
Nonadaptive Mastermind Algorithms for String
and Vector Databases, with Case Studies

Arthur U. Asuncion and Michael T. Goodrich, Fellow, IEEE

Abstract—In this paper, we study sparsity-exploiting Mastermind algorithms for attacking the privacy of an entire database of

character strings or vectors, such as DNA strings, movie ratings, or social network friendship data. Based on reductions to nonadaptive

group testing, our methods are able to take advantage of minimal amounts of privacy leakage, such as contained in a single bit that

indicates if two people in a medical database have any common genetic mutations, or if two people have any common friends in an

online social network. We analyze our Mastermind attack algorithms using theoretical characterizations that provide sublinear bounds

on the number of queries needed to clone the database, as well as experimental tests on genomic information, collaborative filtering

data, and online social networks. By taking advantage of the generally sparse nature of these real-world databases and modulating a

parameter that controls query sparsity, we demonstrate that relatively few nonadaptive queries are needed to recover a large majority

of each database.

Index Terms—Mastermind algorithms, privacy leaks, data cloning, combinatorial group testing, nonadaptive attacks

Ç

1 INTRODUCTION

PRIVACY and data protection are important and growing
concerns when dealing with character strings or vector

data. Medical databases are constrained by Health Insurance
Portability and Accountability Act (HIPAA) rules to keep
identifying data private, for instance. Such databases in the
future will commonly store DNA strings of patients, which
will need to have their privacy protected for obvious reasons.
Likewise, attribute vectors, which reflect the presence or
absence of each of a large number of possible attributes, are
common in biotechnology; for example, chemical attribute
vectors (e.g., see [1], [2]) indicate the presence or absence of
each of about a million attributes.

Privacy concerns also exist for online social networks
and other databases which store user preferences in vector
form. For instance, knowledge of a social network user’s set
of friends (representable as a row in an adjacency matrix) is
potentially a gateway privacy leak, for friendship overlaps
have been shown to be sufficient to deanonymize indivi-
duals across multiple social networking sites [3]. Likewise,
the movie rating vectors in the database used for the Netflix
Prize contest consist of ratings of movies by individual
users, which are generally deemed as sensitive information.
Full access to such databases may be constrained by privacy
agreements or legitimate proprietary reasons for keeping
these databases private, even as they allow for limited types
of queries to be performed on them.

Each time a client queries such a database and it responds
with an answer, it reveals some information about its
contents, even if the client and the database are using a

Secure Multiparty Computation (SMC) protocol (e.g., see
[4], [5], [6], [7], [8], [9], [10], [11]) to process such a query.
Thus, we can provide a crude characterization of the risk of
privacy loss in biological, medical, or proprietary databases
in terms of the existence of efficient algorithms that can take
advantage of the data leakage present in query responses to
be able to replicate part or all of the content of the database.
We refer to such schemes as data-cloning attacks.

Formally, in an algorithmic data-cloning attack, a querier,
Bob, is allowed certain types of queries to a database, X ,
that belongs to a data owner, Alice. Bob’s goal is to replicate
all or a large part of X through as few queries on X as
possible (and with low-computational overhead). In this
paper, we focus on databases where X is a collection X ¼
ðX1; X2; . . . ; XgÞ of character strings or vectors, over a fixed-
size alphabet. With respect to the types of databases we
consider, we assume that Alice is willing to process
comparison queries from Bob, each of which consists of
Bob providing a single vector Q (which is not necessarily
revealed in plaintext to Alice) and, possibly using a SMC.
Alice reveals a response vector ðr1; r2; . . . ; rgÞ, where each ri
is the score for some type of comparison of Q with Xi. In the
simplest case, each score ri can be a single bit denoting
whether the query Q shares any common entries with Xi.
As mentioned above, the risk to this data-cloning attack,
then, can be characterized by the number of queries and
how much processing time is needed so that Bob can
replicate all of X or a large portion of X .

1.1 Our Contributions

Inspired by a game known as Mastermind, we present a
number of algorithms for performing a Mastermind attack on
an entire string or vector database, X ¼ ðX1; X2; . . . ; XgÞ, so
as to clone all or a large portion of X . All of our methods
assume only the SMC protocol of Jiang et al. [8], where a
querier, Bob, issues a query string or vector, Q, and receives
a vector of responses ðr1; r2; . . . ; rgÞ, where each ri is a single
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numerical response score measuring the similarity of Q and
Xi according to some public metric. Since vectors taken
over a universe of size c can be viewed as character strings
taken over an alphabet of size c, we will, without loss of
generality, focus our descriptions on the case when X
consists of g character strings. We will also assume that each
string in X is the same length, since we can view smaller
strings as being padded with an additional character not in
the original alphabet.

We show that repeated querying of such a database can
clone all or a large portion of it, often with a surprisingly
small, sublinear number of queries. The risk profile we
explore in each type of attack, then, is the number of queries
needed to execute it. Specifically, let us suppose that X
contains g strings, each of length n, taken over an alphabet
of size c, with at least g0 � g of these strings having at most
d < n differences from a public reference string, R (also of
length n). We show that at least g0 of the strings in X can be
cloned using (at most) the following number of queries:

2ðc� 1Þð2d lognþminfd log g; d2 logðen=dÞgÞ:

This result applies to situations, common in many real-
world databases (e.g., [1], [2], [12]), where strings in the
database can be characterized in terms of a small number of
differences with a reference string, R.

We also provide several case studies showing empirical
data that demonstrates that our randomized attack can
work effectively on real-world databases. For instance, we
apply our attack to a database of mitochondrial DNA
(mtDNA) strings and the database of movie-ratings vectors
provided for the Netflix Prize contest, showing that large
portions of these databases can be cloned using a number of
queries that is much smaller than the length of the strings or
vectors in these databases.

If, in practice, Bob learns more than the information
contained in the response vector ðr1; r2; . . . ; rgÞ, that only
strengthens his attack. The point of this paper is that even
with just the information leaked in the responses, Bob can
construct a small number of query vectors that are sufficient
to learn all or a sizeable fraction of the vectors in X .
Moreover, our Mastermind attack is oblivious (that is,
nonadaptive), in that Bob can construct all his query vectors
in advance, so that the format of no query depends on the
outcome of another. We describe a randomized construc-
tion for Bob’s query vectors, which allows the attack to be
fairly surreptitious, in that each query looks random
(because it is random).

2 ATTACK SCENARIOS

Before describing our nonadaptive Mastermind attack in
detail, we show how it applies to a wide variety of attack
scenarios to provide motivating examples. We illustrate
three such attack scenarios below.

2.1 Genetic Signatures

Suppose the vectors in X represent the genetic signatures of
people in some population, such as a high school, college, or
corporation. Bob’s goal in this Mastermind attack is to learn
the genetic signatures for as many people in his population

of interest as is reasonably possible. He can employ his
attack so long as there is a website or tool for X that allows
him to test a query vector Q against the vectors in X to
determine which ones share a mutation with Q, with
respect to a reference R. In mitochondrial DNA, R is
roughly 16,500 base pairs long, but has only about
4,000 known mutations [15], [16], suggesting that each
vector in X is sparse relative to R.

In this example, Bob could be posing as a medical
researcher and claim that his vectors are testing for
combinations of genetic markers for disease. Alternatively,
he could claim to be a forensic analyst with DNA from a
crime scene, which he wants to test against members of X
(in this case, he is likely to receive a similarity score between
his query Q and the vectors in X , which he can easily
convert into an overlap-detection bit). In either case, a
minimum amount of overlap information can allow him to
learn the entire genetic signatures of a large number of
members of X .

The privacy implications of such an innocuous attack are
significant. Alice’s genetic signature could then be used by
an unethical employer or insurance company to discrimi-
nate against her based on her risks for future diseases. Also,
as illustrated in Fig. 1, it is possible using a genetic signature
derived from a short string of Alice’s mitochondrial DNA to
trace her maternal lineage to an ancestral location [13], [14],
which is information that could then be used for ethnic
discrimination [17].

2.2 Social Network Friendship Ties

Suppose the vectors in X represent the rows of the
adjacency matrix (e.g., Fig. 2) defined by the friendship ties
for an online social network, like Facebook, possibly
restricted to the population in a specific city, college, high
school, or large corporation. In this scenario, Bob wants to
learn the friendship relationships of as many people as
possible. For instance, he may wish to do racial profiling
[18] or do a cross-networking identification attack [3], since
89 percent of Facebook users use their real names [19].

In this case, Bob’s query vectors correspond to a
relatively small number of pseudonyms that Bob creates
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Fig. 1. An illustration of the pattern of human migration together with
major mutations in human mtDNA [13], [14], which is only transferred
along the maternal line. Each letter stands for a set of mutations from the
reference string, R (which in this case is the Revised Cambridge
Reference Sequence). Thus, determining locations of differences with R
can reveal ethnic identity, sometimes to the resolution of the village of
maternal ancestry. (Image, Copyright 2009, Michael T. Goodrich. Used
with permission.)



in the social network and for which he defines a certain
number of random friendship ties. For instance, he could
create such ties using automated social engineering
techniques (e.g., using the name of an affiliated city, college,
etc.) as well as the property that a fairly large percentage of
social networking users are likely to accept random friend-
ship requests from people in their community (roughly 10
to 25 percent of student Facebook users accept random
friendship requests from people who say they are in the
same university [20]). Given his set of pseudonyms, Bob
employs the group testing attack by having each of his
pseudonyms ask the social networking site if this pseudo-
nym shares any friends with the people in Bob’s population
of interest. Note that he will receive a useful response vector
from everyone that has privacy settings that allow for
testing for friends in common. That is, even if someone
chooses to share friendship information only with “friends
of friends,” which is one of the more restrictive standard
privacy settings in Facebook, Bob can still get valid
responses for his queries with respect to such people.
Moreover, if Bob employs an oblivious group testing attack,
he can use the same set of pseudonyms for everyone whose
privacy he is attacking. Thus, once he has set up his
pseudonyms, he can target the privacy of any user in the
online social network at will.

2.3 User Preference Data

Suppose the vectors in X represent the preferences of
people in a site, such as Amazon or Netflix, that employs
collaborative filtering to support product recommenda-
tions. Specifically, we assume in this scenario that products
are numbered 1 to k and each vector Xi in X has a discrete
rating (e.g., 1-5 stars, or a missing rating) in position j,
provided by user i. Bob’s goal in this scenario is to discover
as many vectors in X as reasonably possible and in so doing
discover the product preferences of a large number of
targeted people. His motivation could, for instance, be
economic, in that he may want to open an online store that
caters to a specific demographic; hence, Bob may want to
learn the product preferences for a known population of
people in this group. In terms of information leakage, all
that is needed in order to allow for Bob’s group testing
attack to work is for the collaborative filtering site have a
way for him to create pseudonyms, have these pseudonyms
rate products, and allow for these pseudonyms to test if
they have any ratings in common with users in the target
population. So long as the collaborative filtering website

allows for users to check for overlapping scores with other
users, Bob can employ the nonadaptive Mastermind attack.

2.4 Exploiting Sparsity

The above set of attack scenarios are illustrative of the risks
to privacy that the group testing attack provides, in that it
can greatly amplify the information gained from a relatively
small number of single-bit privacy leaks. The risk to the
group testing attack can be characterized in terms of the
number of queries and how much processing time is
needed so that Bob can replicate a large portion of X . As we
will elaborate in Section 4, the critical factor is a sparsity
parameter, d, which, in a group testing context, refers to the
small number of “defective” items in the large group.

Interestingly, each of the attack scenarios mentioned
above possesses such a parameter, allowing for Bob to
employ efficient Mastermind attacks with a relatively small
number of queries. For example, an individual’s genetic
signature will typically have a relatively small number of
indicators for mutations with respect to a reference DNA
string—with mitochondrial DNA, most people have fewer
than 100 mutations with respect to a commonly used
reference string. Furthermore, most people in social
networking sites, such as Facebook, have less than a few
hundred friends. Likewise, most collaborative filtering
preference vectors, such as in the Netflix Prize contest,
have ratings for at most a few hundred items. Thus, there
are several modern contexts that have all the pieces in place
to allow for the Mastermind attack to be used.

It is worth noting that realistic attacks can also be
constructed in many other domains. For instance, sensitive
image data, such as captured by biometric devices, may
be represented as sparse vectors, making it susceptible to a
Mastermind attack, especially when efficient tools exist for
comparing a query (e.g., a fingerprint or an iris scan) to the
entire database.

3 BACKGROUND AND RELATED WORK

We give a brief background of the Mastermind game and
attacks inspired by that game, as well as related work on
privacy models and attempts to mitigate privacy leaks.

3.1 Mastermind

Adapting the terminology of the Mastermind attack [21] to
attacks on an entire database, we discuss in this section the
relationship between the Mastermind attack and the
Mastermind game. Mastermind [22], [23] is a two-player
board game, which is played between a codemaker and a
codebreaker, using colored pegs (Fig. 3). Mastermind begins
with the codemaker selecting a character string, X, of length
n, using an alphabet of size c, whose members are called
“colors.” The codebreaker then makes a sequence of
queries, Q1; Q2; . . . , about X ’s identity. For each guess Qi,
the codemaker provides a score on how well Qi matches X.
In the board game, this is done using colored pegs, but we
assume in this paper that the score is simply a matching
function, bðQiÞ ¼ jfj : Qi½j� ¼ X½j�gj, which counts the
number of places where Qi and X match. The codebreaker’s
goal is to discover X using a small number of guesses.

Chvátal [22] studied the combinatorics of the general
Mastermind game, showing that it can be solved in
polynomial time using 2ndlog ce þ 4n guesses. Chen et al.
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Fig. 2. An example graph and its adjacency matrix.



[24] showed how this can be improved to 2ndlogne þ 2nþ
dc=ne þ 2 guesses and Goodrich [25] showed how this
bound can be improved to ndlog ce þ dð2� 1=cÞne þ c.
Unfortunately, from the perspective of the cloning problem,
all of these algorithms are adaptive, in that they use results of
previous queries to construct future queries. Adaptive
algorithms can only be used effectively for the interactions
between a single pair of strings. For a sequence of queries to
be used against an entire database of strings, we need a
nonadaptive algorithm, that is, an algorithm where queries
are not dependent upon answers from previous queries,
which is equivalent to the codebreaker making all his
guesses in advance. Another benefit of this nonadaptive
scheme is that all the queries can be performed in parallel.

Chvátal [22] also gives an existence proof for a non-
adaptive method for solving Mastermind. If the number of
possible colors, c � n1��, for some constant � > 0, which will
almost always be the case for biological databases, Chvátal
shows the existence of a nonadaptive method using only

G ¼ ð2þ �Þn 1þ 2 log c

logn� log c
;

guesses. In fact, he shows that making G guesses at random
will be sufficient to determine a unique solution with high
probability, using only the bðQiÞ type of scores. Unfortu-
nately, this existence proof does not immediately lead to a
polynomial-time algorithm. Indeed, it is NP-complete to
determine if a collection of Mastermind guesses with bðQiÞ
type of responses is satisfiable [25]. Nonetheless, in this
paper, we will show that Mastermind attacks based on
reductions to group testing can efficiently clone a sparse
database using a sublinear number of nonadaptive queries.

3.2 Related Privacy Models

Following a framework by Bancilhon and Spyratos [26],
Deutsch and Papakonstantinou [27] and Miklau and Suciu

[28] give related models for characterizing privacy loss in
information releases from a database, which they call query-
view security. In this framework, there is a secret, S, that the
data owner, Alice, is trying to protect. Attackers are allowed
to ask legal queries of the database, while Alice tries to
protect the information that these queries leak about S.
While this framework is related to the data-cloning attack,
these two are not identical, since in the data-cloning attack
there is no specifically sensitive part of the data. Instead,
Alice, is trying to limit releasing too much of her data to Bob
rather than protecting any specific secret. Similarly,
Kantarcio�glu et al. [29] study privacy models that quantify
the degree to which data mining searches expose private
information, but this related privacy model is also not
directly applicable to the data-cloning attack.

There has been considerable recent work on data
modification approaches that can help protect the privacy
or intellectual property rights of a database by modifying its
content. For example, several researchers (e.g., see [30], [31],
[32], [33], [34], [35]) advocate the use of data watermarking to
protect data rights. In using this technique, data values are
altered to make it easier, after the fact, to track when
someone has stolen information from a database. Of course,
by that point, the data have already been cloned. Alter-
natively, several other researchers (e.g., [36], [37], [38], [39],
[40], [41], [42], [43]) propose using generalization or cell
suppression as methods for achieving quantifiable privacy-
preservation in databases. These techniques alter data values
to protect sensitive parts of the data, while still allowing for
data mining activities to be performed on the database. We
assume here that Alice is not interested in data modification
techniques, however, for we believe that accuracy is
critically important in several database applications. For
example, even a single base-pair mutation in a DNA string
can indicate the existence of an increased health risk.

As mentioned above, we allow for the queries Bob asks
to be answered using SMC protocols, which reveal no
additional information between the query string Q and each
database string Xi other than the response score ri. Such
protocols have been developed for the kinds of comparisons
that are done in genomic sequences (e.g., see [4], [44], [45]).
In particular, Atallah et al. [4] and Atallah and Li [46]
studied privacy-preserving protocols for edit-distance
sequence comparisons, such as in the longest common
subsequence (LCS) problem (e.g., [47], [48], [49]). Troncoso-
Pastoriza et al. [50] described a privacy-preserving protocol
for regular-expression searching in a DNA sequence. Jha
et al. [7] give privacy-preserving protocols for computing
edit distance and Smith-Waterman similarity scores be-
tween two genomic sequences, improving the privacy-
preserving algorithm of Szajda et al. [9]. Aligned matching
results between two strings can be done in a privacy-
preserving manner, as well, using privacy-preserving set
intersection protocols (e.g., see [10], [45], [51], [52], [53]) or
SMC methods for dot products (e.g., see [6], [11], [54]). In
addition, the Fairplay system [5] provides a general
compiler for building such computations.

Du and Atallah [55] study an SMC protocol for querying
a string Q in a database of strings, X , as in our framework,
where comparisons are based on approximate matching
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Fig. 3. The Mastermind game. The four large pegs in the middle are
used for guessing. The four smaller peg locations on the left are used to
score each guess, with black-peg and white-peg scores. (Image,
Copyright 2009, Michael T. Goodrich. Used with permission.)



(but not sequence-alignment). Their SMC protocols for
performing such queries provide a best match, not a score
for each string in the database. Thus, their scheme would
not be applicable in the attack framework we are consider-
ing in this paper. The SMC method of Jiang et al. [8], on the
other hand, is directly applicable. It provides a vector of
scores comparing a string (or vector) Q to a sequence of
strings (or vectors), as we require in this paper. Thus, our
Mastermind methods can be viewed as an attack on
repeated use of the SMC protocol of Jiang et al.

Goodrich [21] studies the problem of discovering a single
DNA string from a series of genomic Mastermind queries.
All his methods are sequential and adaptive, however, so
the only way they could be applied to the data-cloning
attack on an entire biological database is if Bob were to
focus on each string Xi in X in turn. That is, he would have
to gear his queries to specifically discovering each Xi in
n distinct “rounds” of computation, each of which uses a lot
of string-comparison queries. Such an adaptation of Good-
rich’s Mastermind attacks to perform data cloning, there-
fore, would be prohibitively expensive for Bob. Our
approach, instead, is based on performing a nonadaptive
Mastermind attack on the entire database at once.

We note that others have investigated deanonymization
techniques on both social networks [56] and Netflix data
[57]. These works are complementary to our goal of cloning
the databases themselves.

4 EXPLOITING SPARSITY IN AN ALGORITHMIC

DATA-CLONING ATTACK

In this section, we describe the details of our nonadaptive
Mastermind data-cloning attack. It is often the case that all
or a large fraction of the strings in a real-world string
database can be characterized in terms of a small number of
differences with a public reference string. In these situa-
tions, which are quite common, we can apply a reduction to
nonadaptive group testing, which results in an efficient
Mastermind attack as we will see.

4.1 Nonadaptive Combinatorial Group Testing

We briefly discuss the background behind nonadaptive
combinatorial group testing and then develop the concepts
of disinguishing and disjunct test matrices, before delving
into the probabilistic construction of our attack algorithm.

4.1.1 Background

Group testing was introduced by Dorfman [58], during
World War II, to test blood samples. The problem he
addressed was to design an efficient way to detect the few
thousand blood samples that were contaminated with
syphilis out of the millions that were collected. His idea
was to pool drops of blood from multiple samples and test
each pool for the syphilis antigen. By carefully arranging
the group tests and then discovering which groups tested
positive and which ones tested negative he could then
identify the contaminated samples using a small number of
group tests (much smaller than the number needed to
explicitly test each individual blood sample), thereby
sparing thousands of G.I.’s from needless disease exposure.
In this paper, we show that Dorfman’s humanitarian

discovery has an unfortunate dark side when it comes to
privacy protection, for it enables privacy leaks to be
amplified in a data-cloning attack.

In the combinatorial group testing problem (e.g., Du and
Hwang [59]), one is given a set S of n items, at most d of
which are “defective,” for some parameter d � n, and one is
interested in exactly determining which of the items in S are
defective. One can form a test from any subset T of S and in
a single step determine if T contains any defective items or
not. If one can use information from the result of a test in
formulating the tests to make in the future, then the method
is said to be adaptive. If, on the other hand, one cannot use
the results from one test to determine the makeup of any
future test, then the method is said to be nonadaptive. For the
application to the Mastermind attack, we are interested in
nonadaptive methods.

There are several existing nonadaptive group testing
methods [59], but these approaches are meant for a more
general context than in our database cloning attack. In
particular, these methods are designed to work for any set
of items having d defective members. In our case, we are
instead interested in specific sets of items that are derived
from the database we are interested in cloning. Because of
this, we can, in fact, derive improved bounds than would be
implied by existing combinatorial group testing methods.

4.1.2 Distinguishing and Disjunct Test Matrices

Suppose we are given a collection, C, of sets, C ¼
fS1; S2; . . . ; Sgg, which are not necessarily distinct, such
that each set Si contains n items, at most d of which are
“defective.” We want to design a nonadaptive group testing
scheme that can exactly identify the subset, Di, of at most
d defective items in each set Si in C. Our approach to solving
this problem is based on a randomized approach used by
Eppstein et al. [60].

A nonadaptive group testing algorithm can actually be
viewed as a K � n 0� 1 matrix, M. Each of the n columns
of M corresponds to one of the n items and each of the
K rows of M represents a test. If M½i; j� ¼ 1, then item j is
included in test i, and if M½i; j� ¼ 0, then item j is not
included in test i. Since this is a nonadaptive testing
scheme, we assume that no test depends on the results of
any other. That is, every row of the matrix M is defined in
advance of any test outcomes. The analysis question, then,
is to determine how many tests are needed to provide
useful results.

Let C denote the set of columns of M. Given a subset D
of d columns in M, and a specific column j in C but not in
D, we say that j is distinguishable from D if there is a row i of
M such that M½i; j� ¼ 1 but i contains a 0 in each of the
columns in D. If each column of M that is in C and not in D
is distinguishable from D, then we say that M is
D-distinguishing. Furthermore, we generalize this definition,
so that if M is Di-distinguishing for each subset, Di, in a
collection, D ¼ fD1; D2; . . . ; Dgg, of columns in C, then we
say that M is D-distinguished. Finally, we say that the
matrix M is d-disjunct (e.g., see Du and Hwang [59, p. 165],)
if it is D-distinguished for the collection, D, of all of the n

d

� �
subsets of size d of C.

Note that if M is D-distinguishing, then it leads to a
simple testing algorithm with respect to D. In particular,
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suppose D is the set of defective items and we perform all
the tests in M. Note that, since M is D-distinguishing, if an
item j is not in D, then there is a test in M that will
determine the item j is not defective, for j would belong to a
test that must necessarily have no defective items. So we
can identify D in this case—the set D consists of all items
that have no test determining them to be nondefective.

Of course, if M is d-disjunct, then this simple detection
algorithm works for any set D of up to d defective items in
C. Unfortunately, building such a matrix M that is d-
disjunct requires M to have �ðd2 logn= log dÞ rows [59], [61].
So we will instead build a matrix that is D-distinguished for
the collection, D, of defective subsets determined by the sets
of items in C, with high probability.

Before delving into the probabilistic construction of M,
we show in Table 2 a simple example of a D-distinguished
matrix M for the social network example in Fig. 2. Here,
D ¼ fD1; D2; . . . ; D5g, where each Di corresponds to row i

of the adjacency matrix in Fig. 2; namely, Di is the subset of
columns in row i that are defective (i.e., have a “1”). We
visually split the matrix M into five regions to show the
tests that distinguish each Di. It is important to note that
the matrix M in Table 2 is simply shown for illustrative
purposes; indeed, a simpler example of a D-distinguished
M is the identity matrix, which in this case would only
require n ¼ 5 tests. We discuss this simple baseline more in
the experimental section. In general, the attack would need
a number of tests that is sublinear in the string length n, as
we will show in the following sections.

4.1.3 A Probabilistic Construction of the Test Matrix

Given a parameter t, which is a multiple of d, we construct a
2t� n matrix M as follows: For each column j of M, we
choose t=d rows uniformly at random and we set the values of
these entries to 1, with the other entries in column j being set
to 0. Note, then, that for any set D of up to d defective items,
there are at most t tests that will have positive outcomes
(detecting defectives) and, therefore, at least t tests that will
have negative outcomes. Our desire, of course, is that
columns that correspond to samples that are distinguishable
from the defective ones should belong to at least one
negative-outcome test. So, let us focus on bounds for t that
allow for such a matrixM to be chosen with high probability.

Let C be a set of (column) items having a fixed subset D
of d defective items. For each (column) item j in C but not in
D, let Yj denote the 0-1 random variable that is 1 if j is
falsely identified as a defective item by M (that is, j is not
included in a test of items distinguished from those in D).
Let Yj be 0 otherwise. Observe that the Yj’s are independent,
since Yj depends only on whether the choice of rows we
picked for column j collide with at most t rows of M picked

for the columns corresponding to items in D. There are a
total of 2t rows, at most t of which contain a test with a
defective item. Thus, the probability of any nondefective
item joining any particular test having a defective item in it
is at most 1=2; hence, any Yj is 1 (a false positive) with
probability at most 2�t=d, since each item is included in
t=d tests at random.

Let Y ¼
Pn

j¼1 Yj, and note that the expected value of Y ,
EðY Þ, is at most �̂ ¼ n=2t=d. Thus, if �̂ � 1, we can use
Markov’s inequality to bound the probability of the (bad)
case when Y is nonzero as follows:

PrðY � 1Þ � EðY Þ � �̂ ¼ n

2t=d
:

Thus, if we set

t � 2d logn;

then M will be D-distinguishing with probability at least
1� 1=n, for any particular subset of defective items, D, from
a set C of n items. Likewise, the probability of having at
least one false positive across g subsets is bounded by
ng=2t=d; thus, if we set

t � 2d lognþ d log g;

then M will be D-distinguished, with probability at least
1� 1=n, for the collection of g subsets of defective items
determined by the sets in C. Finally, we can use the fact (e.g.,
see Knuth [62]) that

n

d

� �
< ðen=dÞd;

so that if we set

t � 2d lognþ d2 logðen=dÞ;

then M will be d-disjunct with probability at least 1� 1=n,
which implies M will work for any subset of at most d
defective items. Therefore, we have the following.

Theorem 1. If

t � 2d lognþminfd log g; d2 logðen=dÞg;

then a 2t� n random matrix M, constructed as described
above, is D-distinguished, with probability at least 1� 1=n,
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TABLE 1
Description of Commonly Used Variables

TABLE 2
An Example of a D-Distinguished Matrix M

for the Network in Fig. 2

Here, D ¼ fD1; D2; . . . ; D5g, where Di corresponds to the subset of
“defective” columns (i.e., those that contain a “1”) in row i of the
adjacency matrix. We split the matrix M below into five regions to show
the tests that distinguish each Di.



for any given collection, D ¼ fD1; D2; . . . ; Dgg, of g subsets of
size d of the n columns in M.

Proof. Let D be a given collection of g (not necessarily
distinct) subsets of size d of the n columns in M. If

d2 logðen=dÞ > d log g;

then M is D-distinguished by construction, with prob-
ability at least 1� 1=n. If, on the other hand,

d2 logðen=dÞ � d log g;

then M constructed as above is d-disjunct, with prob-
ability at least 1� 1=n, which implies it is D-distin-
guished w.h.p. for any collection D of subsets of size d of
the n columns of M. tu
As mentioned above, this is a way of constructing a

simple nonadaptive group testing method for identifying
the defective items in the collection, D, of subsets of up to
d defective items determined by the sets in C.

4.2 Reducing Mastermind to Group Testing

In this section, we describe how to use nonadaptive group
testing to construct an efficient Mastermind cloning attack.
Consider the case when X is a database of g strings of length
n each, with each of them having at most d � n differences
with a reference string R. We assume that each string in X is
drawn from an alphabet of c characters (or “colors”), which,
without loss of generality, we assume are integers in the
range ½0; c� 1�.

Suppose, like before, that we have a 2t� n nonadaptive
group testing matrix, M, for a set of size n having at most
d defectives, where

t � 2d lognþminfd log g; d2 logðen=dÞg:

As before, we begin our general Mastermind cloning attack
by making a query for the reference string, R. Let r be
the response score for the query for R. Next, we create
c� 1 different string queries, Qk;l, for each of the
K ¼ 2t tests in M (where k denotes the row index in M),
defined, for l ¼ 1; 2; . . . ; c� 1, as follows:

Qk;l½j� ¼
R½j� if M½k; j� ¼ 0
ðR½j� þ lÞmod c else:

�

Each such query against a stringXi will have some response,
rk;l;i. We interpret test ðk; l; iÞ as having a “positive” response,
that is, it does not detect a defective, if, in making
the comparison of Qk;l with the string Xi, the response

rk;l;i ¼ r� bk;0;i;

where bk;0;i is the number of characters in Xi matching their
associated (color-0) location in R at places where there are
1’s in row k of M. Intuitively, each 1 in row k of M indicates
a place where we test a deviation from the reference value
in R at that location to the color l away (i.e., a color equal to
ðR½j� þ lÞmod c). If none of these locations is a match with
the current Xi string, then none of these locations take a
color that is l additive colors from their reference value. In
other words, defective “items” in the associated group
testing method correspond to locations where Xi differs

from the reference string with characters that are exactly l

away from their reference values.
Of course, being able to determine if such a test for Qk;l

against string Xi is “positive” or “negative” requires that we

know the value bk;0;i, which we don’t immediately know.

We do immediately know the number, bk, of 1’s in row k of

M, however. And, after we perform the queries for each Qk;l

against a string Xi, we learn each response rk;l;i. That is, we

have c linear equations in c unknowns from these queries

and their responses. Specifically, we have the equation,

bk ¼ bk;0;i þ bk;1;i þ � � � þ bk;c�1;i, where bk;l;i denotes the num-

ber of places j where there is a 1 in row k of M and the

character in position j ofXi is l away from the reference, that

is, places where X½j� ¼ ðR½j� þ lÞmod c and M½k; j� ¼ 1. We

also have c� 1 equations,

rk;l;i ¼ r� bk;0;i þ bk;l;i;

for l ¼ 1; 2; . . . ; c� 1, which can each be rewritten as

bk;l;i ¼ rk;l;i � rþ bk;0;i. This allows us to rewrite

bk ¼ c bk;0;i � ðc� 1Þrþ
Xc�1

l¼1

rk;l;i:

Thus, we can determine the value of bk;0;i as

bk;0;i ¼
bk þ ðc� 1Þr�

Pc�1
l¼1 rk;l;i

c
;

which in turn tells us which of the Qk;l tests are “positive”

and which ones are “negative.” Essentially, we are

performing a combinatorial group test for each possible

shift we can make from a color in reference R.
Thus, if there are at most d locations where Xi differs

from the reference string and M is D-distinguished for the

set of at most d locations of difference for each string in X ,

then this scheme will learn the complete identity of each

string in X . That is, this method will clone X , with high

probability. Therefore, by Theorem 1, we have the following:

Theorem 2. Given a database X ¼ ðX1; X2; . . . ; XgÞ, of strings

of length n defined over an alphabet of size c, there is a

nonadaptive Mastermind cloning method that can discover

each string in X , using 2tðc� 1Þ tests, with probability at least

1� ðc� 1Þ=n, where t is the smallest multiple of d such that

t � 2d lognþminfd log g; d2 logðen=dÞg;

and d � n is the maximum number of differences any string in

X has with R.

5 CASE STUDIES

To test the real-world risks of the nonadaptive Mastermind

cloning attack, we applied our methods to case studies

involving random samples from a number of real-world

string and vector databases, including genomic and social

network data. We briefly describe the data sets used and

then discuss experimental results which reveal that rela-

tively few tests are needed to recover large proportions of

each database.
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5.1 Data Sets

We analyze several different data sets with varying char-
acteristics to test our approach. For each data set, Table 3
shows the number of strings g, string length n, maximum
difference d from the reference R across strings (where
“difference” is defined as the number of entries in which the
string differs from R), and the number of unique colors c
present in the database.

The Genomic database consists of 457 human mitochon-
drial sequences downloadable from GenBank.1 We use the
Revised Cambridge Reference Sequence (rCRS), of length
16,586 bp as the reference string R. Fig. 4 shows the
distribution of sequence differences from R, which reveals
that the differences from R are relatively few and are
concentrated at several different modes. In this data, there
are four colors, namely the nucleotides A, C, T, and G.

Our movie-rating database is taken from the Netflix
Prize data,2 which consists of 100 million movie ratings and
480,189 different Netflix users. In our experiments, we use a
representative subset of 1,000 randomly selected users. Each
user has an associated string over 17,770 movies, where
each position i stores the rating (from 1 to 5) given by the
user for movie i. An entry of 0 signifies that the user has not
rated that movie. Thus, there are six different unique colors
in this database (0-5). Our reference R consists of all zeros,
representing the case where no movies are rated. Fig. 4
shows that most users rate less than 300 movies. This
sparsity allows the Mastermind attack to be very efficient,
as we will see in the experiments.

We also analyze online social networks such as Epinions,
Slashdot, and Facebook. Available from the SNAP Library,3

Epinions, and Slashdot are “signed” networks, where
positive and negative links appear in the network’s
adjacency matrix [63]. The Epinions network is the site’s
“Web of Trust” where users specify the other users that
they trust or distrust. Similarly, in the Slashdot network,
users can specify both “friends” and “foes.” Hence, in both
these databases, there are three unique colors: 0 (no link), 1
(good link), and �1 (bad link). In our experiments for both
Epinions and Slashdot, we select a random subset of
2,000 users and utilize the corresponding rows in the
adjacency matrix as our database. We also simulate a single
large-scale group testing attack on the entire Slashdot-All
adjacency matrix with 82,144 users.

The two Facebook data sets that we analyze are Face-
book-Uniform and Facebook-UNC. Facebook-Uniform, pro-
vided by the authors of [64], is an unbiased sample of

957K unique users obtained by performing Metropolis-
Hastings random walks over the Facebook network. Each
user is associated with a (sparse) binary vector of size
72 million which denotes adjacencies. We restrict ourselves
to a random subset of 1,000 users in Facebook-Uniform.
Meanwhile, Facebook-UNC is a self-contained Facebook
network of approximately 18,000 students at the University
of North Carolina at Chapel Hill [65].

For all the social network data sets, we use a reference
stringR of all zeros. Fig. 4 shows that these networks are also
sparse, which is often the case in many real-world settings.

5.2 Experiments

We briefly detail the experimental setup and discuss a
baseline method as well as the theoretical number of
Mastermind tests needed to clone each data set. Then, we
investigate the effect of modulating a sparsity parameter
and show that we can clone a large majority of each
database with a relatively small number of tests.

5.2.1 Experimental Setup and Baselines

Our experimental approach is based on the analysis in
Section 4. Similar to randomly selecting t

d rows from 2t rows
(for each column in the nonadaptive group matrix M), we
stochastically set each entry inM to 1 with probability p ¼ 1

2d .
This procedure enables us to add additional tests to M until
the string is cloned or until an arbitrary cutoff of
100;000 � c tests is reached, where c is the number of unique
colors in the database. We initialize with the same random
seed for each string, ensuring that the same exact tests are
performed on each string. This scheme allows us to
determine the actual number of tests needed to clone the
strings.

Before delving into the experimental results, we report in
Table 4 the theoretical number of tests needed to clone the
entire database with high probability, using the nonadaptive
Mastermind technique. These numbers are based on n, g, d,
c, and the bound in Theorem 2. Table 4 also shows the
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TABLE 3
Characteristics of Data Sets Used in This Paper

Fig. 4. Histogram of differences from reference R, for each of the data
sets.

1. http://www.ncbi.nlm.nih.gov/Genbank/index.html.
2. http://www.netflixprize.com.
3. http://snap.stanford.edu/data/index.html#signnets.



number of tests needed by a baseline technique to exactly
clone the entire database. This baseline technique generates
tests based on the referenceR. For each entry jwithinR, and
for each color offset l, a test is created where the entry j in R
is replaced with its color offset l, namely ðR½j� þ lÞ mod c.
Thus, the baseline method needs ðc� 1Þ � n tests to recover
the entire database. Interestingly, the baseline technique can
beat the theoretical bound (with d) when n is small, as is the
case for the Genomic, Netflix, and Facebook-UNC data.
However, the next section shows that modulating a sparsity
parameter enables the attack to outperform both the baseline
and the theoretical bounds.

5.2.2 The Effect of the Sparsity Parameter

Fortunately, our Mastermind attack can take advantage of
the sparsity in the data to improve its efficiency. Since each
string’s distance from R is usually much smaller than d, it is
empirically advantageous to use a target d̂ that is much
smaller than d. For instance, the Netflix data have a
maximum difference d ¼ 1;988, but the mean difference
from R is dmean ¼ 202 and the median is dmedian ¼ 92. Thus,
there are different possible choices for d̂.

For each data set (excluding Slashdot-All and Facebook-
Uniform due to their large scale), Fig. 5 shows the number
of tests needed to exactly clone a string (averaged across all

strings in the database), as a function of d̂. In a few
instances, when the strings are very far from R, the
algorithm may reach the cutoff value, causing the mean to
be undervalued; thus, we also plot the median number of
tests since the median is more robust to outliers. Generally,
we see that mean and median number of required tests
decreases as d̂ is decreased from d. For instance, for the
Slashdot database, the mean/median number of tests is
18,000 if d̂ ¼ d ¼ 378, but if d̂ ¼ 50, the mean/median
number of tests is 3,000 and if d̂ ¼ dmean ¼ 13, the median
number of tests required is 700. Sometimes, the mean
number of tests increases if d̂ is too small though. If
d̂ ¼ dmean ¼ 13, the mean number of tests required is around
4,000. Thus, there is a tradeoff. If d̂ is too small, it would
take longer to exactly clone a string that is far away from R.
If d̂ is too large (e.g., d̂ ¼ d), then many inefficient tests
would be performed on strings that are close to R. We
assume that a good estimate for d̂ (such as the median
distance from R) can be obtained a priori, e.g., through
scientific knowledge in the case of the Genomic database, or
publicly available information in the cases of Netflix,
Epinions, Slashdot, and Facebook.

We also investigate the relationship between the number
of required tests and the vector’s distance from R. In Fig. 6,
we observe that the number of tests required to clone a
vector is very low (and nearly constant) when the vector’s
distance from R is itself low and close to d̂. As the vector’s
distance increases, the number of required tests grows more
quickly due to the mismatch between the distance and d̂.
For each data set, we display different scatter plots for
different settings of d̂. For instance, for the Slashdot data,
the number of tests is relatively constant across all distances
when the d̂ ¼ 200; however, at this setting, the number of
required tests is at least 10,000, even when the vector is
close to the reference R. In contrast, when d̂ ¼ 3, the number
of required tests is only in the hundreds, around the vicinity
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TABLE 4
Theoretical Number of Tests Needed to Clone Entire Database
(a) by Baseline Method (b) by Nonadaptive Mastermind Attack

Fig. 5. Mean and median number of tests required until string is cloned (averaged across all strings in database), for various settings of target
distance d̂. Typically, it is advantageous to set d̂ to be much less than d, since most of the vectors are sparse and are close to the reference R.



of d̂; however, when the vector’s distance from R is

significantly greater (e.g., over 100), the scatter plot

increases dramatically. It is important to note that most

vectors are close to R due to the sparsity of the data, and

thus, even when the scatter plot dramatically increases

when the distance from R is great, there are relatively few

vectors that fall within this regime.
Providing another perspective, Fig. 7 shows the decrease

in error (defined as the number of differences between

the string and the state of the reconstructed string) as the

number of tests increases, for a randomly selected Netflix

user who has rated 68 movies. One can see that using d̂ ¼
202 induces a slower rate of convergence than when using

smaller settings for d̂. The case where d̂ ¼ d ¼ 1;988 is not

shown since its rate of convergence is even slower.

5.2.3 Cloning Results

In Fig. 8, the percentage of the database cloned by the

nonadaptive Mastermind attack is plotted as a function of

the number of tests, for various d̂. We highlight some
examples which demonstrate the efficiency of this attack.
For the Genomic data (using d̂ ¼ dmedian ¼ 18), 78 percent of
the database is successfully recovered after 2,000 tests, and
over 99 percent of the database is recovered after 3,000 tests,
which is significantly less than both the baseline result
(49,704 tests) and the theoretical bound (76,752 tests) in
Table 4. For the Netflix data (using d̂ ¼ dmedian ¼ 92),
63 percent of the strings are recovered after 10,000 tests.
For the Epinions data (using d̂ ¼ dmean ¼ 8), 68 percent of
the strings are recovered after only 500 tests. For the
Slashdot data (using d̂ ¼ dmean ¼ 13), 82 percent of the
strings are recovered after only 1,000 tests, which is much
less than the number of tests required by the baseline
method (164,288 tests) or the theory (46,872 tests) in Table 4.

For Facebook-UNC, we see that the Mastermind attack
displays different behavior for different choices of d̂. When
d̂ ¼ 5, the attack is able to quickly recover (the sparsest)
15 percent of the data set after only 500 tests, but as the
number of tests increases, the rate of progress slows
significantly. When d̂ ¼ 25, 52 percent of the database has
been successfully recovered after 2,000 tests. Thus, using
only a couple thousand nonadaptive tests, we are able to
clone the friend lists of half (9K out of 18K) of the Facebook
users at the University of North Carolina.

We also performed a large-scale nonadaptive Master-
mind attack on Slashdot-All with 82,144 users. Fig. 9 shows
that 55 percent of the strings are recovered after 2,500 tests
and that 81 percent of the strings are recovered after
4,000 tests, using d̂ ¼ 50. In contrast, the theoretical
Mastermind bound suggests that 58,208 tests are needed
to clone the entire Slashdot-All database, while the baseline
method would need 164,288 tests, as indicated in Table 4.
Even when using a d̂ which may be suboptimal, our
empirical results suggest that it is possible to substantially
outperform both the baseline method as well the theoretical
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Fig. 6. Number of tests required to clone each string, ordered by the string’s distance from R. Each string is represented by a dot. While the number
of tests increases rapidly for small d̂ when the vector is far from R, note that many vectors are close to R, allowing for a majority of the database to be
captured quickly.

Fig. 7. Error as a function of the number of tests for a single Netflix user
who has rated 68 movies, for various d̂.



bounds in Table 4 in practice, as long as d̂ is chosen to be

less than d.
We also ran the same experiment on Facebook-Uniform

for d̂ ¼ 108 (the median distance from R). Fig. 9 shows that

over 70 percent of the data set can be reconstructed with

10,000 tests, despite the fact that the vector length of this

data set is huge (n ¼ 2;261;577). Since Facebook-Uniform

contains an unbiased sample of users, these users are
representative of the global Facebook population. Further-
more, our theory states that the number of required tests
increases at a rate of at most logðgÞ where g is the number of
Facebook users. In fact, the theoretical number of tests
needed to guarantee that 50 percent of a 300-million user
Facebook network is cloned is less than 20,000 (assuming
dmedian ¼ 130).4 These results imply that an attacker may be
able to recover over half of the global Facebook social
network with several thousands of seemingly innocuous
nonadaptive Mastermind queries.

It is worth noting that experiments have also been
conducted on a variety of other data sets not mentioned in
this paper—the nonadaptive Mastermind attack also per-
forms very well on those data sets. Results on cloning
databases of binary attribute vectors (i.e., where the number
of colors c ¼ 2) are described in previous work [66].

Our empirical results have shown that there is sensitivity
to the choice of d̂ in certain cases. One possible improve-
ment is to use a tiered approach, where d̂1 is used to
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Fig. 9. Percentage of strings cloned as a function of the number of tests,
for the large-scale data sets. Slashdot-All has a large number of strings
(g ¼ 82;144) while Facebook-Uniform has large vector length
(n ¼ 72;261;577).

4. According to http://www.facebook.com/press/info.php?statistics,
dmean ¼ 130, and so dmedian should be even smaller, suggesting that the
Mastermind attack can be even more efficient.

Fig. 8. Percentage of strings cloned as a function of the number of tests,
for each data set, using various d̂.



construct the first 5,000 tests, d̂2 is used to construct the next
5,000 tests, etc. This tiered approach may also be useful for
databases with multimodal data, in which some data cases
are close to the reference string, while other cases are far
away from the reference string; in this scenario, each d̂i
could correspond to a different mode. Nonetheless, even
when using a single d̂, our results demonstrate that it is
possible to clone a large fraction of a sparse database, by
simply performing a nonadaptive Mastermind attack.

6 CONCLUSION

We have studied the Mastermind cloning attack, both from

a theoretical and experimental perspective, and have shown

its effectiveness in being able to copy the contents of a string

database through a sublinear number of string-comparison

queries. Furthermore, our approach benefits from being

fully nonadaptive and surreptitious in nature (due to the

randomized query construction), which is useful in real-

world settings.
An interesting future research direction would be to

allow for minimal adaptivity among the queries. For

instance, in the case of social networks, one may allow

each fake user to slightly modify its settings based on the

previous set of similarity results across all the vectors in the

database. In this scenario, it is likely that fewer tests will

be needed; however, we also lose the benefit of being able to

perform all the tests in parallel (or in any order).
Another natural direction for future work, of course, is

on methods for defeating our nonadaptive Mastermind
attack, which we have not addressed in this paper.
Certainly, having Alice randomly permute the responses
from her database with each query could help, since it
would make it harder (but not necessarily impossible) for
Bob to correlate responses between different queries. Of
course, requiring Alice to always randomly permute her
responses would take extra time, and it may also require
additional space if she needs to store every response query
so that users can refer back to her responses for other,
limited types of selection queries she may allow. So the
technique of using random permutations can reduce the
risks associated with the Mastermind cloning attack, but it
doesn’t necessarily eliminate these risks, and it comes with
additional costs.
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