenBank accession number: AC 000021), which
is 16 568 bp long.

in a way that answers the specific question—such as a score
rating the quality of a query for DNA matching or sequence
alignment—but does not reveal any other information about the
data, such as race or disease risk of the individual whose DNA
is being queried.
The purpose of this case study is to show that, while being

sufficient for single-shot comparisons of DNA sequences,
such cryptographic techniques have a weakness when they are
employed repeatedly. Specifically, we explore in this section
how the Mastermind attack allows a genomic querier, Bob,
to iteratively discover the full identity of a genomic query
sequence with surprising efficiency, even if each compar-
ison of with Bob’s sequences are done using cryptographic
privacy-preserving protocols. It is not surprising that iterated
privacy-preserving sequence comparisons leak some informa-
tion about the sequences being compared; what is surprising
is how quickly the Mastermind attack can work, especially on
genomic data.

TABLE I
FREQUENCY STATISTICS FOR 1000 MTDNA SEQUENCES. MEAN AND STANDARD
DEVIATION STATISTICS ARE GIVEN FOR THE FREQUENCY OF SUBSTITUTIONS,
DELETIONS, AND INSERTIONS IN GOING FROM THE REFERENCE SEQUENCE,

, TO EACH SAMPLED SEQUENCE

To demonstrate the vulnerability of real-world DNA data
to the Mastermind attack, we have performed a case study
of our distribution-based Mastermind attack algorithms. We
used 1000 human mitochondrial sequences downloaded from a
recent version of GenBank (http://www.ncbi.nlm.nih.gov/Gen-
bank/index.html). We focused on the sequences alone, ignoring
any header and other information, and have simulated Mas-
termind attacks on each one. The rCRS (GenBank accession
number: AC 000021) was also downloaded and used as the
reference sequence [31], [32], [36]. The reference sequence is
16,568 bp long. All the sequences were aligned to the reference
sequence and, for each sequence, the indices of the location
of each variation were recorded together with the type (substi-
tution, insertion, deletion) and content of each variation. This
step is also essential if one is interested in compressing the
data [30], for example. Statistics for the number of substitu-
tions, deletions, and insertions for this dataset of 1000 mtDNA
sequences is given in Table I.
Of the 1000 sequences, 453 have only substitution events

with respect to the reference sequence, . So we used
this subset of 453 sequences to test the simulated performance

GOODRICH: LEARNING CHARACTER STRINGS VIA MASTERMIND QUERIES, WITH A CASE STUDY INVOLVING MTDNA 6735

Fig. 5. Histogram of number of substitutions in 1000 mtDNA with respect to
the reference sequence .

of the method of Theorem 3. The distribution of the number of
substitutions in each of these sequences is shown in Fig. 5.
Note that these frequencies do not follow a normal distribu-

tion, which shows the importance of our using real-world data,
such as this, rather than randomly generated or simulated data.
The statistical diversity of the mtDNA data is actually a reflec-
tion of the racial diversity of the people whose mtDNA data
are included in our dataset. That is, edit distance from the ref-
erence sequence, , across the human species, is not
uniformly or normally distributed. Instead, edit distance from
rCRS is a reflection of human migration patterns, as illustrated
in Fig. 3.
The 45.3% of the sampled mtDNA sequences with substi-

tution-only modifications from rCRS are exactly the set of se-
quences that can be effectively discovered by the single-count
Mastermind attack of Theorem 3. Thus, we simulated the per-
formance of this attack on each one of these sequences and tab-
ulated the number of guesses that would be needed in each case
in order to discover the complete identity of each sequence. In-
terestingly, 90% of the simulated substitution-only Mastermind
attacks completed with 375 guesses or less. The complete distri-
bution of single-countMastermind attack lengths for this dataset
are shown in Fig. 6.
All 1000 sampled mtDNA sequences were then used to test

the performance of the method of Theorem 4. Sequence-align-
ment Mastermind attacks were simulated for each such mtDNA
sequence while the number of sequence-alignment tests were
counted for each. Interestingly, 90% of these simulated sub-
sequence-alignment Mastermind attacks completed with 875
guesses or less. And some completed with much fewer than this.
The complete distribution of sequence-alignment Mastermind
attack lengths for this dataset is shown in Fig. 7.

VII. DISCUSSION AND FUTURE DIRECTIONS

We have shown that, even though the single-count and
sequence-alignment Mastermind satisfiability problems are
NP-complete, one can effectively mount Mastermind attacks
on arbitrary genomic sequences just by knowing basic infor-
mation about the length of the sequences and the number of
characters in the alphabet used to construct those sequences.

Fig. 6. Histogram of Mastermind attack lengths for 453 substitution-only
mtDNA sequences with standard single-count Mastermind scores. The mean
attack length for this dataset was 219.6 and the standard deviation was 139.1.

Fig. 7. Histogram of simulated Mastermind attack lengths for 1000 mtDNA
sequences with sequence-alignment scores. The mean sequence-alignment sim-
ulated Mastermind attack length was 536.3 with a standard deviation of 373.9.

Moreover, if one has some basic statistical information about
these sequences, relative to a reference sequence, then one can
mount the Mastermind attack with surprising effectiveness.
In fact, we provided a case study suggesting that such attacks
are already possible and surprisingly efficient for mtDNA
sequences.
One conclusion to draw from this work is that privacy-pre-

serving protocols for performing a query with a sequence
against a genomic database should take into account the entire
set of comparisons [25], with and the sequences in , rather
than relying on the privacy-preservation of each individual com-
parison in turn. For example, in the usage model where Bob is
a user querying a genomic database, the Mastermind attack is
weakened if it is difficult for Bob to know the index of the se-
quences he is comparing against—for example, if the database
owner, Alice, presents her sequences in a different random order
each time. Such an obfuscation does not defeat the Mastermind
attack, however, if Bob is able to use other reasoning inferences
to match scores of his query sequences across multiple queries
in Alice’s database of sequences.

6736 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 11, NOVEMBER 2012

In terms of further exploration of the vulnerability of ge-
nomic data to the Mastermind attack, one interesting direction
for future work would be to test the vulnerability of entire
human genomes to the Mastermind attack, once we have
enough completed genomes to do such an experimental study.
In addition, other directions for future research, therefore, could
include new efficient privacy-preserving schemes for querying
entire genomic databases with respect to sequence-alignment
queries. Such results would negate the privacy-exposing vul-
nerabilities of the Mastermind attack.

ACKNOWLEDGMENT

We would like to thank Pierre Baldi for suggesting the secu-
rity of genomic data as an important research question and for
providing the mtDNA data used in our experiments, including
the characterizations in terms of the reference sequence, rCRS.
We would also like to thank Denon Cheung, David Eppstein,
Daniel Hirschberg, Stas Jarecki, and Kerim Oktay for helpful
discussions regarding the topics of this paper. Some of the re-
sults of this paper appeared in preliminary form as [39], albeit
with some flawed arguments for justifying previous versions of
Theorems 2 and 4.

REFERENCES

[1] V. Chvátal, “Mastermind,” Combinatorica, vol. 3, no. 3/4, pp.
325–329, 1983.

[2] D. Knuth, “The computer as a master mind,” J. Recreat. Math., vol. 9,
pp. 1–5, 1977.

[3] Z. Chen, C. Cunha, and S. Homer, “Finding a hidden code by asking
questions,” in Proc. 2nd Annu. Int. Conf. Comput. Combinat., 1996,
vol. 1090, pp. 50–55.

[4] J. Stuckman and G.-Q. Zhang, Mastermind is NP-complete 2005 [On-
line]. Available: http://arxiv.org/abs/cs/0512049

[5] M. T. Goodrich, “On the algorithmic complexity of the mastermind
gamewith black-peg results,” Inf. Process. Lett., vol. 109, pp. 675–678,
2009.

[6] M. J. Atallah, F. Kerschbaum, and W. Du, “Secure and private se-
quence comparisons,” in Proc. ACMWorkshop Privacy Electron. Soc.,
New York, 2003, pp. 39–44.

[7] W. Du and M. J. Atallah, “Secure multi-party computation problems
and their applications: A review and open problems,” in Proc. Work-
shop New Security Paradigms, New York, 2001, pp. 13–22.

[8] M. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in Proc. Adv. Cryptol., 2004, pp. 1–19.

[9] M. J. Atallah and J. Li, “Secure outsourcing of sequence comparisons,”
Int. J. Inf. Secur., vol. 4, no. 4, pp. 277–287, 2005.

[10] D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences,” Commun. ACM, vol. 18, no. 6, pp. 341–343,
1975.

[11] C. S. Iliopoulos and M. S. Rahman, “Algorithms for computing vari-
ants of the longest common subsequence problem,” Theor. Comput.
Sci., vol. 395, no. 2–3, pp. 255–267, 2008.

[12] J. D. Ullman, A. V. Aho, and D. S. Hirschberg, “Bounds on the com-
plexity of the longest common subsequence problem,” J. ACM, vol. 23,
no. 1, pp. 1–12, 1976.

[13] J. R. Troncoso-Pastoriza, S. Katzenbeisser, andM. Celik, “Privacy pre-
serving error resilient dna searching through oblivious automata,” in
Proc. 14th ACMConf. Comput. Commun. Security, 2007, pp. 519–528.

[14] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for
genomic computation,” in Proc. IEEE Symp. Security Privacy, 2008,
pp. 216–230.

[15] D. Szajda, M. Pohl, J. Owen, and B. G. Lawson, “Toward a practical
data privacy scheme for a distributed implementation of the Smith-
Waterman genome sequence comparison algorithm,” presented at the
Netw. Distrib. Syst. Security Symp., 2006.

[16] J. Vaidya and C. Clifton, “Secure set intersection cardinality with ap-
plication to association rule mining,” J. Comput. Security, vol. 13, no.
4, pp. 593–622, 2005.

[17] Y. Sang and H. Shen, “Privacy preserving set intersection protocol se-
cure against malicious behaviors,” in Proc. 8th Int. Conf. Parallel Dis-
trib. Comput., Appl. Technol., 2007, pp. 461–468.

[18] Y. Sang and H. Shen, “Privacy preserving set intersection based on
bilinear groups,” in Proc. 31st Australasian Conf. Comput. Sci., 2008,
pp. 47–54.

[19] A. Amirbekyan and V. Estivill-Castro, “A new efficient privacy-pre-
serving scalar product protocol,” in Proc. 6th Australasian Conf. Data
Mining Analytics, 2007, pp. 209–214.

[20] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Uncondition-
ally secure constant-rounds multi-party computation for equality, com-
parison, bits and exponentiation,” in Theory of Cryptography, ser. Lec-
ture Notes in Computer Science, S. Halevi and T. Rabin, Eds. New
York: Springer, 2006, vol. 3876, pp. 285–304.

[21] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in Proc. 19th Annu. ACM Symp. Theory Comput., 1987, pp.
218–229.

[22] A. C. Yao, “Protocols for secure computations,” in Proc. 23rd Symp.
Found. Comput. Sci., 1982, pp. 160–164.

[23] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP—A system for
secure multi-party computation,” in Proc. ACM Comput. Commun. Se-
curity Conf., 2008, pp. 257–266.

[24] W. Jiang, M. Murugesan, C. Clifton, and L. Si, “Similar document de-
tection with limited information disclosure,” in Proc. IEEE Int. Conf.
Data Eng., 2008, pp. 735–743.

[25] W. Du and M. J. Atallah, “Protocols for secure remote database access
with approximate matching,” in E-Commerce Security and Privacy:
Advances in Information Security, A. K. Ghosh, Ed. Norwell, MA:
Kluwer, 2001, vol. 2, pp. 87–112.

[26] A.M.Odlyzko, “The rise and fall of knapsack cryptosystems,” inCryp-
tology and Computational Number Theory, C. Pomerance, Ed. Prov-
idence, RI: Amer. Math. Soc., 1990, pp. 75–88.

[27] M. Newman, “Power laws, Pareto distributions, and Zipf’s law,” Con-
temporary Phys., vol. 46, no. 5, pp. 323–351, 2005.

[28] D. M. Behar1, S. Rosset, J. Blue-Smith, O. Balanovsky, S. Tzur1, D.
Comas, R. J. Mitchell, L. Quintana-Murci, C. Tyler-Smith, and R. S.
Wells, “The genographic project public participation mitochondrial
DNA database,” PLoS Genet., vol. 3, no. 6, 2005.

[29] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: Freeman, 1979.

[30] P. Baldi, R. W. Benz, D. Hirschberg, and S. Swamidass, “Lossless
compression of chemical fingerprints using integer entropy codes im-
proves storage and retrieval,” J. Chem. Inf. Model., vol. 47, no. 6, pp.
2098–2109, 2007.

[31] M. Brandon, M. Lott, K. Nguyen, S. Spolim, S. Navathe, P. Baldi,
and D. Wallace, “MITOMAP: A human mitochondrial genome data-
base—2004 update,” Nucleic Acids Res., vol. 33, pp. D611–D613,
2005.

[32] E. Ruiz-Pesini, M. T. Lott, V. Procaccio, J. Poole, M. C. Brandon, D.
Mishmar, C. Yi, J. Kreuziger, P. Baldi, and D. C. Wallace, “An en-
hanced MITOMAP with a global mtDNA mutational philogeny,” Nu-
cleic Acids Res., vol. 35, pp. D823–D828, 2007.

[33] J. C. Venter et al., “The sequence of the human genome,” Science, vol.
291, pp. 1304–1351, 2001.

[34] I. H. G. S. Consortium, “Initial sequencing and analysis of the human
genome,” Nature, vol. 409, pp. 860–921, 2001.

[35] S. Levy et al., “The diploid genome sequence of an individual human,”
PLOS Biol., vol. 5, no. 10, pp. 2113–2144, 2007.

[36] M. C. Brandon, E. Ruiz-Pesini, D. Mishmar, V. Procaccio, M. T. Lott,
K. C. Nguyen, S. Spolim, U. Patil, P. Baldi, and D. C. Wallace, “MIT-
OMASTER: A bioinformatics tool for the analysis of mitochondrial
DNA sequences,” Human Mutation, vol. 0, pp. 1–6, 2008.

[37] B. Pakendorf andM. Stoneking, “Mitochondrial DNA and human evo-
lution,” Annu. Rev. Genom. Hum. Genet., vol. 6, pp. 165–183, 2005.

[38] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Meng, “Confluent
drawings: Visualizing non-planar diagrams in a planar way,” in Proc.
11th Int. Symp. Graph Draw., 2003, vol. 2912, pp. 1–12.

[39] M. T. Goodrich, “The mastermind attack on genomic data,” in Proc.
IEEE Symp. Security Privacy, 2009, pp. 204–218.

Michael T.Goodrich (F’86) is a Fellow of the IEEE and Chancellor’s Professor
at the University of California, Irvine, where he has been a faculty member in
the Department of Computer Science since 2001. He received his B.A. in Math-
ematics and Computer Science from Calvin College in 1983 and his Ph.D. in
Computer Sciences from Purdue University in 1987, and he worked as a pro-
fessor in the Department of Computer Science at Johns Hopkins University from
1987–2001. His research is directed at algorithms for solving large-scale prob-
lems motivated from information assurance and security, the Internet, informa-
tion visualization, and geometric computing.

