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Abstract We study sorting algorithms based on randomized round-robin compar-
isons. Specifically, we study Spin-the-bottle sort, where comparisons are unrestricted,
and Annealing sort, where comparisons are restricted to a distance bounded by a tem-
perature parameter. Both algorithms are simple, randomized, data-oblivious sorting
algorithms, which are useful in privacy-preserving computations, but, as we show,
Annealing sort is much more efficient. We show that there is an input permutation that
causes Spin-the-bottle sort to require Ω(n2 logn) expected time in order to succeed,
and that in O(n2 logn) time this algorithm succeeds with high probability for any
input. We also show there is a specification of Annealing sort that runs in O(n logn)

time and succeeds with very high probability.

Keywords Sorting · Randomized algorithms · Chernoff bounds · Oblivious
algorithms

1 Introduction

The sorting problem is classic in computer science, with well over a fifty-year history
(e.g., see [3, 20, 24, 39, 42]). In this problem, we are given an array, A, of n elements
taken from some total order and we are interested in permuting A so that the elements
are listed in order.1 In this paper, we are interested in randomized sorting algorithms
based on simple round-robin strategies of scanning the array A while performing, for

1Since we are focusing on comparison-based algorithms here, let us assume, without loss of generality, that
the elements of A are distinct, e.g., by a mapping A[i] → (A[i], i) and then using lexicographic ordering
for comparisons.
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each i = 1,2, . . . , n, a compare-exchange operation between A[i] and A[s], where s

is a randomly-chosen index not equal to i.
In addition to its simplicity, sorting via round-robin compare-exchange operations,

in this manner, is data-oblivious. That is, if we view compare-exchange operations as
a blackbox primitive, then the sequence of operations performed by such a random-
ized sorting algorithm is independent of the input permutation.

Any data-oblivious sorting algorithm can also be viewed as a sorting network [26],
where the elements in the input array are provided on n input wires and internal gates
are compare-exchange operations. Ajtai, Komlós, and Szemerédi (AKS) [1] give a
sorting network with O(n logn) compare-exchange gates, but their method is quite
complicated and has a very large constant factor in the analysis of its asymptotic run-
ning time, even with known improvements [32, 38]. Leighton and Plaxton [27] and
Goodrich [17] describe alternative randomized sorting networks that use O(n logn)

compare-exchange gates and sort any given input array with very high probability.
None of these previous approaches are based on simple round-robin comparison
strategies, however.

Data-oblivious sorting algorithms are often motivated from their ability to
be implemented in special-purpose hardware modules [24], but such algorithms
also have applications in secure multi-party computation (SMC) protocols (e.g.,
see [4, 10, 14, 15, 28, 29]). In such protocols, two or more parties separately hold dif-
ferent portions of a set of data values, {x1, x2, . . . , xn}, and are interested in comput-
ing some function, f (x1, x2, . . . , xn), without revealing their respective data values
(e.g., see [4, 28, 40]). Thus, the design of simpler data-oblivious sorting algorithms
can lead to simpler SMC protocols.

1.1 Previous Related Work

In spite of their simplicity, we are not familiar with previous work on data-oblivious
sorting algorithms based on round-robin random comparisons. So we review below
some of the previous work on sorting that is related to the various properties that are
of interest in this paper.

Sorting via Random Comparisons Biedl et al. [5] analyze a simple algorithm,
Guess-sort, which iteratively picks two elements in the input array at random and
performs a compare-exchange for them, and they show that this method runs in ex-
pected time Θ(n2 logn). In addition, Gruber et al. [19] perform a more exact analysis
of this algorithm, which they call Bozo-sort. Neither of these papers consider round-
robin random comparisons, however.

Quicksort Of course, the randomized Quicksort algorithm sorts via round-robin
comparisons against a randomly-chosen element, known as a pivot (e.g., see
[11, 18, 36]) and this leads to a sorting algorithm that runs in O(n logn) time with
high probability. Even so, the set of comparisons is highly dependent on input val-
ues. Thus, randomized Quicksort is not a data-oblivious algorithm based on random
round-robin compare-exchange operations.
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Shellsort Sorting via data-oblivious round-robin random comparisons has a simi-
lar flavor to randomized Shellsort [17], which sorts via random matchings between
various subarrays of the input array. Nevertheless, there are some important differ-
ences between randomized Shellsort and sorting via round-robin random compare-
exchange operations. For instance, the analysis of randomized Shellsort requires an
extensive postprocessing step, which we avoid in the analysis of our randomized
round-robin sorting algorithms. We also avoid the complexity of previous analy-
ses of deterministic variants of Shellsort (e.g., see [12, 23, 33]), such as that by
Pratt [34], which leads to the best known performance for deterministic Shellsort,
namely, a worst-case running time of O(n log2 n). (See also the excellent survey of
Sedgewick [37].)

Sorting via Round-Robin Passes Sorting by deterministic round-robin passes is,
of course, a classic approach, as in the well-known Bubble-sort algorithm (e.g.,
see [11, 18, 36]). For instance, Dobosiewicz [13] proposes sorting via various bubble-
sort passes—doing a left-to-right sequence of compare-exchanges between elements
at offset-distances apart. In addition, Incerpi and Sedgewick [21, 22] study a ver-
sion of Shellsort that replaces the inner-loop with a round-robin “shaker” pass (see
also [9, 41]), which is a left-to-right bubble-sort pass followed by a right-to-left
bubble-sort pass. These algorithms do not ultimately lead to a time performance that
is O(n logn), however.

1.2 Our Results

In this paper, we study two sorting algorithms based on randomized round-robin com-
parisons. Specifically, we study an algorithm we are calling “Spin-the-bottle sort,”
where comparisons in each round are arbitrary, and an algorithm we are calling “An-
nealing sort,” where comparisons are restricted to a distance bounded by a tempera-
ture parameter. These algorithms are therefore similar to one another, with both be-
ing simple, data-oblivious sorting algorithms based on round-robin random compare-
exchange operations.

Their respective performance is quite different, however, in that we show there is
an input permutation that causes Spin-the-bottle sort to require an expected running
time that is Ω(n2 logn) in order to succeed, and that Spin-the-bottle sort succeeds
with high probability for any input permutation in O(n2 logn) time. That is, Spin-
the-bottle sort has an asymptotic expected running time that is actually worse than
Bubble sort!

Thus, it is perhaps a bit surprising that, with just a couple of minor changes, Spin-
the-bottle sort can be transformed into Annealing sort, which is much more efficient.
In particular, Annealing sort is derived by applying the simulated annealing [25]
meta-heuristic to Spin-the-bottle sort. There are, of course, multiple ways to apply
this meta-heuristic, but we show there is a version of Annealing sort that runs in
O(n logn) time and succeeds with very high probability.2

2We say an algorithm succeeds with very high probability if success occurs with probability 1 − 1/nρ , for
some constant ρ ≥ 1.
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2 Spin-the-Bottle Sort

The simplest sorting algorithm we consider in this paper is Spin-the-bottle sort,3

which is given in Fig. 1.
The test for A being sorted is either done via a straightforward linear-time scan

of A or by a heuristic based on counting the number rounds needed until it is highly
likely that A is sorted. In the latter case, this leads to a data-oblivious sorting algo-
rithm, that is, a sorting algorithm for which the sequence of comparison-exchange
operations is independent of the values of the input, depending only on its size.

2.1 A Lower Bound on the Expected Running Time of Spin-the-Bottle Sort

Our analysis of Spin-the-bottle sort is fairly straightforward and shows that this al-
gorithm is asymptotically worse than almost all other published sorting algorithms.
Nevertheless, let us go through some details of this analysis, as it provides some intu-
ition of how improvements can be made, which in turn leads to a much more efficient
algorithm, Annealing sort.

Let us begin with a lower bound on the expected running time for Spin-the-bottle
sort. As was done in the analysis of Guess-Sort [5], let us consider the input array

A = (2,1,4,3, . . . , n, n − 1),

albeit now with a different argument as to why this is a difficult input instance.
This array has N = n/2 inversions, with each element participating in exactly

one inversion. During any scan of A, each element that has yet to have its inversion
resolved has a probability of 1/(n − 1) of resolving its inversion. Considering the
sequence of compare-exchange operations that Spin-the-bottle sort performs until A

is sorted, let us divide this sequence into maximal epochs of comparisons that do not
resolve an inversion followed by one that does. Let X1,X2, . . . ,XN be a set of ran-
dom variables where Xi denotes the number of comparisons performed in epoch i,
and observe that there are N − i inversions remaining in A after epoch i. Likewise,
let Y1, Y2, . . . , YN be a set of random variables where Yi denotes the number of com-

while A is not sorted do
for i = 1 to n do

Choose s uniformly and independently at random from {1,2, . . . , i−1, i+1, . . . , n}.
if (i < s and A[i] > A[s]) or (i > s and A[i] < A[s]) then

Swap A[i] and A[s].
end if

end for
end while

Fig. 1 Spin-the-bottle sort. The last two lines of this algorithm constitute a compare-exchange operation
for the positions i and s in A

3The name comes from a party game, Spin the bottle, where a group of players sit in a circle and take
turns, in a round-robin fashion, spinning a bottle in the middle of the circle. When it is a player’s turn,
he or she spins the bottle and then kisses the person of the appropriate gender nearest to where the bottle
points.
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parisons performed in epoch i, but only counting each comparison done such that its
element, A[j ], has not had its inversion resolved in a previous epoch. Note that

Xi ≥ n

⌊
Yi

n − 2(i − 1)

⌋
,

since one full round performed in epoch i involves n comparisons, of which
n − 2(i − 1) are for elements that have yet to have their inversions resolved.

The running time of Spin-the-bottle sort is proportional to

X =
N∑

i=1

Xi.

Each Yi is a geometric random variable with parameter p = 1/(n − 1); hence,
E(Yi) = n − 1. Thus,

E(X) = E

(
N∑

i=1

Xi

)

≥ E

(
N∑

i=1

n

⌊
Yi

n − 2(i − 1)

⌋)

≥ n

N∑
i=1

(
E(Yi)

n − 2(i − 1)
− 1

)

= n(n − 1)

N∑
i=1

1

n − 2(i − 1)
− nN

= n(n − 1)Hn/4/2 − n2/2,

where Hm denotes the mth Harmonic number. Thus, E(X) is Ω(n2 logn) for this
input array, giving us the following.

Theorem 2.1 There is an input causing Spin-the-bottle sort to have an expected run-
ning time of Ω(n2 logn).

An important lesson to take away from the proof of the above theorem is that a set
of inversions between pairs of close-by elements in A is sufficient to cause Spin-the-
bottle sort to have a relatively large expected running time. Intuitively, the algorithm
is spending a lot of time for each element A[i] looking throughout the entire array
for an inversion that is caused by an element right “next door” to A[i]. Interestingly,
this same intuition applies to our upper bound for the running time of Spin-the-bottle
sort.

2.2 An Upper Bound on the Running Time of Spin-the-Bottle Sort

Let us now consider an upper bound on the running time of Spin-the-bottle sort. Our
analysis is based on characterizations involving M , the number of inversions present
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in A when it is given as input to the algorithm. Let Mj denote the number of inver-
sions that exist in A at the beginning of round j (where a round involves a complete
scan of A), so M1 = M . In addition, let mi,j denote the number of inversions that
exist at the beginning of round j and involve A[i], and observe that

n∑
i=1

mi,j = 2Mj.

We divide the course of the algorithm into three phases, depending on the value of
Mj :

• Phase 1: Mj ≥ 12n logn

• Phase 2: 12n ≤ Mj < 12n logn

• Phase 3: Mj < 12n.

Theorem 2.2 Given an array A of n elements, the three phases of Spin-the-bottle
sort run in O(n2 logn) time and sort A with very high probability.

Proof The proof is based on showing that we can achieve each of the milestones
marking each phase in O(n2 logn) time or better.

Phase 1. Let Xj be a random variable that equals the number of inversions resolved
in round j of Phase 1. Also, let Xi,j denote an indicator random variable that is 1 iff
we perform, in iteration i of the for-loop in round j , a comparison between A[i] and
an element that caused an inversion with A[i] at the beginning of round j . Thus,

Xj ≥
∑n

i=1 Xi,j

2
,

since each inversion involves two elements of A. Each of the Xi,j ’s are independent.
Furthermore,

E(Xi,j ) = mi,j

n − 1
,

where mi,j denotes the number of inversions that exist at the beginning of round j

and involve A[i]. Therefore,

E(Xj ) ≥ (1/2)

n∑
i=1

mi,j

n − 1
= Mj/(n − 1),

where Mj is the number of inversions in A that exist at the beginning of round j .
Thus, by a well-known Chernoff bound,

Pr
(
Xj < Mj/2(n − 1)

) ≤
(

e−1/2

(1/2)1/2

)Mj /(n−1)

≤ 2−Mj /3(n−1)

≤ n−4,
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since we are in Phase 1. So we may assume with probability at least 1 − c/n3 that
the following recurrence relation holds during Phase 1, for all 1 ≤ j ≤ cn, for any
constant c ≥ 1:

Mj+1 ≤ Mj − Mj

2n
.

Therefore, with probability at least 1 − 4/n3, there are at most 4n rounds during
Phase 1 of Spin-the-bottle sort, since M1 = M < n2 and Mj ≥ 12n logn, for all j

during Phase 1. That is, with very high probability, Phase 1 runs in O(n2) time.

Phase 2. For this phase, let Xj and Xi,j denote random variables defined as in our
analysis of Phase 1, with the index j reset to 1 for Phase 2. In this case,

E(Xj ) ≥ Mj/(n − 1) ≥ 12.

Thus, by a similar Chernoff bound used for analyzing Phase 1,

Pr(Xj < 6) ≤ Pr
(
Xj < Mj/2(n − 1)

)
≤ 2−Mj /3(n−1)

≤ 2−4,

since we are in Phase 2. That is, with probability 1/16 we resolve fewer than 6 inver-
sions in round j of Phase 2. Call round j a failure in this case, and call it a success
if it resolves at least 6 inversions. Let Yj be an indicator random variable that is 1 iff
we resolve fewer than 6 inversions in round j of Phase 2, or, if j is larger than the
number of rounds in Phase 2, then let Yj be an independent random variable that is 1
with probability 1/16. Thus, the number of failure rounds in the first at most 4n logn

rounds of Phase 2 is at most

Y =
4n logn∑
j=1

Yj .

Note that E(Y) = (1/4)n logn. Thus, by a standard Chernoff bound,

Pr(Y > 2n logn) = Pr
(
Y > 8(1/4)n logn

)

≤
(

e7

88

)(1/4)n logn

≤ 2−2n logn

= n−2n.

Note, in addition, that there can be, in total, at most 2n logn successful rounds in
Phase 2. Thus, with very high probability, there are only O(n logn) rounds in Phase 2.
That is, with very high probability, Phase 2 runs in O(n2 logn) time.
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Phase 3. The analysis for this phase is similar to that for the coupon collector’s prob-
lem (e.g., see [7]). At the start of this phase, there are fewer than 12n inversions that
remain in A. Note that, for any such inversion, χ , the probability that χ is resolved
in a round of Phase 3 is at least 1/n. Let Zr

χ be the event that χ is not resolved after
r rounds of Phase 3. Thus,

Pr
(
Zr

χ

) ≤
(

1 − 1

n

)r

≤ e−r/n.

Let R denote the number of rounds needed to resolve all the inversions in Phase 3.
Then, for c ≥ 2,

Pr(R > cn lnn) ≤ Pr

(⋃
χ

Z
cn logn
χ

)

≤
∑
χ

Pr
(
Z

cn logn
χ

)

≤ 12

nc−1
.

Thus, with very high probability, R is O(n logn); hence, with very high probability,
Phase 3 runs in O(n2 logn) time. This completes the proof. �

3 Annealing Sort

Of course, the performance of Spin-the-bottle sort is no great achievement, since
there are several simple deterministic data-oblivious sorting algorithms that run in
O(n log2 n) time and even Bubble sort itself is faster than Spin-the-bottle sort, run-
ning in O(n2) time. But the above three-phase characterization nevertheless gives us
some intuition that leads to a more efficient sorting algorithm, which we discuss in
this section. This sorting algorithm is based on applying the simulated annealing [25]
meta-heuristic to the sorting problem.

Following an analogy from metallurgy, the simulated annealing meta-heuristic in-
volves solving an optimization problem by a sequence of choices, such that choice
j is made from among some rj neighbors of a current state that are confined to be
within a distance bounded from above by a parameter Tj (according to an appropriate
metric). Given the metallurgical analogy, the parameter Tj is called the temperature,
which is gradually decreased during the algorithm according to an annealing sched-
ule, until it is 0, at which point the algorithm halts.

Let us apply this meta-heuristic to sorting, which is admittedly not an optimization
problem, so some adaption is required. That is, let us view each round in a sorting
algorithm that is similar to Spin-the-bottle sort as a step in a simulated annealing algo-
rithm. Since each compare-exchange operation is chosen at random, let us now limit,
in round j , the distance between candidate comparison elements to a parameter Tj , so
as to implement the temperature metaphor, and let us also repeat the random choices
for each element rj times, so as to implement a notion of neighbors of the current



Algorithmica (2014) 68:835–858 843

for j = 1 to t do
for i = 1 to n − 1 do

for k = 1 to rj do
Let s be a random integer in the range [i + 1,min{n, i + Tj }].
if A[i] > A[s] then

Swap A[i] and A[s]
end if

end for
end for
for i = n downto 2 do

for k = 1 to rj do
Let s be a random integer in the range [max{1, i − Tj }, i − 1].
if A[s] > A[i] then

Swap A[i] and A[s]
end if

end for
end for

end for

Fig. 2 Annealing sort. It takes as input an array, A, of n elements and an annealing schedule defined by
sequences, T = (T1, T2, . . . , Tt ) and R = (r1, r2, . . . , rt ). Note that if the compare-exchange operations
are performed as a blackbox, then the algorithm is data-oblivious

state under consideration. The sequence of Tj and rj values defines the annealing
schedule for our Annealing sort.

Formally, let us assume we are given an annealing schedule defined by the follow-
ing:

• A temperature sequence, T = (T1, T2, . . . , Tt ), where Ti ≥ Ti+1, for i = 1, . . . ,

t − 1, and Tt = 0.
• A repetition sequence, R = (r1, r2, . . . , rt ).

Given these two sequences, Annealing sort is as given in Fig. 2.
The running time of Annealing sort is O(n

∑t
j=1 ri) and its effectiveness depends

on the annealing schedule, defined by T = (T1, T2, . . . , Tt ) and R = (r1, r2, . . . , rt ).
Fortunately, there is a three-phase annealing schedule that causes Annealing sort to
run in O(n logn) time and succeed with very high probability:

• Phase 1. For this phase, let T1 = (2n,2n,n,n,n/2, n/2, n/4, n/4 . . . , q log6 n,

q log6 n) be the temperature sequence and let R1 = (c, c, . . . , c) be an equal-length
repetition sequence (of all c’s), where q ≥ 1 and c > 1 are constants.

• Phase 2. For this phase, let T2 = (q log6 n, (q/2) log6 n, (q/4) log6 n, . . . , g logn)

be the temperature sequence and let R2 = (r, r, . . . , r) be an equal-length repetition
sequence, where q is the constant from Phase 1, g ≥ 1 is a constant determined in
the analysis, and r is Θ(logn/ log logn).

• Phase 3. For this phase, let T3 and R3 be sequences of length g logn of all 1’s.

Given the annealing schedule defined by T = (T1, T2, T3,0) and R = (R1, R2,

R3,0), note that the running time of Annealing sort is O(n logn). Let us therefore
analyze its success probability.
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3.1 Analysis of Phase 1

Our analysis for Phase 1 borrows some elements from our analysis of randomized
Shellsort [17], as this algorithm has a somewhat similar structure of a schedule of
random choices that gradually reduce in scope.

The Probabilistic Zero-One Principle We begin our analysis with a probabilistic
version of the zero-one principle (e.g., see Knuth [24]).

Lemma 3.1 [6, 17, 35] If a randomized data-oblivious sorting algorithm sorts any
array of 0’s and 1’s of size n with failure probability at most ε, then it sorts any array
of size n with failure probability at most ε(n + 1).

This lemma is clearly only of effective use for randomized data-oblivious algo-
rithms that have failure probabilities that are O(n−ρ), for some constant ρ > 1, i.e.,
algorithms that succeed with very high probability.

Shrinking Lemmas As we move up and down A in a single pass, let us assume that
we are considering the affect of this pass on an array A of zeroes and ones, reasoning
about how this pass impacts the ones “moving up” in A. We can prove a number of
useful “shrinking” lemmas for the number of ones that remain in various regions (i.e.,
subarrays) of A during this pass. (Symmetric lemmas hold for the 0’s with respect to
their downward movement in A.)

Lemma 3.2 (Sliding-Window Lemma) Let B be a subarray of A of size N , and let
C be the subarray of A of size 4N immediately following B . Suppose further there
are k ≤ 4βN ones in B ∪ C, for 0 < β < 1. Let k

(c)
1 be the number of ones in B after

a single up-and-down pass of Annealing sort with temperature 4N and repetition
factor c. Then

Pr
(
k
(c)
1 > max

{
2βcN,8e logn

}) ≤ min
{
2−βcN/2, n−4}.

Proof For a one to remain in a given location in B it must be matched with a one in
each of its c compare-exchange operations in B ∪C (and note that this is the extent of
possibilities, since the temperature is 4N ). Moreover, we may pessimistically assume
each such c-ary test will occur independently for each possible position in B with
probability at most βc. Thus,

E
(
k
(c)
1

) ≤ βcN.

Since k
(c)
1 can, in this case, be viewed as the sum of N independent 0-1 random

variables, we can apply a Chernoff bound (e.g., see [30, 31]) to establish

Pr
(
k
(c)
1 > 2βcN

) ≤ 2−βcN/2,

for the case when our bound on E(k
(c)
1 ) is greater than 4e logn. When this bound is

less than or equal to 4e logn, we can use a Chernoff bound to establish

Pr
(
k
(c)
1 > 8e logn

) ≤ 2−2e logn ≤ n−4. �
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Lemma 3.3 Suppose we are given two regions, B and C, of A, of size N and αN ,
respectively, for 0 < α < 4, that are contained inside a subarray of A of size 4N , with
B to the left of C, and let k = k1 + k2, where k1 (resp., k2) is the number of ones in B

(resp., C). Let k
(c)
1 be the number of ones in B after a single up-and-down pass of

Annealing sort with temperature 4N and repetition factor c. Then

E
(
k
(c)
1

) ≤ k1

(
1 − α

4
+ k2

4N

)c

.

Proof A one may possibly remain in B after a single (up) pass of Annealing sort
with temperature 4N , with respect to a single random choice, if it is matched with a
one in C or not matched with an element in C at all. In a single random choice, with
probability 1 − α/4, it is not matched with an element in C, and, if matched with an
element in C, which occurs with probability α/4, the probability that it is matched
with a one is k2/(αN). �

Lemma 3.4 (Fractional-Depletion Lemma) Given two regions, B and C, in A, of
size N and αN , respectively, for 0 < α < 4, such that B and C are contained in a
subarray of A of size 4N , with B to the left of C, let k = k1 + k2, where k1 and k2
are the respective number of ones in B and C, and suppose k ≤ 4βN , for 0 < β < 1.
Let k

(c)
1 be the number of ones in B after a single up-pass of Annealing sort with

temperature 4N and repetition factor c. Then

Pr

(
k
(c)
1 > max

{
2

(
1 − α

4
+ β

)c

N,8e logn

})

≤ min
{
2−(1−α/4+β)cN/2, n−4}.

Proof By Lemma 3.3, applied to this scenario,

E
(
k
(c)
1

) ≤ k1

(
1 − α

4
+ 4βN

4N

)c

≤
(

1 − α

4
+ β

)c

N.

Since k
(c)
1 can be viewed as the sum of k1 independent 0-1 random variables, we can

apply a standard Chernoff bound (e.g., see [30, 31]) to establish

Pr

(
k
(c)
1 > 2

(
1 − α

4
+ β

)c

N

)
≤ 2−(1−α/4+β)cN/2,

for the case when our bound on E(k
(c)
1 ) is greater than 4e logn. When this bound is

less than or equal to 4e logn, we can use a Chernoff bound to establish

Pr
(
k
(c)
1 > 8e logn

) ≤ 2−2e logn ≤ n−4. �

Lemma 3.5 (Startup Lemma) Given two regions, B and C, in A, of size N and αN ,
respectively, for 0 < α < 4, contained in a subarray of A of size 4N , with B to the left
of C, let k = k1 + k2, where k1 and k2 are the respective number of ones in B and C,
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and suppose k ≤ 4βN , for 0 < β < 1. Let k
(c)
1 be the number of ones in B after one

up-pass of Annealing sort with temperature 4N and repetition factor c. Then, for any
constant λ > 0 such that 1 −α/4 +β −λ ≤ 1 − ε, for some constant 0 < ε < 1, there
is a constant c > 1 such that k

(c)
1 ≤ λN , with very high probability, provided N is

Ω(logn).

Proof By Lemma 3.3, so long as k1 ≥ λN , then

E
(
k
(c)
1

) ≤
(

1 − α

4
+ 4βN − λN

4N

)c

N

≤
(

1 − α

4
+ β − λ

)c

N

≤ (1 − ε)cN.

Of course, we are done as soon as k1 ≤ λN , and note that, for c ≥ log1/(1−ε) λ/2, we

have E(k
(c)
1 ) ≤ λN/2. Thus, by a Chernoff bound, for such a constant c,

Pr
(
k
(c)
1 > λN

) = Pr
(
k
(c)
1 > 2λN/2

) ≤ 2−λN/4.

The proof follows then, the fact that N is Ω(logn). �

Having proven the essential properties for the compare-exchange passes done in
each round of Phase 1 of Annealing sort, let us now turn to the actual analysis of
Phase 1.

Bounding Dirtiness After Each Iteration In the 2d-th iteration of Phase 1, imagine
that we partition the array A into 2d regions, A0, A1, . . ., A2d−1, each of size n/2d .
Moreover, every two iterations with the same temperature splits a region from the
previous iteration into two equal-sized halves. Thus, the algorithm can be visualized
in terms of a complete binary tree, B, with n leaves. The root of B corresponds
to a region consisting of the entire array A and each leaf4 of B corresponds to an
individual cell, ai , in A, of size 1. Each internal node v of B at depth d corresponds
with a region, Ai , created in the 2d-th iteration of the algorithm, and the children of
v are associated with the two regions that Ai is split into during iteration 2(d + 1).

The desired output, of course, is to have each leaf value, ai = 0, for i < n − k,
and ai = 1, otherwise. We therefore refer to the transition from cell n − k − 1 to cell
n − k on the last level of B as the crossover point. We refer to any leaf-level region
to the left of the crossover point as a low region and any leaf-level region to the right
of the crossover point as a high region. We say that a region, Ai , corresponding to an
internal node v of B, is a low region if all of v’s descendents are associated with low
regions. Likewise, a region, Ai , corresponding to an internal node v of B, is a high
region if all of v’s descendents are associated with high regions. Thus, we desire that
low regions eventually consist of only zeroes and high regions eventually consist of

4This is a slight exaggeration, of course, since we terminate Phase 1 when regions have size O(log6 n).
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only ones. A region that is neither high nor low is mixed, since it is an ancestor of
both low and high regions. Note that there are no mixed leaf-level regions, however.

Also note that, since Phase 1 is data-oblivious, the algorithm doesn’t take any dif-
ferent behavior depending on whether a region is high, low, or mixed. Nevertheless,
given the shrinking lemmas presented above, we can reason about the actions of our
algorithm on different regions in terms of any one of these pairs.

With each high (resp., low) region, Ai , define the dirtiness of Ai to be the number
of zeroes (resp., ones) that are present in Ai , that is, values of the wrong type for Ai .
With each region, Ai , we associate a dirtiness bound, δ(Ai), which is a desired upper
bound on the dirtiness of Ai . For each region, Ai , at depth d in B, let j be the number
of regions from Ai to the crossover point or mixed region on that level. That is, if Ai

is next to the mixed region, then j = 1, and if Ai is next to a region next to the
mixed region, then j = 2, and so on. In general, if Ai is a low leaf-level region, then
j = n− k − i − 1, and if Ai is a high leaf-level region, then j = j −n+ k. We define
the desired dirtiness bound, δ(Ai), of Ai as follows:

• If j ≥ 2, then

δ(Ai) = n

2d+j+3
.

• If j = 1, then

δ(Ai) = n

5 · 2d
.

• If Ai is a mixed region, then

δ(Ai) = |Ai |.
Thus, every mixed region trivially satisfies its desired dirtiness bound.
Because of our need for a high probability bound, we will guarantee that each

region Ai satisfies its desired dirtiness bound, w.v.h.p., only if δ(Ai) ≥ 8e logn. If
δ(Ai) < 8e logn, then we say Ai is an extreme region, for, during our algorithm, this
condition implies that Ai is relatively far from the crossover point. We will show
that the total dirtiness of all extreme regions is O(log3 n) w.v.h.p. This motivates our
termination of Phase 1 when the temperature is O(log6 n).

Lemma 3.6 Suppose Ai is a low (resp., high) region and � is the cumulative dirti-
ness of all regions to the left (right) of Ai . Then any compare-exchange pass over A

can increase the dirtiness of Ai by at most �.

Proof If Ai is a low (resp., high) region, then its dirtiness is measured by the number
of ones (resp., zeroes) it contains. During any compare-exchange pass, ones can only
move right, exchanging themselves with zeroes, and zeroes can only move left, ex-
changing themselves with ones. Thus, the only ones that can move into a low region
are those to the left of it and the only zeroes that can move into a high region are
those to the right of it. �

The inductive claim we show in the Appendix holds with very high probability is
the following.



848 Algorithmica (2014) 68:835–858

Claim 3.7 After iteration d , for each region Ai , the dirtiness of Ai is at most δ(Ai),
provided Ai is not extreme. The total dirtiness of all extreme regions is at most
8ed log2 n.

3.2 Analysis of Phase 2

Claim 3.7 is the essential condition we need to hold at the start of Phase 2. In this
section, we analyze the degree to which Phase 2 increases the sortedness of the array
A further from this point.

At the beginning of Phase 2, the total dirtiness of all extreme regions is at most
8e log3 n, and the size of each such region is g log6 n, for g = 64e2. Without loss of
generality, let us consider a one in an extreme low region. The probability that such
a one fails to be compared with a zero to its right in a round of Phase 2 is at most
1/N1/2, provided g is large enough. Thus, with r = h logn/ log logn, the probability
such a one fails to be compared with a 0 after r random comparisons at distance N is
at most

(
1

N1/2

)h logn/ log logn

≤ 1

N(h/2) logn/ log logn

≤ 1

(logn)(h/2) logn/ log logn

= 1

nh/2
,

since N ≥ logn during Phase 2. Thus, with very high probability, there are no dirty
extreme regions after one round of Phase 2.

Consider next a non-extreme low region that is not mixed. By Claim 3.7, the dirti-
ness of such a region, and all regions to its left, is, with very high probability, at most
7N/10. Thus,

E
(
k
(r)
1

) ≤
(

1 − 3

20

)r

N

≤ e−(20/3)rN.

Therefore, by a Chernoff bound, for d and n large enough,

Pr
(
k
(r)
1 > d logN

) ≤ (eN)d logN

(e(20/3)d logn/ log logn)d logN

≤ 1

ed logn

≤ 1

nd
.

Note that in the next round after this, such a region will become completely clean,
w.v.h.p., since its dirtiness is below 1/N1/2 w.v.h.p.



Algorithmica (2014) 68:835–858 849

In addition, by Lemma 3.5, since N is Ω(logn) throughout Phase 2, then, w.v.h.p,
the dirtiness of regions separate from a mixed region is at most N/6. Thus, the above
analysis applies to them as well, once they are separate from a mixed region.

Therefore, by the end of Phase 2, w.v.h.p., the only dirty regions are either mixed
or within distance 2 of a mixed region. In other words, the total dirtiness of the array
A at the end of Phase 2 is O(logn).

3.3 Analysis of Phase 3

Each round of Phase 3 is guaranteed to decrease the dirtiness of A by at least 1 so
long as A is not completely clean. This property is similar to the reason why Bubble
sort works. Namely, using the zero-one principle, note that the leftmost one in A

will always move right until it encounters another one. Thus, a single up-pass in A

eliminates the leftmost one having a zero somewhere to its right. Likewise, a single
down-pass in A eliminates the rightmost zero having a one somewhere to its left.
Thus, since the total dirtiness of A is O(logn) w.v.h.p., Phase 3 will completely
sort A w.v.h.p.

Therefore, we have the following.

Theorem 3.8 Given an array A of n elements, there is an annealing schedule that
cause the three phases of Annealing sort to run in O(n logn) time and leave A sorted
with very high probability.

4 Conclusion

We have given two related data-oblivious sorting algorithms based on iterated passes
of round-robin random comparisons. The first, Spin-the-bottle sort requires an ex-
pected Ω(n2 logn) time to sort some inputs and in O(n2 logn) time it will sort any
given input sequence with very high probability. The second, Annealing sort, on the
other hand, can be designed to run in O(n logn) time and sort with very high proba-
bility.

Some interesting open problems include the following.

• Our analysis is, in many ways, overly pessimistic, in order to show that Annealing
sort succeeds with very high probability. Is there a simpler and shorter annealing
sequence that causes Annealing sort to run in O(n logn) time and sort with very
high probability?

• Both Spin-the-bottle sort and Annealing sort are highly sequential. Is there a simple
randomized sorting network with depth O(logn) and size O(n logn) that sorts
any given input sequence with very high probability? (Leighton and Plaxton [27]
describe a randomized sorting network that sorts with very high probability, which
is simpler than the AKS sorting network [1], but is still somewhat complicated. So
the open problem would be to design a sorting network construction that is clearly
simpler than the construction of Leighton and Plaxton.)
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• Throughout this paper, we have assumed that compare-exchange operations always
return the correct answer. But there are some scenarios when one would want to be
tolerant of faulty compare-exchange operations (e.g., see [2, 8, 16]). Is there a ver-
sion of Annealing sort that runs in O(n logn) time and sorts with high probability
even if comparisons return a faulty answer uniformly at random with probability
strictly less than 1/2?

Acknowledgements This research was supported in part by the National Science Foundation under
grants 0724806, 0713046, and 0847968, and by the Office of Naval Research under MURI grant N00014-
08-1-1015.

Appendix: Proof of the Inductive Claim for Phase 1 of Annealing Sort

In this appendix, we prove Claim 3.7, which states that, after iteration d , for each
region Ai , the dirtiness of Ai is at most δ(Ai), provided Ai is not extreme, and that
the total dirtiness of all extreme regions is at most 8ed log2 n. As mentioned above,
this analysis for Phase 1 of Annealing sort borrows from our analysis of randomized
Shellsort [17], as there is a similar structure to our inductive argument even though
the fine details are quite different.

Let us begin at the first round, which we are viewing in terms of two regions,
A1 and A2, of size N = n/2 each. Suppose that k ≤ n − k, where k is the number
of ones, so that A1 is a low region and A2 is either a high region (i.e., if k = n − k)
or A2 is mixed (the case when k > n − k is symmetric). Let k1 (resp., k2) denote
the number of ones in A1 (resp., A2), so k = k1 + k2. By the Startup Lemma 3.5,
the dirtiness of A1 will be at most n/12, with very high probability, since in this
case (using the notation of that lemma and viewing A as existing inside a larger
array of size 2n), α = 1, β ≤ 1/4, and λ = 1/6, so 1 − α/4 + β − λ ≤ 1 − 1/6.
Note that this satisfies the desired dirtiness of A1, since δ(A1) = n/10 in this case.
A similar argument applies to A2 if it is a high region, and if A2 is mixed, it trivially
satisfies its desired dirtiness bound. Also, assuming n is large enough, there are no
extreme regions (if n is so small that A1 is extreme, we can immediately switch to
Phase 2). The next round of Annealing sort (with temperature 2n) can only improve
the dirtiness in A. Thus, we satisfy the base case of our inductive argument—the
dirtiness bounds for the two children of the root of B are satisfied with (very) high
probability, and similar arguments prove the inductive claim for iterations 3 and 4, for
N = n/22 and temperature n, and iterations 5 and 6 for N = n/23 and temperature
n/2.

Let us now consider a general inductive step. Let us assume that, with very high
probability, we have satisfied Claim 3.7 for the regions on level d ≥ 3 and let us now
consider the transition to level d + 1, which occurs in iterations 2d + 1 and 2d + 2.
In addition, we terminate this line of reasoning when the region size, n/2d , becomes
less than 64e2 log6 n.

Extreme Regions Let us begin with the bound for the dirtiness of extreme regions at
depth d + 1, considering the effect of iteration 2d + 1. Note that, by Lemma 3.6, re-
gions that were extreme after iteration 2d will be split into regions in iteration 2d + 1
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that contribute no new amounts of dirtiness to pre-existing extreme regions. That is,
extreme regions get split into extreme regions. Thus, the new dirtiness for extreme
regions can come only from regions that were not extreme on level d of B that are
now splitting into extreme regions on level d + 1, which we call freshly extreme re-
gions. Suppose, then, that Ai is such a region, say, with a parent, Ap , which is j

regions from the mixed region on level d . Then the desired dirtiness bound of Ai ’s
parent region, Ap , is δ(Ap) = n/2d+j+3 ≥ 8e logn, by Claim 3.7, since Ap is not ex-
treme. Ap has (low-region) children, Ai and Ai+1, that have desired dirtiness bounds
of δ(Ai) = n/2d+1+2j+4 or δ(Ai) = n/2d+1+2j+3 and of δ(Ai+1) = n/2d+1+2j+3

or δ(Ai+1) = n/2d+1+2j+2, depending on whether the mixed region on level d + 1
has an odd or even index. Moreover, Ai (and possibly Ai+1) is freshly extreme, so
n/2d+1+2j+4 < 8e logn, which implies that j > (logn− d − log logn− 10)/2. Nev-
ertheless, note also that there are O(logn) new regions on this level that are just
now becoming extreme, since n/2d > 64e2 log6 n and n/2d+j+3 ≥ 8e logn implies
j ≤ logn − d . So let us consider the two freshly extreme regions, Ai and Ai+1, in
turn, and how a pass of Annealing sort effects them (for after that they will collec-
tively satisfy the extreme-region part of Claim 3.7).

• Region Ai : Consider the worst case for δ(Ai), namely, that δ(Ai) = n/2d+1+2j+4.
Since Ai is a left child of Ap , Ai could get at most n/2d+j+3 + 8ed log2 n ones
from regions left of Ai , by Lemma 3.6. In addition, Ai and Ai+1 could inherit at
most δ(Ap) = n/2d+j+3 ones from Ap . Thus, if we let N denote the size of Ai , i.e.,
N = n/2d+1, then Ai and Ai+1 together have at most N/2j+1 + 3N1/2 ≤ N/2j

ones, since we stop Phase 1 when N < 64e2 log6 n. In addition, assuming j ≥ 4,
regions Ai+2 and Ai+3 may inherit at most n/2d+j+2 ones from their parent and
region Ai+4 may inherit at most n/2d+j+1 ones from its parent. Therefore, by the
Sliding-Window Lemma 3.2, with β = 5/2j+3 < 1/2j , the following condition
holds with probability at least 1 − cn−4,

k
(c)
1 ≤ max

{
2βcN,8e logn

}
,

where k
(c)
1 is the number of one left in Ai after an up-pass of Annealing sort with

temperature 4N and repetition factor c. Note that, if k
(c)
1 ≤ 8e logn, then we have

satisfied the desired dirtiness for Ai . Alternatively, so long as c ≥ 4, and j ≥ 4,
then w.v.h.p.,

k
(c)
1 ≤ 2βcN

≤ n

2d+jc

≤ n

2d+1+2j+4
≤ 8e logn = δ(Ai).

• Region Ai+1: Consider the worst case for δ(Ai+1), namely δ(Ai+1)=n/2d+1+2j+3.
Since, in this case, Ai+1 is a right child of Ap , Ai+1 could get at most
n/2d+j+3 + 8ed log2 n ones from regions left of Ai+1, by Lemma 3.6, plus Ai+1
could inherit at most δ(Ap) = n/2d+j+3 ones from Ap itself. In addition, since
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j ≥ 3, Ai+2 and Ai+3 could inherit at most n/2d+j+2 ones from their parent, and
Ai+4 and Ai+5 could inherit at most n/2d+j+1 ones from their parent. Thus, if we
let N denote the size of Ai+1, i.e., N = n/2d+1, then Ai+1 through Ai+5 together
have at most N/2j+1 + 3N1/2 + N/2j+1 + N/2j ≤ 4N/2j ones, since we stop
Phase 1 when N < 64e2 log6 n, and j ≥ 4. By the Sliding-Window Lemma 3.2,
applied with β = 1/2j , the following condition holds with probability at least
1 − cn−4,

k
(c)
1 ≤ max

{
2βcN,8e logn

}
,

where k
(c)
1 is the number of ones left in Ai+1 after a pass of Annealing sort with

repetition factor c and temperature 4N . Note that, if k
(c)
1 ≤ 8e logn, then we have

satisfied the desired dirtiness bound for Ai+1. Alternatively, so long as c ≥ 4, and
j ≥ 4, then w.v.h.p.,

k
(c)
1 ≤ 2βcN

≤ n

2d+jc

≤ n

2d+1+2j+4
≤ 8e logn = δ(Ai+1).

Therefore, if a low region Ai or Ai+1 becomes freshly extreme in iteration 2d +1,
then, w.v.h.p., its dirtiness is at most 8e logn. Since there are at most logn freshly
extreme regions created in iteration 2d + 1, this implies that the total dirtiness of all
extreme low regions in iteration 2d + 1 is at most 8e(d + 1) log2 n, w.v.h.p., after
the right-moving pass of Phase 1, by Claim 3.7. Likewise, by symmetry, a similar
claim applies to the high regions after the left-moving pass of Phase 1. Moreover, by
Lemma 3.6, these extreme regions will continue to satisfy Claim 3.7 after this.

Non-extreme Regions not too Close to the Crossover Point Let us now consider
non-extreme regions on level d + 1 that are at least two regions away from the
crossover point on level d + 1. Consider, wlog, a low region, Ap , on level d , which
is j regions from the crossover point on level d , with Ap having (low-region) chil-
dren, Ai and Ai+1, that have desired dirtiness bounds of δ(Ai) = n/2d+1+2j+4 or
δ(Ai) = n/2d+1+2j+3 and of δ(Ai+1) = n/2d+1+2j+3 or δ(Ai+1) = n/2d+1+2j+2,
depending on whether the mixed region on level d + 1 has an odd or even index. By
Lemma 3.6, if we can show w.v.h.p. that the dirtiness of each such Ai (resp., Ai+1)
is at most δ(Ai)/3 (resp., δ(Ai+1)/3), after the up-and-down pass of Phase 1, then
no matter how many more ones come into Ai or Ai+1 from the left during the rest of
iteration 2d + 1 (and 2d + 2), they will satisfy their desired dirtiness bounds.

Let us consider the different region types (always taking the most difficult choice
for each desired dirtiness in order to avoid additional cases):

• Type 1: δ(Ai) = n/2d+1+2j+4, with j ≥ 4. Since Ai is a left child of Ap , in this
case, Ai could get at most n/2d+j+3 + 8ed log2 n ones from regions left of Ai ,
by Lemma 3.6. In addition, Ai and Ai+1 could inherit at most δ(Ap) = n/2d+j+3

ones from Ap . Thus, if we let N denote the size of Ai , i.e., N = n/2d+1, then
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Ai and Ai+1 together have at most N/2j+1 + 3N1/2 ≤ N/2j ones, since we
stop Phase 1 when N < 64e2 log6 n. In addition, Ai+2 and Ai+3 inherit at most
n/2d+j+2 ones from their parent. Likewise, Ai+4 inherits at most n/2d+j+1 ones
from its parent. Thus, Ai through Ai+4 inherit at most N/2j + N/2j+1 + N/2j ≤
N/2j−2 ones. Thus, we can apply the Sliding-Window Lemma 3.2, with β = 1/2j ,
so that, the following condition holds with probability at least 1 − n−4, provided
c ≥ 4 and j ≥ 4:

k
(c)
1 ≤ 2βcN

≤ n

2d+1+jc−1

≤ n

3 · 2d+1+2j+4
= δ(Ai)/3,

where k
(c)
1 is the number of ones left in Ai after a pass of Annealing sort with

repetition factor c.
• Type 2: δ(Ai+1) = n/2d+1+2j+3, with j ≥ 4. Since Ai+1 is a right child of Ap ,

in this case, Ai+1 could get at most n/2d+j+3 + 8ed log2 n ones from regions left
of Ai+1, by Lemma 3.6, plus Ai+1 could inherit at most δ(Ap) = n/2d+j+3 ones
from Ap . In addition, since j > 2, Ai+2 and Ai+3 could inherit at most n/2d+j+2

ones from their parent. Thus, if we let N denote the size of Ai+1, i.e., N = n/2d+1,
then Ai+1, Ai+2, and Ai+3 together have at most N/2j + 3N1/2 ≤ N/2j−1 ones,
since we stop Phase 1 when N < 64e2 log6 n. In addition, Ai+4 and Ai+5 may
inherit n/2d+j+1 ones from their parent. Thus, Ai+1 through Ai+5 may receive
N/2j−1 + N/2j ≤ N/2j−2 ones. Therefore, with β = 1/2j , we may apply the
Sliding-Window Lemma 3.2 to show that, with probability at least 1 − n−4, for
j ≥ 4 and c ≥ 4,

k
(c)
1 ≤ 2βcN

≤ n

2d+1+jc

≤ n

3 · 2d+1+2j+3
= δ(Ai+1)/3,

where k
(c)
1 is the number of ones left in Ai+1 after a pass of Annealing sort with

repetition factor c.
• Type 3: δ(Ai) = n/2d+1+2j+4, with j = 3. Since Ai is a left child of Ap , in this

case, Ai could get at most n/2d+j+3 + 8ed log2 n ones from regions left of Ai ,
by Lemma 3.6. In addition, Ai and Ai+1 could inherit at most δ(Ap) = n/2d+j+3

ones from Ap . Thus, if we let N denote the size of Ai , i.e., N = n/2d+1, then Ai

and Ai+1 together have at most N/2j+1 + 3N1/2 ≤ N/2j = N/23 ones, since
we stop Phase 1 when N < 64e2 log6 n. In addition, Ai+2 and Ai+3 inherit at
most n/2d+j+2 = N/24 ones from their parent. Finally, Ai+4 inherits at most
n/(5 · 2d) = 2N/5 ones from its parent. Thus, Ai through Ai+4 inherit at most
N/23 + N/24 + 2N/5 ≤ 5N/23 = 5N/2j ones. Thus, we can apply the Sliding-
Window Lemma 3.2, with β = 5/2j+2, so that, the following condition holds with
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probability at least 1 − n−4, for c ≥ 5 and j = 3:

k
(c)
1 ≤ 2βcN

≤ 5cn

2d+(j+2)c

≤ n

3 · 2d+1+2j+4
= δ(Ai)/3,

where k
(c)
1 is the number of ones left in Ai after a pass of Annealing sort with

repetition factor c and temperature 4N .
• Type 4: δ(Ai+1) = n/2d+1+2j+3, with j = 3. Since Ai+1 is a right child of Ap ,

in this case, Ai+1 could get at most n/2d+j+3 + 8ed log2 n ones from regions left
of Ai+1, by Lemma 3.6, plus Ai+1 could inherit at most δ(Ap) = n/2d+j+3 ones
from Ap . In addition, since j > 2, Ai+2 and Ai+3 could inherit at most n/2d+j+2

ones from their parent. Thus, if we let N denote the size of Ai+1, i.e., N = n/2d+1,
then Ai+1, Ai+2, and Ai+3 together have at most N/2j + 3N1/2 ≤ N/2j−1 ones,
since we stop Phase 1 when N < 64e2 log6 n. In addition, Ai+4 and Ai+5 may
inherit n/(5 · 2d) ones from their parent. Thus, Ai+1 through Ai+5 may receive
N/2j−1 + 2N/5 < (2/3)N ones. Therefore, with β < 1/6, we may apply the
Sliding-Window Lemma 3.2 to show that, with probability at least 1 − n−4, for
j = 3 and c ≥ 6,

k
(c)
1 ≤ 2βcN

≤ n

3c2d+1

≤ n

3 · 2d+1+2j+3
= δ(Ai+1)/3,

where k
(c)
1 is the number of ones left in Ai+1 after a pass of Annealing sort with

repetition factor c.
• Type 5: δ(Ai) = n/2d+1+2j+4, with j = 2. Since Ai is a left child of Ap , in this

case, Ai could get at most n/2d+j+3 + 8ed log2 n ones from regions left of Ai ,
by Lemma 3.6. In addition, Ai and Ai+1 could inherit at most δ(Ap) = n/2d+j+3

ones from Ap . Thus, if we let N denote the size of Ai , i.e., N = n/2d+1, then Ai

and Ai+1 together have at most N/2j+1 + 3N1/2 ≤ N/2j = N/22 ones, since
we stop Phase 1 when N < 64e2 log6 n. In addition, Ai+2 and Ai+3 inherit at
most 2N/5 ones from their parent. Thus, we can apply the Fractional-Depletion
Lemma 3.4, with α = 3 and β < 1/6, so that the following condition holds with
probability at least 1 − n−4, for c ≥ 9 and j = 2:

k
(c)
1 ≤ 2

(
1

4
+ 1

6

)c

N

≤ n

3 · 2d+1+2j+4
= δ(Ai)/3,
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where k
(c)
1 is the number of ones left in Ai after a pass of Annealing sort with

repetition factor c and temperature 4N .
• Type 6: δ(Ai+1) = n/2d+1+2j+3, with j = 2. Since Ai+1 is a right child of Ap ,

in this case, Ai+1 could get at most n/2d+j+3 + 8ed log2 n ones from regions left
of Ai+1, by Lemma 3.6, plus Ai+1 could inherit at most δ(Ap) = n/2d+j+3 ones
from Ap . In addition, since j = 2, Ai+2 and Ai+3 could inherit at most 2N/5 ones
from their parent, where we let N denote the size of Ai+1, i.e., N = n/2d+1. Thus,
Ai+1, Ai+2, and Ai+3 together have at most N/2j+1 + 3N1/2 + 2N/5 ≤ (2/3)N

ones, since we stop Phase 1 when N < 64e2 log6 n. Thus, Ai+1 through Ai+5 may
receive N/2j−1 + 2N/5 < (2/3)N ones. Therefore, with α = 3 and β < 1/6, we
may apply the Fractional-Depletion Lemma to show that, with probability at least
1 − n−4, for c ≥ 9 and j = 2:

k
(c)
1 ≤ 2

(
1

4
+ 1

6

)c

N

≤ n

3 · 2d+1+2j+3
= δ(Ai)/3,

where k
(c)
1 is the number of ones left in Ai+1 after a pass of Annealing sort with

repetition factor c and temperature 4N .
• Type 7: δ(Ai) = n/2d+1+2j+4, with j = 1. Since Ai is a left child of Ap , in this

case, Ai could get at most n/2d+j+2 + 8ed log2 n ones from regions left of Ai , by
Lemma 3.6, plus Ai and Ai+1 could inherit at most δ(Ap) = n/(5 · 2d) ones from
Ap . Thus, if we let N denote the size of Ai , i.e., N = n/2d+1, then Ai and Ai+1 to-
gether have at most N/2j+1 +2N/5+3N1/2 ≤ 7N/10 ones, since we stop Phase 1
when N < 64e2 log6 n. Thus, we may apply the Fractional-Depletion Lemma 3.4,
with α = 1 and β = 0.175, the following condition holds with probability at least
1 − n−4, for a suitably-chosen constant c, with j = 1,

k
(c)
1 ≤ 2(0.925)cN

≤ n

3 · 2d+1+2j+4
= δ(Ai)/3,

where k
(c)
1 is the number of ones left in Ai after a pass of Annealing sort with

repetition factor c.

Thus, Ai and Ai+1 satisfy their respective desired dirtiness bounds w.v.h.p., provided
they are at least two regions from the mixed region or crossover point.

Regions Near the Crossover Point Consider now regions near the crossover point.
That is, each region with a parent that is mixed, bordering the crossover point, or next
to a region that either contains or borders the crossover point. Let us focus specifically
on the case when there is a mixed region on levels d and d + 1, as it is the most
difficult of these scenarios.

So, having dealt with all the other regions, which have their desired dirtiness sat-
isfied after a single up-and-down pass of Phase 1, with temperature 4N , we are left
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with four regions near the crossover point, each of size N = n/2d+1, which we will
refer to as A1, A2, A3, and A4. One of A2 or A3 is mixed—without loss of gener-
ality, let us assume A3 is mixed. At this point in the algorithm, we perform an other
up-and-down pass with temperature 4N . So, let us consider how this pass impacts
the dirtiness of these four regions. Note that, by the results of the previous pass with
temperature 4N (which were proved above), we have at this point pushed to these
four regions all but at most n/2d+7 + 8e(d + 1) log2 n of the ones and all but at most
n/2d+6 +8e(d +1) log2 n of the zeroes. Moreover, these bounds will continue to hold
(and could even improve) as we perform the second up-and-down pass with temper-
ature 4N . Thus, at the beginning of this second pass, we know that the four regions
hold between 2N − N/32 − 3N1/2 and 3N + N/64 + 3N1/2 zeroes and between
N −N/64−3N1/2 and 2N +N/32+3N1/2 ones, where N = n/2d+1 > 64e2 log6 n.
Let us therefore consider the impact of the second pass with temperature 4N for each
of these four regions:

• A1: this region is compared to A2, A3, and A4, during the up-pass. Thus, we may
apply the Fractional-Depletion Lemma 3.4 with α = 3. Note, in addition, that,
for N large enough, since there are at most 2N + N/32 + 3N1/2 ≤ 2.2N ones
in all of these four regions, we may apply the Fractional-Depletion Lemma with
β = 0.55. Thus, the following condition holds with probability at least 1 − n−4,
for a suitably-chosen constant c,

k
(c)
1 ≤ 2(0.8)cN

≤ N

32
= δ(A1),

where k
(c)
1 is the number of ones left in A1 after a pass of Annealing sort with

repetition factor c and temperature 4N .
• A2: each element of this region is compared to elements in A3 and A4 in the up-

pass and A1 in the down-pass. Note, however, that even if A1 receives N zeroes in
the up-pass, there are still at most 2N + N/32 + 3N1/2 ≤ 2.2N ones in A2 ∪ A3 ∪
A4. Thus, even under this worst-case scenario (from A2’s perspective), we may
apply the Startup Lemma 3.5, with α = 2, β = 0.55, and λ = 1/6, which implies
that

1 − α/4 + β − λ ≤ 1 − 1/10,

i.e., we can take ε = 1/10 and show that, there is a constant c such that, w.v.h.p.,

k
(c)
1 ≤ N

6
< δ(A2),

where k
(c)
1 is the number of ones left in A2 after an up-pass of Annealing sort with

repetition factor c and temperature 4N .
• A3: by assumption, A3 is mixed, so it automatically satisfies its desired dirtiness

bound.
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• A4: this region is compared to A1, A2, and A3, in the down-pass. Note further that,
w.v.h.p., there are at most 3N + N/64 + 3N1/2 ≤ 3.2N zeroes in these four re-
gions, for large enough N . Thus, we may apply a symmetric version of the Startup
Lemma 3.5, with α = 3, β = 0.8, and λ = 1/6, which implies

1 − α/4 + β − λ ≤ 1 − 1/10,

i.e., we can take ε = 1/10 and show that, there is a constant c such that, w.v.h.p.,

k
(c)
1 ≤ N

6
< δ(A4),

where k
(c)
1 is the number of ones left in A4 after a down-pass of Annealing sort

with repetition factor c and temperature 4N .

Thus, after the two up-and-down passes of Annealing sort with temperature 4N ,
we will have satisfied Claim 3.7 w.v.h.p. In particular, we have proved that each
region satisfies Claim 3.7 after iteration 2(d + 1) of Phase 1 of Annealing sort with
a failure probability of at most O(n−4), for each region. Thus, since there are O(n)

such regions per iteration, this implies any iteration will fail with probability at most
O(n−3). Therefore, since there are O(logn) iterations, and we lose only an O(n)

factor in our failure probability when we apply the probabilistic zero-one principle
(Lemma 3.1), when we complete the first phase of Annealing sort, w.v.h.p., at the
beginning of Phase 2, the total dirtiness of all extreme regions is at most 8e log3 n,
and the size of each such region is g log6 n, for g = 64e2.
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