
Information Processing Letters 166 (2021) 106042

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A competitive analysis for the Start-Gap algorithm for online 

memory wear leveling

William E. Devanny a, Michael T. Goodrich b, Sandy Irani b,∗
a Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210-1210 USA
b Department of Computer Science, University of California, Irvine, CA 92697 USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 April 2016
Received in revised form 27 May 2020
Accepted 17 October 2020
Available online 13 November 2020
Communicated by Marek Chrobak

Keywords:
Analysis of algorithms
Data structures
On-line algorithms

Erase-limited memory, such as flash memory and phase change memory (PCM), has 
limitations on the number of times that any memory cell can be erased. The Start-Gap 
algorithm has shown a significant ability in practice to distribute updates across the cells 
of an erase-limited memory, but it has heretofore not been characterized in terms of 
its competitive ratio against an optimal offline algorithm that is given all the update 
addresses in advance. In this paper, we present a competitive analysis for the Start-Gap 
wear-leveling algorithm, showing that under reasonable assumptions about the sequence 
of update operations, the Start-Gap algorithm has a competitive ratio of 1/(1 − o(1)).

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Flash memory and phase change memory (PCM) are 
growing in popularity and are often included in computing 
devices sold today, due to their speed, power-consumption, 
and persistence characteristics. For instance, common in-
stallations configure fashion flash memory as a solid state 
drive and PCM as a main memory (e.g., see [1–3]), al-
though flash memory can also be configured as a main 
memory as well [4].

In spite of their advantages, however, these memories 
have a drawback—there is an implicit upper bound on the 
number of times that a cell in such memories can be 
erased and over-written (e.g., see [1–3]). For instance, flash 
memory cells are projected to gracefully endure only up to 
about 105 erasures and PCM cells are projected to grace-
fully endure only up to about 107 erasures. Because of this 
limitation, there has been considerable work on heuristics 
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for wear leveling, that is, strategies for relocating objects in 
such erase-limited memories so as to spread the amount of 
cell erasures and rewriting that is done (e.g., see [5–7]), as 
well as strategies for reducing the wearing of erase-limited 
memories for specific kinds of data structures and algo-
rithms (e.g., see [8,9]).

In this paper, we study wear leveling algorithmically. 
We model erase-limited memory as an indexable set of 
memory cells that have an upper-bound limit, L, on the 
number of times that any cell can be over-written dur-
ing its lifetime, and we study a well-known online wear-
leveling algorithm in an online setting. We analyze this 
online algorithm in terms of its competitive ratio (e.g., 
see [10]), that is, the ratio of the performance of our online 
algorithm with that of an optimal offline algorithm.

In particular, we utilize the approach of Ben-Aroya and 
Toledo [11] to define a memory model consisting of N ≥ 2
cells, indexed from 0 to N − 1, each of which is a single 
memory word or block, such that there is a known param-
eter, L, that specifies an upper-bound limit on the number 
of times that any cell of this memory can be rewritten. 
For instance, we may have L = 105 or L = N1/2, both of 
which are well-motivated from the published limitations 
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for flash memory and PCM. Also, because erase-limited 
memory may be used as a main memory, we assume here 
that we have only a small (possibly constant) number of 
memory words available, each consisting of d log N bits, for 
some constant, d ≥ 1, such that each of these words can 
be rewritten an unlimited number of times. These erasure-
unlimited memory cells could, for instance, represent the 
registers used by a CPU or a memory controller. We refer 
to this model as the erase-limited memory model, with limit 
L, or notationally as ELML . If the parameter L is understood 
from the context or is assumed to be at most polynomial 
in N , then we refer to this simply as the ELM model.

1.1. Related prior work

In terms of prior work on specific algorithms for erase-
limited memory, Chen et al. [8] study the database prob-
lems of indexing and join methods in the context of op-
timizing the performance of a computer using PCM, and 
Eppstein et al. [9] study hashing with respect to erase-
limited memory. Irani et al. [12] study several schemes 
for performing general and specific algorithms using write-
once memories, in both a word-based write-once mem-
ory (WOM) model and a bit-wise write-once memory (bit-
WOM) model. Thus, their results for the WOM model can 
be viewed as applying to the ELM1 model (that is, ELM1 =
WOM), and their algorithms for the bit-WOM model can 
be directly simulated in the ELM log N model. They do 
not discuss how to efficiently perform computations for a 
memory that allows a bounded number of rewrites greater 
than 1, but they do address how an algorithm in what we 
are calling ELML could be simulated in the WOM model 
with an O (log L) overhead ratio with respect to running 
time, using an indexing method similar to one used by Vit-
ter [13].

Ben-Aroya and Toledo [11] provide competitive analy-
ses for several wear-leveling algorithms, but their methods 
depend on a lookup table of size O (N) stored in regular 
memory to maintain an erase-limited memory of size N . 
Thus, their methods are not for the ELM model under our 
assumption of only a constant number of regular-memory 
registers. That is, their algorithms are not for applications 
needing a small real memory, such as using erase-limited 
memory for a main memory.

Qureshi et al. [7] overcome this limitation with an algo-
rithm they named Start-Gap, which uses only two registers 
to spread updates across an erase-limited memory. In a 
nutshell, their algorithm initially shuffles memory accord-
ing to a random permutation and then incrementally shifts 
elements according to a cyclic shift of this permutation, us-
ing these two registers, as memory updates occur. Qureshi 
et al. provide an experimental analysis of their Start-Gap 
algorithm in their paper, which as of this writing has been 
cited over 700 times according to Google Scholar, but they 
do not provide a competitive analysis. Furthermore, we 
are not aware of any prior work providing a non-trivial 
competitive analysis of the Start-Gap algorithm, although 
Barcelo et al. [14] provide a competitive analysis on the 
energy efficiency of several caching algorithms for PCM.
2

1.2. Our results

We start by showing a lower bound of (N/2)(1 − o(1))

on the competitive ratio of any deterministic algorithm 
with no restrictions on the input sequence. In the rest 
of the paper, we present a novel competitive analysis of 
the Start-Gap wear-leveling algorithm, showing that un-
der a reasonable assumption about the request sequence, 
with probability 1 −o(1), the Start-Gap algorithm can serve 
(1 − o(1))N L write requests before attempting to write to 
a memory location more than L times. The analysis holds 
as long is L = Nα , for any 0 < α < 1. Note that N L is the 
longest sequence that can be handled by any algorithm, 
even the optimal offline algorithm. Thus, our analysis im-
plies a competitive ratio of 1/(1 − o(1)) for the Start-Gap 
algorithm, in spite of it using only a constant-sized cache 
of erasure-unlimited memory (in fact, just two registers). 
In consideration for this constant-sized cache and the un-
likely nature of malicious write sequences, the assumption 
made on the request sequence in our analysis is that no 
single block is erased and overwritten more than a cer-
tain number of times, β ∈ o(L1/2), within any contiguous 
subsequence of N writes. The Start-Gap algorithm needs 
to know β or an upper bound on the value of β in order 
to tune a parameter of the algorithm. We then examine 
the case in which there is a limited sized cache whose 
cells can be erased and overwritten to an unlimited num-
ber of times. We show that with such a modestly-sized 
cache, the request sequence can effectively be made to 
have the required property to guarantee (1 − o(1))LN suc-
cessful writes, even under malicious write sequences.

2. A model for memory-controller algorithms

We begin our analysis with a formal definition of the 
model. We assume that a memory-controller algorithm 
must store M blocks of memory in N locations. At any 
given time, such an algorithm maintains a placement that 
is a one-to-one function, p : [M] → [N], where p(i) is the 
location of block bi and [k] is the set of the first k non-
negative integers. W.l.o.g., let us assume for the sake of 
our analysis that each location in memory has a counter 
that indicates the number of writes that have been done 
to that location, with the set of counters being represented 
as a function c : [N] → [L]. In the physical model, each 
memory location can be erased at most a certain num-
ber of times, so the counter for a location is incremented 
every time the contents of that location are erased. The 
controller algorithm receives a series of requests to write 
to blocks. Upon a request to write to a block, bi , the al-
gorithm may select to leave all the blocks in their cur-
rent locations, in which case c(p(i)) is incremented, as 
this choice implies the block at location p(i) was erased 
and overwritten. Alternatively, the algorithm may choose 
to move blocks around, including the requested block. A 
block can be moved to any empty location. Moving a block 
from location i to an empty location j results in an incre-
ment performed on i’s counter, as this implies location i
is erased in order to become empty. Although it might be 
possible to just mark location i as empty and perform the 
erasure when we want to write a new memory block to 
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that location, this type of “lazy” erasing only allows for at 
most one additional write operation per location. If the re-
quested block is moved, we assume that the new value for 
the block is written in its new location, thus satisfying the 
request. The algorithm can also select to swap the blocks 
in two locations which results in an increment performed 
on the counter of each of the two locations. As soon as the 
algorithm receives a request to write to a block bi such 
that c(p(i)) = L, it can no longer continue. The question 
asked by our competitive analysis is the following:

If requests are received in an online manner, how many 
requests can be handled by an online algorithm in com-
parison to the optimal controller?

Note that any algorithm, even an optimal offline algorithm, 
can serve at most LN write operations. Therefore, we con-
sider only sequences of length LN and ask how long a 
prefix of the sequence can be served before the algorithm 
needs to write more than L times to any location.

Theorem 1. If M = N − 1, then the competitive ratio of any 
deterministic online memory controller algorithm is at least 
(N/2)(1 − o(1)).

Proof. If M = N − 1, then there is exactly one empty lo-
cation. The adversary strategy will only request memory 
blocks in locations 0 or 1, which can be achieved for any 
deterministic algorithm known to the adversary. If either 
location 0 or 1 is empty, the adversary will request the 
block in the non-empty location. If locations 0 and 1 are 
both non-empty, then the adversary will make a request to 
the memory block in the location (0 or 1) with the high-
est count. Note that regardless of the decisions made by 
the algorithm, the sum of the counters for locations 0 and 
1 increases with each request. Thus, one of the two coun-
ters must be at least L +1 by the time 2L +1 requests have 
been seen. Therefore, the algorithm can serve at most 2L
requests before a failure.

Now we need to argue that there is a long (≈ N L) se-
quence of requests that an optimal offline algorithm can 
successfully serve such that the first 2L + 1 requests in 
the sequence are the requests generated by the adversary 
strategy above. An optimal algorithm can serve the first 
2L + 1 requests as follows: keep the memory blocks in a 
static placement until there is a request to a memory block 
whose counter is equal to L − 1, then move that memory 
block to the empty location. This method will avoid failure 
for the first 2L − 1 requests. As long as L > 5, there will be 
at most two locations whose counters are ≥ L − 2. Swap 
the memory blocks in those locations with any memory 
block that is not requested in the next two requests and 
whose counters are ≤ L −3. As long as N > 5, there will be 
two such locations for the swaps. No counter will exceed L
in the next two requests. After the first 2L +1 requests, the 
total sum of the counters will be at most 2L + 5: 2L + 1
for the first 2L + 1 requests plus at most 4 for the two 
swaps. Fill out the remaining sequence of N L − (2L + 5)

requests by requesting any memory block whose counter 
is ≤ L. Therefore, the optimal algorithm can serve at least 
3

N L − 4 requests total. The competitive ratio is (N L − 4)/2L
which is (N/2)(1 − o(1)). �

Note that the above lower bound applies even to 
deterministic algorithms with sizable caches of erasure-
unlimited memory. To get a better bound than N/2 on 
the competitive ratio for algorithms, such as the Start-
Gap algorithm, that have bounded-size caches of erasure-
unlimited memory, it is therefore necessary to consider 
some assumptions about the input sequence or to consider 
randomized online algorithms.

3. The Start-Gap algorithm

The Start-Gap algorithm assumes that the memory is 
not completely full (i.e., that M ≤ N − 1). The algorithm is 
first described for the case where M = N − 1. We argue 
below that the algorithm can be extended to the situation 
where M < N − 1, and that the worst case for the anal-
ysis is that M = N − 1. Let π be a random permutation 
of [N − 2] that can be evaluated without using erasure-
limited memory. The Start-Gap algorithm is parameterized 
by an integer, k, and works as follows:

1. Initially each block bi is placed in location π(i) + 1. A 
“gap” register l indicates the empty location. Because 
the empty location is initially 0, l = 0 initially.

2. Suppose that the empty location is location l. Every k
requests (which is maintained with a “count” register), 
the algorithm moves the block in location l + 1 mod N
to location l. Location l + 1 mod N is erased and be-
comes the new empty location (and the count register 
is reset).

This is clearly a simple algorithm, which Qureshi et al. [7]
show works well in practice. Let us, therefore, analyze this 
algorithm in terms of its competitive ratio.

Note that if M < N − 1, then there is more than one 
“gap” register. The same algorithm can be implemented by 
keeping a pointer to one of the gap registers and advanc-
ing the pointer in the same manner every k requests. If 
the location that the gap moves to is already empty, then 
the counter for that location is not incremented. The anal-
ysis for the M = N − 1 case carries over to the M < N − 1
case by the following reasoning: suppose instead that there 
were in fact N − 1 blocks of memory but N − M − 1 of 
the blocks are dummy blocks that are never written. The 
behavior of the algorithm is the same for the M original 
blocks. The analysis for M = N − 1 would hold in this case 
and the number of requests served would be at most the 
number of requests served in the M < N − 1 case. Since 
the lower bound of N L for the optimal holds regardless of 
the value of M , the upper bound follows.

4. A competitive analysis of the Start-Gap algorithm

Consider the requests to be numbered 0 through N L −
1. Of course, the operating system needs a function, f , that 
maps a pair (i, t) to the location, l, such that block bi is 
in location l at the tth request. Block bi stays in location 
π(i) + 1 for the first (π(i) + 1)k requests and then moves 
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one location to the left every kN requests. Letting l(i, t) =
�(t − (π(i) + 1)k)/(Nk)	, then, at the tth request, block bi
is in location f (i, t) = (π(i) − l(i, t) + 1) mod N .

Each location j defines a partition of the requests into 
contiguous subsequences, which we call epochs, as follows. 
The first epoch is only a partial epoch and lasts for jk re-
quests. Thereafter all epochs (except possibly the last) are 
full epochs and last exactly kN requests. Each full epoch for 
location j starts when the location is vacated. After k re-
quests, the block in location j + 1 mod N moves into loca-
tion j and stays there for the remaining k(N − 1) requests 
of the epoch. Define r = �(t − jk)/Nk	. The block in loca-
tion j at the tth request is block π−1(( j + r) mod (N − 1)).

Definition 2. Consider a sequence of write requests. Di-
vide the sequence into subsequences of N consecutive re-
quests where the requests in a subsequence range from 
iN through (i + 1)N − 1. The sequence is said to be β-
balanced if there are at most β writes to any particular 
block within a subsequence.

Note that the trivial static algorithm that never moves 
the blocks of memory is β-competitive when the input is 
restricted to β-balanced request sequences. This holds be-
cause no memory location is written more than β times in 
a block of N requests, which means that there will be at 
least L/β blocks of N requests before the static algorithm 
fails. The competitive ratio of 1/(1 − o(1)) for Start-Gap 
is considerably better for any β > 1. Thus, the static al-
gorithm only does as well as Start-Gap for the extremely 
restrictive case of 1-balanced request sequences.

Lemma 3. For any 0 < ε < 1, consider a sequence of requests 
that is β-balanced for

β ≤
√

ε2L

2k log N
.

With probability at least 1 − 1/N, the Start-Gap algorithm with 
parameter k can serve at least T requests without exceeding the 
write capacity of any location, for

T =
(

1 − ε − 2k

L
− (1 − ε)

k
− L

kN

)
LN.

Proof. Define γ = L/kN . Note that if γ ≥ 1, the lemma is 
vacuously true, so we will assume that γ < 1. T = (1 −ε −
(1 − ε)/k − γ )LN − 2kN . For any location, the number of 
epochs, e, in the first T requests is at most (1 − ε − (1 −
ε)/k −γ )L/k, including the partial epochs at the beginning 
and end of the sequence. Since we are upper bounding the 
number of writes to a given location over the course of the 
request sequence, we can assume the worst case, which is 
that the beginning and ending epochs last for a full kN
requests. Since 1 > 1 − ε > 0,

e <
L

k

(
1 − ε − (1 − ε)

k
− γ

)
≤ L

k
(1 − ε)

(
k − 1

k
− γ

)

≤ L

k
(1 − ε)

(
k − 1

k

)
(1 − γ ). (1)
4

For any γ > 0, (1 − γ ) ≤ 1/(1 + γ ). Therefore,

e <
L

k
(1 − ε)

(
k − 1

k

)
(1 − γ )

≤ L

k
(1 − ε)

(
k − 1

k

)(
1

1 + γ

)
. (2)

Select an arbitrary location, l. Define Xi to be a ran-
dom variable denoting the total increase to the counter for 
l during l’s ith epoch with i ranging from 1 to e. The epoch 
begins by vacating location l which causes c(l) to increase 
by 1. During the first k requests, the location l is empty. 
After that, there are the writes caused by the requests to 
the block that moved into location l. Note that there may 
be a slight dependence between the Xi ’s. Since the origi-
nal permutation assigning blocks to locations was random, 
we know that the block sitting in the location l for its ith
epoch is randomly chosen, except that it cannot be one of 
the i −1 blocks that were in location l during the first i −1
epochs. Suppose that t of the remaining k(N − 1) requests 
are to blocks that occupied location l some time during its 
first i − 1 epochs. These requests do not add to Xi since 
these blocks are not in location l during epoch i. For any 
of the other k(N − 1) − t requests, the probability that the 
requested block is in location l is 1/(N − 1 − (i − 1)). The 
worst case is t = 0. Thus, we have that

E[Xi | X1, . . . , Xi−1] ≤ 1 + k(N − 1)

N − (i − 1) − 1
≤ 1 + kN

N − i

Using the fact that i ≤ e and the upper bound for e from 
Equation (2): e ≤ Nγ /(1 + γ ):

1 + kN

N − i
≤ 1 + k(1 + γ ) ≤ (k + 1)(1 + γ ).

We define a supermartingale with Yi = ∑i
j=1(X j − (k +

1)(1 + γ )). Note that E[Yi | Y1, . . . , Yi−1] ≤ 0. Also, Yi −
Yi−1 = Xi ≤ βk, since the request sequence is β-balanced. 
We will show below that if 

∑e
j=1 X j > L, then Ye > εL.

By the Azuma-Hoeffding inequality [15], we have that

Pr[Ye > εL] ≤ exp
(
−ε2L2/2e(βk)2

)
.

Using the fact that e ≤ L/k and β2 ≤ ε2L/2k log N , it fol-
lows that Pr[Ye ≥ εL] ≤ 1/N2. Thus, the probability that 

the counter for a particular location increases past L is 
bounded by 1/N2. The probability that the counter for any 
location increases beyond L is at most 1/N . Therefore the 
probability that the sequence of requests can be served is 
at least 1 − 1/N .

Now we show that if 
∑e

j=1 X j > L, then Ye ≥ εL. Ye =∑e
j=1 X j − e(k + 1)(1 + γ ). If 

∑e
j=1 X j > L, then Ye > L −

e(k + 1)(1 + γ ). Using the upper bound for e from (2):

Ye > L − (k + 1)(1 + γ )
L

k
(1 − ε)

(
k − 1

k

)(
1

1 + γ

)

= L − L(1 − ε)
(k + 1)(k − 1)

k2

> L(1 − (1 − ε)) = εL �
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This implies the following.

Theorem 4. Consider an erase-limited memory with L = Nα

for 0 < α < 1. If a request sequence is β-balanced for β =
O (L1/2−δ/2) and 0 < δ < 1, then the Start-Gap algorithm can 
serve at least the (1 − o(1))N L first requests in the sequence 
with probability 1 − o(1).

Proof. Select ε = L−δ/4 and k = Lδ/4 and use the bound 
from the lemma to show the following:

β = O (L1/2−δ/2) = o

⎛
⎝

√
ε2L

2k log N

⎞
⎠ .

With these parameters, T = (1 − o(1))LN . �
We say that a probability distribution over a request 

sequence is p-bounded if each request for a block is gen-
erated independently according to a distribution in which 
the probability that any particular block is requested is 
bounded by p. Note that the access distribution over the 
blocks can change over time but it cannot depend on past 
requests.

Corollary 5. Consider an erase-limited memory with L = Nε for 
0 < ε < 1. If a request sequence is generated by a p-bounded 
probability distribution for p = O (L1/2−δ/N) and 0 < δ < 1/2, 
then the Start-Gap algorithm can serve at least (1 − o(1))N L
requests in the sequence with probability 1 − o(1).

Proof. We show that if a request sequence of length LN is 
generated according to a p-bounded distribution with p ≤
L1/2−δ/N , then with probability 1 − o(1) it is β-balanced 
for β = L(1−δ)/2. The corollary then follows from Theo-
rem 4.

Divide the request sequence into L subsequences of 
N consecutive requests. Select one particular subsequence 
and one particular block b. We have an indicator vari-
able Xi , which is 1 if b is requested for the ith request 
in the subsequence and 0 otherwise. The total number 
of requests to b during the subsequence is X = ∑N

i=1 Xi . 
The Xi are i.i.d. with expectation at most p = L1/2−δ/N . 
μ = L1/2−δ is an upper bound on the expected value of X .

Using a Chernoff inequality,

Pr[X ≥ (1 + γ )μ] ≤ exp(−γ 2μ/3).

We would like to bound the probability that X ≥ L(1−δ)/2. 
Setting, γ = Lδ/2 − 1, we get that

Pr[X ≥ L(1−δ)/2] ≤ exp(−(Lδ/2 − 1)2L1/2−δ/3).

For L = Nε , Pr[X ≥ L(1−δ)/2] is O (exp(−Nε′
)) for some ε′ . 

The probability that any of the N blocks is requested more 
than β times during any of the L subsequences is at most 
N L exp(−Nε/3), which is o(1). �
5. A variation—the ELM model with a cache

The above results address the likely common situa-
tion in which the distribution of accesses (that is, writes 
5

to memory) can have significant variance but does not 
contain any high-frequency accesses to the same location, 
as might occur in a malicious attack on an erase-limited 
memory [16]. Now we show that even such malicious ac-
cess sequences can be managed if we consider the ELM 
Model augmented to have a cache of regular memory that 
can hold a limited number of blocks and can be written to 
an unlimited number of times.

At any point in time, cache-augmented Start-Gap can 
choose to copy a block into the cache. The block will be re-
placed in the ELM by a dummy copy that will move along 
from location to location in the ELM according to the rules 
of the standard Start-Gap algorithm. Any writes performed 
on a block stored in the cache are performed only on the 
cached copy of the block. When the block is evicted from 
the cache, it is written to the location of its dummy ver-
sion.

We propose a simple cache administration policy, 
which has a competitive ratio that is surprisingly effi-
cient. The decision about whether to move a requested 
block into the cache is purely random: copy the requested 
block into the cache with probability p for some fixed p. 
The cache will use a version of LRU called p-LRU as a 
replacement policy. The algorithm LRU (which stands for 
Least-Recently-Used) maintains a queue of the blocks in 
the cache. When a block is requested that is already in the 
cache, the block is moved to the tail of the queue. When 
a new block is brought into the cache, the block at the 
head of the queue is evicted and the new block is inserted 
at the tail of the queue. The only difference between p-
LRU and LRU is that on a request to a block already in 
the cache, p-LRU moves the requested block to the tail of 
the queue with probability p (instead of with probability 
1). The value for p is chosen to be C/2N , where C is the 
number of blocks that can fit in the cache. We then have 
the following result.

Theorem 6. If L = Nε for 0 < ε < 1, and C ≥ N/L1/2−δ for 0 <
δ < 1, then with probability 1 − o(1), the Start-Gap Algorithm 
with a random cache policy will be able to service (1 − o(1))LN
write requests.

Proof. Divide the request sequence into L subsequences of 
N consecutive requests. We call a write request an outside
request if the requested block resides outside the cache 
(and therefore causes an additional write to its ELM lo-
cation). We show that the probability that there are more 
than L(1−δ)/2 outside requests to a block in a single subse-
quence before it is brought into the cache is o(1). We also 
show that the probability that a block is evicted from the 
cache in a subsequence in which it was requested is o(1). 
This means that with probability 1 − o(1), there are never 
more than L(1−δ)/2 outside requests to a block in a single 
subsequence. The theorem then follows from Theorem 4.

Now we determine the probability that any block out-
side the cache is requested more than L(1−δ)/2 times in 
any sequence without being cached. Select a block b and 
a particular subsequence. Let m be the number of times b
is requested in the subsequence. If b starts out the sub-
sequence in the cache, start counting requests to b only 
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after it is evicted. If m ≤ L(1−δ)/2, then b is certainly not 
requested more than L(1−δ)/2 times outside the cache. 
Now suppose that m > L(1−δ)/2. The probability that on 
any of these m requests b is brought into the cache is 
p = C/2N = L1/2−δ/2. The probability that b is not cached 
during the first L(1−δ)/2 requests is

(1 − p)L(1−δ)/2 =
(

1 − 1

2L1/2−δ

)L(1−δ)/2

= O (exp(−Lδ/2/2)).

The probability that any block is not cached during its first 
L(1−δ)/2 outside requests in any subsequence is at most 
LN exp

(−Lδ/2/2
)
. For L = Nε , the probability is o(1).

Now we determine the probability that a block b is 
evicted from the cache during the same subsequence in 
which it is brought into the cache. In order for the eviction 
to happen, there have to be at least C requests in which 
the requested block is moved to the tail of the LRU queue. 
The block can come from the ELM or from the cache itself. 
Either way, each request results in a block being moved to 
the tail of the queue independently with probability p =
C/2N . Let Xi be the indicator variable denoting whether 
the ith requested block in the subsequence is moved to 
the tail of the LRU queue. Let X denote the sum of the Xi : 
X = ∑n

i=1 Xi . The expectation of X is μ = C/2. By a Cher-
noff bound,

Pr[X ≥ (1 + γ )μ] ≤ exp(−γ 2μ/3).

Using γ = 1,

Pr[X ≥ C] = Pr[X ≥ 2μ] ≤ exp(−μ/3)

= exp

( −N

6L1/2−δ

)
.

The probability that any block is evicted from the cache 
in any subsequence in which it is requested is at most 
N L exp(−N/6L1/2−δ), which is o(1) for L = Nε , 0 <
ε < 1. �
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