
60

A localized method
for intersecting
plane algebraic
curve segments

J.K. Johnstone* and
M.T. Goodrich**

Department of Computer Science,
The Johns Hopkins University, Baltimore,
MD 21218, USA

We present a local method for the compu-
tation of the intersections of plane algebra-
ic curve segments. The conventional meth-
od of intersection is global, because it must
first find all of the intersections between
two curves before it can restrict the seg-
ments in question; hence, it cannot take
advantage of situations dealing with the
intersection of short-curve segments on
complex curves. Our local method, on the
other hand, will directly find only those
intersections that lie on the segments, as
it is based upon an extension of methods
for tracing along a curve.

Key words: Intersection - Algebraic curves
Curve tracing - Plane sweep Resul-

tants - Theory of elimination - Geometric
modeling

* This author 's research was supported by the Na-
tional Science Foundat ion under Grant IRI-8910366
** This author 's research was supported by the Na-
tional Science Foundat ion under Gran t CCR-
8810568

1 Introduction

Intersection is one of the most universal and basic
problems in geometric modeling. Although all of
the Boolean operations are axiomatic to geometric
modeling, intersection is particularly important
and particularly challenging. It is required for the
definition of a geometric model [-e.g., CSG (Requi-
cha 1980)] and is fundamental to the model's appli-
cations, such as interference detection or hidden-
surface elimination (Sechrest and Greenberg 1982;
Mortenson 1985; McKenna 1986). The classic view
of the intersection of algebraic curves and surfaces
is that it is equivalent to the solution of a simulta-
neous system of equations, such as
{f(x,y)=O,g(x,y)=O} for two plane algebraic
curves.1 Canonically, the system of equations is re-
duced to a single univariate equation, the univar-
iate equation is solved, and full solutions are built
from these partial solutions. An artifact of this ap-
proach is that all of the intersections are found.
However, in geometric modeling a person is usual-
ly interested only in the intersections between two
short segments of the curves. Thus, following this
approach, one must first compute all of the inter-
sections between the curves and then decide which
of these intersections actually lie on the segments
[-a decidedly nontrivial decision involving the sort-
ing of points along a curve (Johnstone 1987; John-
stone and Bajaj 1990)]. Therefore, segment inter-
section is actually more complex than curve inter-
section when the traditional approach is adopt-
ed.
Therefore, a method that makes segment intersec-
tion simpler than curve intersection, especially if
the segments are short, is needed. This is especially
urgent, because as geometric models become more
complex intersection of higher-degree curves with
the global system of equations method becomes
prohibitively expensive, while the curve segments
involved remain short. In this paper, we present
a new method for intersecting plane algebraic curve
segments. The method is input-sensitive: the
simpler and shorter the segment, the more efficient
the intersection computation.
Our method is based upon crawling (or tracing),
a method for moving along a curve that has re-
ceived much attention of late (Timmer 1977; Dob-
kin et al. 1986; Hoffmann 1987; Owen and Rock-
wood 1987; Bajaj et al. 1988). We find intersections
by crawling along the two segments in a coordinat-

1 In this paper, we deal with curves that are defined using
implicit representation. Thus, methods of intersection that rely
on parametric representation (see Mortenson 1985) are not ap-
plicable

The Visual Computer (1991) 7:60-71
�9 Springer-Verlag 1991

%emploYer
ed fashion. Because crawling is a method for mov- '
ing along a single curve, we must adapt it to two
curves (Sect. 3). This crawling is easiest if both seg-
ments are xy-monotone (monotone with respect to
both coordinate axes), so that curve segments are
first decomposed into xy-monotone segments
(Sect. 7). Two methods of coordinated crawling
along xy-monotone segments are presented: the si-
multaneous and the staircase crawl (Sects. 4 and
5). Several optimizations are also suggested, includ-
ing a method of recognizing when two xy-mono-
tone segments cannot intersect and two methods
of eliminating long crawls within a coordinated
crawl (Sect. 8). A variant of the plane-sweep meth-
od (familiar from computational geometry: Bentley
and Ottmann 1979; Preparata and Shamos 1985;
Edelsbrunner 1987) is used to find the intersections
of the collection of xy-monotone segments com-
prising the two segments we are intersecting, using
several calls to coordinated crawling (Sect. 9). We
end with some conclusions.

2 Elimination method
of intersection
In this section, we review the global method of
intersection, which we refer to as the elimination
method of intersection. An example will clarify the
details of this method. It should be noted that the
use of Groebner bases, rather than elimination, to
perform curve intersection is also an essentially
global method.

solutions by solving more univariate equations.
For example, f(xo, y) is solved, yielding Yl, --., Yk,
and yis such that g(xo, yO+O are discarded; the
remaining yjs define intersections (x0, Y0- Alterna-
tively, full solutions can be found from partial solu-
tions by computing a birational map that maps
the projections xz of the roots back to the actual
curve intersections, as described by Abhyankar and
Bajaj (1989) and Garrity and Warren (1989).
Note that all of the intersections between the
curves are found. In particular, it is impossible to
find only the intersections on a given segment of
each curve with this method. It is possible to re-
strict the intersections in a certain range of x and
range of y. However, even if it is known that the
desired segment lies in this range, there may be
many other segments that also lie in this range.
There is no way of predicting where the intersec-
tion will be until it is fully computed. Moreover,
segment intersection requires expensive postpro-
cessing procedures. The intersections must be
sorted along each curve (Johnstone 1987; John-
stone and Bajaj 1990) and those that are not be-
tween the endpoints of the appropriate segment
must be discarded. Thus, with the elimination
method, segment intersection is actually more com-
plex than curve intersection. Another problem with
the elimination method is that it requires the solu-
tion of a univariate equation of high degree. In
particular, the degree of the resultant polynomial
h(x) is potentially the product of the degree of
f (x, y) and the degree of g(x, y).

Example 2.1 Suppose that we wish to find the in-
tersection of the two plane algebraic curves
f(x, y) = 0 and g(x, y)=0. The two equations are
reduced to a single equation and a variable is elimi-
nated by taking the Sylvester or Bezout/Cayley re-
sultant h(x) of f and g with respect to y (Walker
1950; van der Waerden 1953; Sederberg etal.
1984). Even if there are more than two equations,
techniques from the theory of elimination can be
used to reduce the system to a single univariate
equation by using several rounds of Sylvester resul-
tants or a multivariate resultant. Next, the univar-
iate equation (which encodes the common roots)
is solved (e.g., by Newton's method), yielding one
coordinate for each solution of the original system.
For example, if Xo is a root of h(x), then there
exists Y0 such that f(xo, yo)=0=g(x0 , Yo). Finally,
the full solutions are built up from these partial

3 Coordinated crawling

In this section, we give a short introduction to
crawling and a general overview of coordinated
crawling. The reader is referred to Hoffmann (1987)
and Bajaj et al. (1988) for the details of crawling.
Crawling is a method of traversing a curve. Pro-
gress is made by repeatedly making short steps
away from the curve and relaxing back onto the
curve (Fig. 1). There are various ways of stepping
away from the curve, such as stepping along the
tangent or in a direction parallel to the axes. The
relaxation back onto the curve can be achieved
with Newton's method. One of the useful properties
of crawling is its locality: it relies only on the be-
havior of the curve in a restricted neighborhood
of the current position.

61

az a3 c3

a

1 A ~ ct 2b

2a
C

4

Fig. 1. Crawling along a curve
Fig. 2a, b. Two staircase crawls

3a

Fig. 3a, b. Simultaneous crawl (a); at the end (b) it must back up in fine increments

Fig. 4. The danger of a simultaneous crawl along two rising segments

J

3b

The size of each step of a crawl can be adjusted.
It cannot be too large, because it might lose the
curve, and it must be particularly small near
singularities and other places where confusion is
likely. However, within the bounds of these restric-
tions, it is possible to talk of coarse crawls with
large steps and fine crawls with small steps. We
shall be intent upon keeping the crawl as coarse
as possible, because the larger the steps, the faster
the crawl.
One of the contributions of this paper is to show
that crawling can also be used to discover the inter-

62

sections between two xy-monotone curve segments.
Let AB and CD be two xy-monotone curve seg-
ments. Starting at the beginning of each segment,
we shall crawl along the two segments in tandem,
alternating the crawl along AB with the crawl
along CD so that, at any given time, progress is
made along only one of the segments (Fig. 2). The
crawl along a segment continues until a switching
condition becomes true. The alternation between
segments continues until an end condition becomes
true, signalling that an intersection has been found
or that the two segments do not intersect. The seg-

ment along which one is presently crawling (or,
not crawling) is called the active (or, dormant) seg-
ment. A crawl along an active segment between
switching conditions is often referred to simply as
a crawl (of the coordinated crawl).

Example 3.1 Consider the coordinated crawl of
Fig. 2a. Horizontal and vertical lines have been
added to the picture to reveal the structure of the
crawls. The first crawl is along Aa~ of AB. AB
then becomes dormant and the second crawl is
made along Cc 1 of CD, and so on. Eventually, the
crawls get progressively smaller and converge to
an intersection x. If no intersection exists, then the
coordinated crawl reaches the end of one of the
segments (Fig. 2 b).
The coordinated crawl, as we have presented it,
will only find the first intersection. The second in-
tersection is found by starting another coordinated
crawl from the first intersection. A new coordinat-
ed crawl should be begun from each intersection
until it is determined by the end-condition that
the segments do not intersect any further.
We shall present two variants of coordinated
crawling, because there are two types of xy-mono-
tone segments. A rising xy-monotone segment in-
creases in y as it increases in x, while a falling
xy-monotone segment decreases in y as it increases
in x. The first method of coordinated crawling,
which we call the simultaneous crawl, can be used
to crawl along any pair of xy-monotone segments;
however, it is best suited to crawling along one
rising and one falling segment. The second method,
which we call the staircase crawl, will only apply
to two rising or two falling segments.
We need to define some notations and assump-
tions. Our notation for a curve segment will not
only specify the endpoints, but also the order of
the endpoints, in the sense that it is assumed that
x(A) <_ x(B) is always true of the segment AB, where
x(A) denotes the x-coordinate of the point A. P, otiw
(or, Pdorma,t) is our notation for the present point
on the active (or, dormant) segment during a coor-
dinated crawl. Finally, in the remainder of this
paper, we assume that all curves are nonlinear, irre-
ducible, plane algebraic curves.

3.1 Approximate vs exact methods

It is often difficult to be exact in geometric compu-
tations. The reason for this is twofold: (1) because
of the use of numerical methods that converge rath-

er than compute exactly, and (2) because of finite
machine precision. This is certainly the case with
the elimination method of intersection, which uses
numerical methods, such as Newton's method.
Coordinated crawling is no different. Therefore, we
make two natural assumptions, both of which can
be removed if desired, as discussed below.
a) Two intersections that are less than e distance
apart are considered to be the same, where e > 0
is very small and must be part of the input of an
intersection problem.
b) If the distance between the two segments de-
creases below ~, then we are free to decide that
there is an intersection near this point. In other
words, if there is an intersection, then we will al-
ways recognize it; but if there is no intersection,
then we may sometimes make a mistake and diag-
nose an intersection.

may be chosen as small as desired without affect-
ing the efficiency of the coordinated crawl (see
Lemma 6.1 below).
These two assumptions simplify the presentation
of coordinated crawling considerably. Moreover,
for the purposes of applications such as graphics,
the two assumptions are valid not only because
of inherent error in computations but also because
of the inherent crudeness of algorithms, e.g., two
segments may also intersect if they are closer to
each other than a pixel. However, it is possible
to do without them. Indeed, for a coordinated
crawl along a rising and a falling segment, neither
of the assumptions is necessary at all. (That is, in-
tersections will always be found within the accura-
cy of the crawling method that is being used, and
a near-intersection will never be mistaken for an
intersection.)
The first assumption can always be removed by
the choice of a proper e. For example, one can
use Canny's gap theorem (Lemma 3.1), which re-
veals that the intersections of two algebraic curves
are never too close together.

Lemma 3.1 (Canny's gap theorem (Canny 1987))
Let ~(d, c) be the class of polynomials of degree
d and coefficient magnitude c. Let f l (x i , . . . , x,),
�9 . . , f , (x i , ..., x,)e~(d, c) be a collection of n poly-
nomials in n variables, which has only finitely-many
solutions when projectivized. Then if (~i ~,) is
a solution of the system, for any j either 0~j=0 or
r%] > (3 d C)-"d".

Corollary 3.1 Let f l(x, y)--O, f2(x, y) = 0 be two ir-
reducible plane algebraic curves of degree d and coef-

63

ficient magnitude c. I f 5<(3dc) -aa2, then no two
intersections will be within an e-distance of each
other.

Proof In order to apply the lemma, translate one
of the two intersections to the origin.

The second assumption can be removed as follows.
Whenever, the distance between the segments de-
creases below 5, construct a two-dimensional box
at the point that contains at most one intersection
(using Canny's gap theorem or other methods) and
test whether this box contains an intersection, us-
ing a technique for testing whether a box contains
an intersection (Sakkalis 1989) or a technique for
counting the number of intersections in a box (e.g.,
Pedersen 1990). Next jump past the segments in
the box and consider another box at this new point.
Continue in this way until the distance between
the segments increases above 5.
Note that, due to the expense of exact methods,
in most cases it will be preferable to make the two
simplifying assumptions.

3.2 Coarse vs fine crawls

In coordinated crawling, we shall distinguish be-
tween coarse and fine crawls, depending on the
size of each crawl step. A fine crawl will be used
to find something accurately and to avoid skipping
over an intersection. Thus, fine crawl steps are less
than 5 in length. Coarse crawl steps are as long
as possible without losing the curve. Obviously,
for reasons of efficiency, it is important that coarse
crawls be used as much as possible. The desired
paradigm is to use coarse crawls to get close to
the intersection and fine crawls only at the end
to accurately find the intersection.
For any pair of xy-monotone segments, we shall
present a coordinated crawling method such that
most of the crawling is in coarse steps. Later sec-
tions (Sects. 8.2 and 8.3) will investigate the use
of even coarser traversals of the curve, where one
skips over a large subsegment of the curve in a
single step (using a line-curve intersection).

4 Simultaneous crawl

With the simultaneous crawl, one simulates crawl-
ing along both segments at the same time while
maintaining the same velocity with respect to the
x-axis, hence its name (Fig. 3a). The associated
switching condition is x (Pactive) > x (Pdo t)"
The end-condition must signal an intersection or
the end of a segment. In the neighborhood of an
intersection between a rising segment and a falling
segment, the relative vertical order of the segments
is reversed. Therefore, a simultaneous crawl along
a rising and falling segment can proceed with
coarse steps until the relative vertical order of the
segments is reversed, and then crawl backwards
with finer steps to accurately find the intersection
(Fig. 3b). The backwards crawl should continue
until the relative vertical order switches once more,
which is where the intersection is placed. There
is no danger of skipping over two intersections with
the coarse crawl, because a rising segment and a
falling segment can have only one intersection.
Because of x-monotonicity, it is simple to recognize
the end of a segment AB or CD: the condition
is x (Pactive) ~ min {x (B), x (D)}. Thus, for a simulta-
neous crawl along a rising segment AB and a falling
segment CD, the entire end condition is

((y (A') < y (C')) ~ (y (A) < y (C)))
v x (P, ctlve) > min {x(B), x(D)},

where A' (or, C') is the present point on AB (or, CD)
during the crawl. Recall that the end condition sig-
naling an intersection actually signals only the
passing of an intersection, so that one must retrace
steps back to the intersection before outputting
it.
Theoretically, the simultaneous crawl can also be
used for two rising (or two falling) segments. How-
ever, a simultaneous crawl along two rising seg-
ments is dangerous, because it is possible to skip
over a pair of intersections without noticing them
(Fig. 4). Using Lemma 3.1, this danger could be
avoided if the crawl is fine enough. That is, the
crawl steps must be finer than 25 where 5
<(3dc)-Za2. Because a simultaneous crawl along
two rising or two falling segments would require
fine steps at all times, the staircase crawl of the
next section is preferred for these segments.

In order to fully define a coordinated crawl, the
switching and end conditions must be defined. In
this section, we present the first of our two coordin-
ated crawling methods, the simultaneous crawl.

5 Staircase crawl

In this section, we present the second method of
coordinated crawling, which is used for crawling

64

1

/ f

/
f

j . /
f /

f

f
1

Fig. 5. The danger of a staircase crawl that
does not back up one step after each crawl
Fig. 6. e-zones

along two rising or two falling segments. Consider
a coordinated crawl along two rising segments.
Rather than switching segments as soon as the x-
coordinate of the active segment exceeds the x-
coordinate of the dormant segment, in the staircase
crawl one waits until both the x-coordinate and
the y-coordinate of the active segment exceed those
of the dormant segment before switching. We call
this a staircase crawl, because if the endpoints of
the crawls are joined by straight lines, a staircase
leading towards an intersection will result (Fig. 2
and Lemma 5.1). The associated switching condi-
tion is

X (Pae t ive) > X (P d o r m a n t) / k y (Pactiw) > Y (Pdorman t) -

Because of the granularity of the crawl, an intersec-
tion might be overlooked with this switch condi-
tion (Fig. 5). To correct this, one should back up
one step before switching segments so that the ac-
tive segment remains behind the staircase.
An intersection is signalled when a stair less than

in height is encountered. (This is the only place
that the second assumption from Sect. 3.1 is used.)
Every intersection will be found with this end-con-

dition, because the staircase converges to an inter-
section (see Lemma 5.1), and we do not jump past
the staircase. Thus, the end-condition for a stair-
case crawl is simply

[Y (Pactive) - - Y (Paormant)[< 8
v x (P, otive) > rain {x (B), x (D)}.

Coarse crawls are used until the coordinated crawl
approaches an intersection, at which point fine
crawls are used. If a coarse crawl is used near an
intersection, it is possible to enter an infinite loop:
continually going forward one step (at which point
both x and y coordinates of the active segment
exceed those of the dormant) and then back one
step (to stay behind the staircase). This will not
happen with a fine crawl, because if only one fine
step (of length less than e) separates the x and y-
coordinates, the height of the present stair must
be less than e and an intersection will be signalled.
Because an infinite loop, as described above, is only
possible when the length of a stair becomes as short
as a step of a coarse crawl, fine crawls are only
necessary near the intersection. In an intermediate
phase, when strictly coarse crawls are too crude,

65

but strictly fine crawls are too slow, one can use
a coarse crawl to crawl forward and a fine crawl
to go backwards.
We must show that the staircase crawl converges
to the first intersection of the segments, if one ex-
ists.

Lemma 5.1 Let AB and CD be two rising segments.
The staircase crawl along AB and CD will converge
to the first intersection of AB and CD, if such an
intersection exists. Otherwise, it will reach the end-
point B or D of one of the segments.

Proof First, one does not jump over an intersec-
tion. This is best seen by considering the perfect
staircase: the staircase consisting of true horizontal
and vertical line segments. (The stairs of the stair-
case connecting the endpoints of the actual stair-
case crawl will not be perfectly horizontal or verti-
cal.) It is easy to see that the perfect staircase con-
verges to an intersection. The staircase crawl is
guided by the perfect staircase. Because the stair-
case crawl backs up before switching segments, it
is indeed constrained by the perfect staircase.
Second, progress is made with each crawl. If there
is no progress, then the stair must be of a height
less than e and we say that an intersection has
been found. In particular, progress of at least e
(usually much more) is made with each crawl. Thus,
the staircase crawl must eventually find the first
intersection, if one exists.
A staircase crawl diagnoses an intersection when
the stairs become shorter than e. Two questions
arise: where should the intersection be placed and
where should the crawl start from to look for the
next intersection? The crawl cannot place the inter-
section where it stopped and continue from there,
because it will immediately stop and diagnose an-
other intersection. We introduce the concept of an
e-zone to provide the answer to these questions.
The e-zone is a pair of subsegments of the curves
that stay within a vertical distance of e. We enter
an e-zone when the vertical distance between the
segments becomes less than e (in practice, the e-
zone actually begins when a stair of a height < e
is found) and exit it when the vertical distance be-
comes greater than e (Fig. 6).
Now the two questions can be answered. When
a stair of a staircase crawl becomes shorter than
e, we skip over the associated e-zone and restart
the staircase crawl there. The intersection is placed
in the middle of the e-zone. A simultaneous crawl

66

is used to cross the e-zone. (As mentioned at the
end of Sect. 4, a simultaneous crawl of two rising
segments will use fine crawls, so it is perfect for
crossing the e-zone.)
The first crawl after an intersection must be treated
as a special case, because neither segment domi-
nates. In order to get things started, one should
make a crawl of length e along one of the segments.
It might seem that this crawl is dangerous, because
it may skip over an intersection, being blind and
unconstrained by any staircase. However, recall
that any two intersections that are within e of each
other are considered equivalent; thus, it is impossi-
ble to skip over a relevant intersection.
We end this section by noting that the staircase
crawl cannot be used to find the intersection of
a rising segment and a falling segment, as illustrat-
ed by Fig. 7. In as much as we have already noted
that the simultaneous crawl is not well suited for
the intersection of two rising segments (because fine
crawls are always necessary), it can be seen that
both types of coordinated crawling are necessary.
With a simultaneous crawl and a staircase crawl,
one can find the intersection(s) of any pair of xy-
monotone segments, and most of the crawling uses
coarse steps.

6 Efficiency

A simultaneous crawl continually switches from
one segment to the other. Indeed, of the two seg-
ments between any two adjacent vertical lines in
Fig. 3(a), one will be a single crawl step long. It
might appear that this large number of switches
will make the crawl expensive. The following lem-
ma shows that this is not the case, because switches
are essentially free.

Lemma 6.1 The number of switches in a coordinated
crawl is irrelevant.

Proof The number of switches does not matter be-
cause stopping and starting a crawl takes no time.
This can be seen as follows. Let AB and CD be
xy-monotone segments. We can keep two separate
regions in memory, one set up for crawling along
AB, the other for crawling along CD. Switching
crawls merely involves jumping to the other part
of memory.
It might seem that if the segments remain very close
for a long time, then a staircase crawl will be slow

because the staircase is very fine with very short
stairs. Similarly, it might appear that a staircase
crawl will slow down as its stairs get very short
during convergence to an intersection. Lemma 6.1
shows that these intuitions are wrong.
In the worst case, a coordinated crawl along two
segments seems slightly less efficient than crawling
independently along the entire first segment and
then crawling independently along the entire sec-
ond segment, because one must test the switching
and end conditions at each step. However, in
Sect. 8 we shall show that a coordinated crawl need
not crawl along all of the two segments, so that
the complexity of a coordinated crawl is actually
less than the complexity of making two indepen-
dent crawls with condition testing.

7 XY-Monotone decomposition

As our coordinated crawling methods work upon
xy-monotone segments, the first step in intersecting
two segments with the coordinated crawling meth-
od is to partition each curve segment into xy-
monotone curve segments. Observe that a curve
segment is xy-monotone if and only if it contains
no local extrema (no changes in direction with re-
spect to the x-axis or y-axis). An xy-monotone de-
composition of a segment can be computed by
crawling along the segment. One simply marks
points at which x(P) or y(P) changes direction,
where P=(x(P), y(P)) is the present point on the
crawl. The properties of crawling guarantee that
one will not miss any directional changes during
a crawl. Therefore, the complexity of the xy-mono-
tone decomposition of a segment is the complexity
of crawling along the segment.
An alternative method is to compute the local ex-
trema of the segment algebraically, using the fact
that the local extrema of a curve f (x , y) = 0 are
the solutions of { f ~ = 0 , / = 0 } and { fy=0 , f=0} ,
wherefx andfy are the derivatives o f f with respect
to x and y, respectively. After computing the extre-
ma, they must be sorted along the curve in order
to pair them into xy-monotone segments. Note
that the local extrema may already be known, be-
cause it is trivial to compute the local extrema of
a curve as part of computing the singularities of
a curve (the singularities are the solutions of {fx
= 0, fy = 0, f = 0}); and the singularities of an alge-
braic curve are fundamental to many geometric
modeling algorithms (e.g., Abhyankar and Bajaj

1986; Johnstone 1987). If local extrema are not
known, the elimination method of Sect. 2 can be
used to compute them. This may appear to lead
to a circularity in our method. However, xy-mono-
tone decomposition is a one-time overhead. The
expense of preprocessing is well warranted for
curves in a solid model, because they are relatively
permanent and intersection is a common opera-
tion. For example, consider the pairwise intersec-
tion of a large collection of segments. The cost of
xy-monotone decomposition can be amortized
over all of the intersections, whereas the elimina-
tion method would require a curve-curve intersec-
tion for each of the pairwise intersections.
Although the elimination method of xy-monotone
decomposition is mentioned in the interests of
completeness, the first method using crawling will
usually be the best choice, because a local method
for xy-monotone decomposition is appropriate for
a local method of curve intersection.

8 Improvements

8.1 Early abortion

In this section, we outline some methods for im-
proving the efficiency of a coordinated crawl. A
coordinated crawl can be aborted as soon as it
becomes apparent that the two segments cannot
intersect. We begin with a set of conditions that
guarantees the distinctness of two xy-monotone
segments.

Lemma 8.1 Let AB and CD be xy-monotone seg-
ments. I f any of the following conditions is true, then
AB and CD do not intersect.

a) x (B) < x (C).
b) x (D) < x (A).
c) {y(A), y(B)) < {y(C), y(D)}.
d) {y(C), y(D)} < {y(A), y(B)}.
e) AB and CD are convex (a segment is convex
if no line has more than two distinct intersections
with it) and A AB n A CD = O, where A AB is the tri-
angle whose sides are the tangent at A, the tangent
at B, and AB (Fig. 8).

Proof The sufficiency of conditions a-d is a
straightforward consequence of the xy-monotonic-
ity of the segments. (Recall that x (A)<x(B) is im-
plicit from the notation AB.) The sufficiency of the
fifth condition follows from noting that if AB is
convex, then A AB contains AB.

67

�9 _5

/ ,'

. ~ B
i !

' / " / " h
I / / / " I~
i / . / / I ~

A v . - / ',

C

b

"9 h

a
. _- B

jy . l

i

10 l 3 4 2

P

11

~ C~

. C 1

Fig, 7. A staircase crawl cannot be used for a rising segment and a
falling segment

Fig. 8. AB and CD cannot intersect

Fig. 9, The length of AB is bounded by a + b

Fig. 10. A binary search for the intersection

Fig. 11. A curve comparison between C' and p: crawl from q to r

These conditions should be tested throughout the
coordinated crawl. (The condition involving con-
vex segments should only be tested if there is prior
knowledge that the segments are convex as well
as xy-monotone.) In order to lighten the computa-
tional burden, they might only be tested intermit-
tently, rather than after every step.

8.2 Eliminating long crawls in the
staircase cra wl

We have noted that a coordinated crawl should
use coarse crawls whenever possible. In this sec-

6 8

tion, we show how to make even larger jumps in
a staircase craM. In particular, it is possible to
replace a crawl (from one stair endpoint to the
next) by a single line-curve intersection.
In a staircase crawl, one climbs a staircase towards
an intersection. This process can be fully character-
ized by the series of endpoints of the stairs. For
example, the staircase crawl of Fig. 2 can be repre-
sented by C, a t , cl , a2, cz The act of climbing
a stair (i.e., finding the next endpoint in the series)
is equivalent to finding the intersection of a line
with one of the curve segments. In particular, the
endpoint that follows endpoint E on curve segment

1 is the intersection with curve segment 2 of a hori-
zontal or vertical line through E. This suggests an-
other method for climbing the stair: find the inter-
section of the line and curve segment with the elim-
ination method of Sect. 2.
Because a staircase crawl is being used, it can be
assumed that the elimination method is inferior
for the intersection of the two curve segments.
However, it may still be feasible for the simpler
intersection of a line and one of the curve segments.
The time to climb a stair EiEi+l of the staircase
El, E z E, by crawling depends upon the
length of the segment E~_ 1Ei+ 1, whereas the time
to climb a stair with a line-curve intersection de-
pends on the degree of the curve to which we are
climbing. Therefore, the higher the stair and the
lower the degree of the curve, the more attractive
it is to climb the stair with a line-curve intersec-
tion.
It may be difficult to decide when the next stair
should be climbed with a line-curve intersection
rather than a crawl. The following lemma could
be used to approximate the cost of climbing it with
a crawl.

not possible for the intersection of two rising seg-
ments, because there may be more than one inter-
section, and a binary search only makes sense when
searching for a single element.) A probe of this
'binary search' is the intersection of a vertical line
with both curve segments to determine their rela-
tive vertical order. If the relative vertical order is
the same as the beginning of the segments, then
the intersection must lie to the right of the probe.
The binary search may allow the simultaneous
crawl to begin closer to the intersection. It is diffi-
cult to determine the number of probes that should
be made. There is a tradeoff between the number
of line-curve intersections that are computed and
the amount of crawling that is saved. As a general
rule, the binary search should continue longer if
the degree of the curves is low (because line-curve
intersections will be inexpensive) or if the curve
segments are long (because a lot of crawling is more
likely).

9 Intersecting arbitrary
curve segments

Lemma 8.2 The length of an xy-monotone segment
AB is bounded by V~dist(A, B).

Proof Consider the right triangle with hypotenuse
AB, whose other sides are horizontal and vertical
(Fig. 9). By xy-monotonicity, it is easy to see that
the length of the curve segment AB is bounded
by the sum of the lengths of two of the sides of
the triangle Ix (B) -x (A) l+]y(B)-y (A) l=a+b.
The result follows by noticing that a + b = c (s i n O

+ cos O) and max0(sin 0 + cos O) = ~ (at 0 = 4) .

8.3 Accelerating the simultaneous crawl

The simultaneous crawl can also benefit from the
use of line-curve intersections. In this case, the
analogy is to root-finding of univariate polyno-
mials, where binary search is used to isolate a re-
gion for the root before Newton's method is ap-
plied. In finding the unique intersection of a rising
segment and a falling segment, it may be useful
to use a binary search for the intersection with
line-curve intersections before beginning the actual
simultaneous crawl (Fig. 10). (A binary search is

We have discussed how to intersect two xy-mono-
tone segments. However, the original goal was to
intersect two arbitrary segments. In as much as
the two original segments were decomposed into
xy-monotone segments, we must show how to find
the intersections of a collection of xy-monotone
segments. Rather than using the naive O(n 2) algo-
rithm of intersecting every pair, we shall use a vari-
ant of plane sweep to reduce this to looking at
only O (n + k) pairs, where k is the number of inter-
sections. The advantage of this plane-sweep meth-
od (based on the familiar plane sweep of Bentley
and Ottmann 1979) is it avoids testing pairs that
are never vertically adjacent.
We begin by inserting all of the xy-monotone seg-
ment endpoints into a priority queue E (sorted by
x-coordinate). We will be sweeping a vertical line
L through the plane from left to right. As we sweep,
we will maintain a database D, which consists of
all curve segments that intersect L, stored in sorted
order by their intersections with L. We represent
D as a (2,3)-tree (Aho et al. 1974) (or some equiva-
lent efficient dynamic-search structure). Note that
because the segments are xy-monotone, each seg-
ment will intersect L at most once. As we sweep
L to the right we need to stop at various event
points to maintain the consistency of the database

69

D. The priority queue E determines the events. An
event is either an endpoint or an intersection point.
With each curve C, we also keep a priority queue
E(C), which stores the names of all the curves that
we have compared with C already. These lists will
prevent us from performing any redundant inter-
section tests.
A generic step in the plane-sweep algorithm is as
follows. Remove the point in E with minimum x-
coordinate. Let p be this point. Intuitively, this cor-
responds to moving L to the right until it hits p.
We must then update D, depending on the identity
of p. We identify each of the possible cases below.

Case 1. The point p is the left endpoint of a curve
segment C (Fig. 11). In order to maintain the con-
sistency of our database, we must insert C in to
D. To do this, we must find the curve segment
C1 in D such that Ca intersects L in the highest
point below p, i.e., Ca is directly below p. We can
do this by making O(logn) curve comparisons to
find a path in the tree D from the root to the place
where C belongs. Each such curve comparison de-
termines whether a curve C' intersects L above or
below p and is implemented by crawling along C'
from the previous event point on C' until reaching
L, as in Fig. 11 (or by performing a line-curve inter-
section). After locating where C belongs in D, sup-
pose that C1 (or, C2) is C's predecessor (or, succes-
sor) curve in D. We check if C~ is already in E(C)
and, if not, intersect C with Ca (using coordinated
crawling). Similarly, we check if C2 is already in
E(C) and, if not, intersect C with C2. We add all
discovered intersection points p to the priority
queue E as long as the two curves cross at p (as
opposed to simply 'touching'). We also add C to
E(C1) and E(C2) and add C~ and C 2 to E(C). At
first glance, one might worry that the crawling in-
volved in the curve comparisons might become
prohibitive. However, even in the pathological
worst case, the entire time required for inserting
C into D is bounded by the time to crawl along
log n segments, which is not a significant expense
when compared with the alternative of finding the
intersections between all 0 (n 2) segment-pairs.
The coordinated crawl for intersecting two xy-
monotone segments should be started from L, not
from the beginning of the segments.

Case 2. The point p is an intersection point. If Ca
and C2 are the two curves that intersect at p, then
we swap them in D. Without loss of generality,

70

assume C2 now occurs before Ca in the list D. Let
Co be the new predecessor of Ca and let C3 be
the new successor of C1. Provided C O is not in
E(C2), we find the intersections of Co and C2 (and
insert them into the event queue E). Similarly, we
intersect Ca and C3, provided C3 is not in E(C1).
We then update E(Co), E(CI), E(C2), and E(C3)
as necessary.

Case 3. The point p is a right endpoint of a curve
C. In this case, we delete C from D. We then need
to intersect the two neighbors Ca and Ca of C
at p (which are now adjacent), after checking if
C1 is already in E(C2). Of course, we then update
E(CO and E(C2) as necessary.
Because these are all the possible cases, this com-
pletes the algorithm. We summarize with the fol-
lowing theorem:

Theorem 9.1 Given n xy-monotone curve segments
in the plane, one can compute all of their intersection
points with O(n + k) segment-segment intersections,
where k is the number of intersection points.

Proof The only time that segment-segment inter-
sections are made is when inserting or deleting an
event from the event queue E. Each (of 2 n) segment
endpoints and each (of k intersections) are inserted
and deleted from E, and at most two segment-seg-
ment intersections are performed with each inser-
tion or deletion.
The benefits of this algorithm will be most strongly
felt when the segments S are of a different order
of complexity from the curves C ~ S. Note that the
same plane-sweep algorithm can be applied to the
intersection of any number of algebraic curve seg-
ments, as well as two algebraic curve segments.

10 Conclusions

By extending the technique of crawling along one
segment to a technique of coordinated crawling
along two segments, we have introduced a new
method for intersecting plane algebraic curve seg-
ments. It takes advantage of the locality and sim-
plicity of the segments, unlike the elimination
method of intersection. Rather than first finding
all of the intersections between the curves, our
method directly finds only the intersections be-
tween the segments.

The coordinated crawling method can be especially
useful when degree explosion is encountered in the
elimination method. That is, among other things,
the conventional elimination method entails the so-
lution of a univariate equation (the resultant of
the two curves) whose degree is the product of the
degrees of the curves, and the solution of an equa-
tion of high degree soon becomes prohibitive. The
coordinated crawling method only involves the
evaluation of equations whose degree is the degree
of the curves (for crawling), which is simpler for
two reasons: because of the lower degree of the
equation and because evaluation is easier than so-
lution.

Acknowledgements. We would like to thank C. Bajaj and
M.S. Kim for helpful conversations.

References
Aho A, Hopcroft J, Ullman J (1974) The design and analysis

of computer algorithms. Addison-Wesley, Reading, Mass
Abhyankar S, Bajaj C (1988) Automatic parameterization of

rational curves and surfaces III: algebraic braic plane curves.
Comput-Aided Genre Des 5:309-321

Abhyankar S, Bajaj C (1989) Automatic parameterization of
rational curves and surfaces IV: algebraic space curves.
ACM Trans Graphics 8:325 334

Bajaj C, Hoffmann C, Hopcroft J, Lynch R (1988) Tracing sur-
face intersections. Comput-Aided Geom Des 5:285-307

Bentley JL, Ottmann TA (1979) Algorithms for reporting and
counting geometric intersections. IEEE Trans on Com-
puters C-28:643 647

Canny JF (1987) The complexity of robot motion planning.
PhD thesis, Massachusetts Institute of Technology

Dobkin DP, Thurston WP, Wilks AR (1986) Robust contour
tracing. Tech Rep CS-TR-054-86, Princeton University

Edelsbrunner H (1987) Algorithms in combinatorial geometry.
Springer, New York

Garrity T, Warren J (1989) On computing the intersection of
a pair of algebraic surfaces. Comput-Aided Genre Des
6:137--153

Hoffmann CM (1987) Algebraic curves. Tech Rep CSD-TR-675,
Purdue University

Johnstone JK (1987) The sorting of points along an algebraic
curve. Tech Rep 87-841; PhD Thesis, Cornell University

Johnstone JK, Bajaj C (1990) Sorting points along an algebraic
curve. SIAM J Computing 19:925-967

McKenna M (1987) Worst-case optimal hidden-surface remov-
al. ACM Trans Graphics 6:19 28

Mortenson ME (1985) Geometric modeling. Wiley, New York
Owen JC, Rockwood AP (1987) Intersection of general implicit

surfaces. In: Farin G (ed) Geometric modeling: algorithms
and new trends. SIAM, Philadelphia, pp 335-345

Pedersen P (1990) Generalizing Sturm's theorem to n dimen-
sions. Talk at the DIMACS Workshop on Algebraic Issues
in Geometric Computation, Rutgers University, May 21-25

Preparata FP, Shamos MI (1985) Computational geometry: an
introduction. Springer, New York

Requicha AAG (1980) Representations for rigid solids: theory,
methods, and systems. Computing Surveys 12:437-464

Sakkalis T (1989) Signs of algebraic numbers. In: Kaltofen E,
Watt S (eds) Computers and mathematics. Springer, New
York, 130-134

Sechrest S, Greenberg DP (1982) A visibility polygon recon-
struction algorithm. ACM Trans Graphics 1:25-42

Sederberg TW, Anderson DC, Goldman RN (1984) Implicit
representation of parametric curves and surfaces. Computer
Vision, Graphics, and Image Processing 28:72-84

Timmer HG (1977) Analytical background for computation of
surface intersections. Douglas Aircraft Company Technical
Memorandum C1-250-CAT-77-036, cited in Mortenson
1985

Van der Waerden BL (1953) Modern Algebra. Frederick Ungar,
New York

Walker RJ (1950) Algebraic curves. Springer, New York

JOHN K. JOHNSTONE is as-
sistant professor of computer
science at The Johns Hopkins
University. He earned a PhD in
computer science from Cornell
University in 1987, where he
was supported by a Canadian
NSERC Scholarship and a
Cornell Sage Fellowship. Pro-
fessor Johnstone conducts re-
search in geometric modeling
and robotics, supported by the
National Science Foundation.
Methods that can be applied to
models involving curves and
surfaces of high degree are of es-
pecial interest.

MICHAEL T. GOODRICH is
assistant professor of computer
science at The Johns Hopkins
University. He earned a PhD in
computer science from Purdue
University in 1987, where he
was a Compere Loveless Fel-
low. With National Science
Foundation support, Professor
Goodrich conducts research in
computational geometry and
parallel algorithms.

71

