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Abstract

We present a supplement to traditionally-taught topics with experi-
mental explorations of algorithms.

1 Introduction

Algorithms courses are traditionally taught with an emphasis on general design
techniques (like divide-and-conquer and dynamic programming) and the formal
analysis of algorithms, e.g., see [8, 10, 14]. This is a valuable part of Computer
Science education, which we are not proposing replacing. Instead, we are
proposing here how one might supplement traditional algorithms instruction
with projects or even an entire course in experimental algorithmics.1

Experimental algorithmics [18] studies the design, implementation, and ex-
perimental evaluation of algorithms and data structures. This topic has its own
journal (JEA), which began in 1996 [19], its own U.S. conference (ALENEX),
which began in 1999 [9], and its own European conference (SEA), which began
in 2003 [11]. Experimental algorithmics can provide insights into the perfor-
mance of algorithms that go beyond formal analysis, to address issues such

∗Copyright ©2022 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made 
or distributed for direct commercial advantage, the CCSC copyright notice and the title of 
the publication and its date appear, and notice is given that copying is by permission of the 
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires 
a fee and/or specific permission.

1See https://www.ics.uci.edu/~goodrich/teach/cs165/ for a syllabus, schedule, lec-
ture slides, readings, and detailed projects for a recent offering of our course.
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as “real world” running times, the size of constant factors, and how well an
algorithm achieves various optimization goals. Algorithm engineering and ex-
perimentation is also a useful skill for practicing computer scientists, as it can
lead to better theoretical analysis and it can also demonstrate where such anal-
ysis is misleading, e.g., see [25]. Further, students using formal analysis alone
may not fully appreciate how asymptotic running times manifest themselves in
the real-world performance of algorithms. We describe in this paper method-
ologies for supplementing traditional algorithms instruction with modules or
even an entire course in experimental algorithmics.

Our methodologies and modules for experimental algorithmics address the
issues of discovering an algorithm’s real-world running time and how well algo-
rithms achieve optimization goals. Our course also covers the use of algorithms
to test models of the real world; this last question is covered in the appendix.

A common and recurrent theme throughout all of our projects is the use
of log-log plots as an analysis tool; hence, a side benefit of our projects is that
students gain a deeper understanding and appreciation for log-log plots, both
in general and in the experimental analysis of algorithms.

1.1 Related Work

Experimental algorithmics is a research field that is too deep to review here.
In terms of general background, we refer the interested reader to the textbook
by McGeoch [18] or the guide by Johnson [12], as well as past proceedings for
ALENEX and SEA, or past issues of JEA. For a review of the related area of
algorithm engineering, please see [24].

There has also been previous work on integrating experimental analysis.
Ángel Velázquez-Iturbide and Debdi [1] describe a set of projects for exper-
imenting with greedy algorithms, but they do not address their asymptotic
analysis using best-fit functions. Berque et al. [5] describe a workbench, which
they call KLYDE, for experimental algorithm analysis. Their system includes a
tool for asymptotic-time analysis but does not include best-fit asymptotic func-
tions or the analysis of other performance variables. Matocha [17] describes
a set of projects that emphasize technical writing and the scientific method
while also addressing experimental algorithm analysis but does not stress best-
fit functions for analysis purposes. Sanders [23] describes his experiences in
teaching empirical analysis of algorithms, focusing primarily on running time
analysis, but he also does not include best-fit functions for asymptotic running
times. In addition, there has also been previous work on introducing experi-
mental algorithm analysis earlier in the Computer Science curriculum, such as
for CS1 or CS2 courses. Such courses, however, either have a limited focus on
performance (see [2]) or mainly analyze algorithms with different algorithmic
complexity experimentally (see [13] and [26]). These courses don’t empha-
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size the real-world applications of algorithm design as much, e.g., they don’t
highlight the importance of constant factors, input distributions, heuristic op-
timization algorithms, etc.

1.2 Our Contributions

We present methodologies that supplement traditionally-taught algorithms top-
ics with experimental explorations of algorithms. Such supplementation can
either be as a part of a traditional algorithms course or as an additional project-
oriented course. Our course required students to implement a variety of algo-
rithms, run benchmarks, plot their results, compare alternative implementa-
tions, and draw conclusions. In particular, we provide projects that address
the three distinct questions of algorithm analysis mentioned above.

We feel that the skills learned and practiced in these projects should appeal
to a variety of Computer Science students with varying desired career paths.

In this paper, we provide two project types. We report on our experi-
ences about how well students achieved the learning outcomes for the specific
projects. These projects can be adjusted for the target audiences at other
universities.

2 Project 1: Running Times

In the first type of project, students are asked to implement several sorting
algorithms, of which students are expected to have seen only one or two prior
to doing this project. For example, Bubble and Insertion sort can be chosen
as examples students have seen, and parameterizations of Spin-the-bottle sort
and Shellsort can be used as ones the students may not have seen.

All of these algorithms are relatively easy to program—the goal here is
not to test students’ ability to implement complicated algorithms. Instead, we
wish to teach techniques of experimental algorithmics. Students are asked to
experiment with each algorithm using ever increasing input sizes and various
arrangements. Students are then asked to plot their results on a log-log scale in
order to find expected running times and find a best-fit line equation for their
data. An example set of charts that were produced empirically for this project
are shown in Figure 1. This set of experiments shows an example of a student
who empirically determined expected running times close to O(n2) for bubble
sort, insertion sort, and spin-the-bottle sort using uniform random inputs, and
close to O(n3/2) and O(n6/5) for two versions of Shellsort. It also shows that
for almost-sorted inputs, insertion sort runs in almost linear time—much faster
than its worst-case bound (consistent with its Θ(n+ I) time complexity, where
I is the number of inversions)—but bubble sort and spin-the-bottle perform
consistent with their respective bounds. Therefore, a student with such data
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Figure 1: Project 1 charts.

should also learn a lesson as to how input distributions can impact real-world
running times.

Further, we feel that this project serves as a good introduction to experi-
mental algorithmics. The students likely know the “correct answer” to at least
two of the algorithms (Bubble Sort and Insertion Sort), and this can serve as
a “sanity check” for their early work.

Alternative choices and options for this type of project include the use of
other sorting algorithms or other input distributions. One could also use a
different problem, such as selection, connected components in a graph, min-
imum spanning trees, or big-integer multiplication. The only requirement is
that there be multiple algorithms with varying running times for solving the
same problem.

3 Project 2: Optimization

The second type of project deals with empirically testing how well algorithms
achieve an optimization goal. From a pedagogical point of view, there are a
number of challenges to overcome for this project. An ideal project addresses
a non-trivial (NP-hard) optimization problem for which multiple heuristic al-
gorithms exist and are easy to program. Furthermore, the relative quality of
solutions must be efficiently computable.

One example is to have students test heuristic algorithms for bin packing,
where we are given a set of items with (normalized) sizes between 0 and 1 and
asked to pack them into as few bins of size 1 as possible without overflowing any
bin [7]. Rather than have the student empirically compare algorithms based
on how close they get to the optimal number of bins (which is computationally
difficult to determine), we instead recommend using a waste parameter, which
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is the number of bins used by an algorithm minus the total size (i.e., the sum)
of all the items. We had students implement the first-fit and best-fit heuristics,
both in an online setting and in the setting in which we can first sort elements
in decreasing order of size. Students implemented each and measured the waste
produced by each on randomly generated item lists of various sizes.

An outcome chart for a set of such experiments is the following:

Figure 2: Bin packing waste plots.

Thus, this data confirmed that best fit decreasing and first fit decreasing
both empirically achieve an an asymptotic waste that is approximatelyO(n1/2),
with their unsorted versions empirically achieving asymptotic waste bounds
that are approximately O(n2/3).

Alternatives for this type of project include changing the input distribution
or exploring a different optimization problem.

A third project, focusing on modeling real-world phenomena, has been omit-
ted for space. Details for that will be made available in an online appendix.

4 Observations on Student Performance

In this section, we report on our observations of how well students performed
the above tasks in a recent offering of our course incorporating the above
projects. The course consisted primarily of seniors. We required expositions
of the algorithms studied, plots of performance, and conclusions comparing
the relative performances. Central to this plotting requirement was the use of
log-log plots. The report was graded on having log-log plots with appropriate
regression analysis, clarity and conciseness in describing algorithms, gathering
an appropriate amount of data, and clear prose analysis of results.

Our desired learning objectives for the students, by project, along with its
success rate in our pilot offering, is as follows. The data follows the entire
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enrollment of the class of 103 students. Each student was given the option to
opt out of being included in our study, and none elected to do so.

1. Students should be able to use meaningful, random sample in-
puts and interpret running time data on this data by noticing
which types of input produce better running times for different
algorithms. The comparison of different sorting algorithms’ running
times tested on almost-sorted and on uniformly-permuted random in-
puts should get students thinking about this consideration. Based on
their reports, over 80% of the students achieved this learning outcome.

Students should be able to use log-log plots and a best-fit line
to analyze running-time growth. Based on their reports, over 90%
of the students in the course met this objective.

2. Students should understand how algorithms can be used to op-
timize objective functions. Because of a prerequisite for our course,
students should have had experience with NP-hard optimization prob-
lems prior to our course. To assess this learning outcome, we checked
to see whether students were correctly describing the measurement of
waste by their algorithms. Based on their reports, over 85% of students
achieved this learning outcome.

Students should be able to compare heuristic algorithms based
on how well they optimize an objective function. We measured
this by determining whether students discussed the relative performance
of the different bin-packing heuristics, including whether they commented
on how the best-fit and first-fit heuristics performed better on pre-sorted
inputs than on unsorted inputs. Based on their reports, 77% of the
students in the class achieve this learning outcome.

5 Conclusion

Based on our experiences, we believe that our projects, or similar projects,
are useful supplements to the topics taught in a traditional algorithms course.
Further, our project-based course appears to be a useful addition to any Com-
puter Science curriculum that includes project-based courses as requirements
for graduation (as is done at our institution) or as electives.
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A Project 3: Modeling the Real World

The third type of project uses algorithms to empirically measure how well
various models of real-world phenomena match parameters found in actual
data sets. The goal here is to further utilize performance plots as comparison
tools, but now the algorithms are part of the data-gathering process. Ideally,
the algorithms chosen for this type of project build upon algorithms that were
taught in a prerequisite traditional algorithms course.

In our case, we chose network science as the application domain, that is,
the study of the actual networks that arise from the Internet, social networks,
computer networks, biological networks, etc. This is a rich and growing field of
study, for which Computer Science has much to offer. Thus, focusing on this
topic for our third type of project has the added benefit of providing useful
domain knowledge for students in addition to further developing their skills
in experimental algorithmics. In more detail, for this project, we focus on
asking the students to design and implement algorithms that can compute the
following statistics:

• Diameter: the length of a longest shortest path between two nodes in
the graph. Students may choose to either compute this exactly or use
a heuristic algorithm based on repeated breadth-first searches starting
from random vertices or vertices far from the starting point of a previous
breadth-first search.

• Clustering-coefficient: the ratio of three times the number of triangles
over the number of paths of length 2 in a graph. It is used by social
scientists to determine the degree to which a social network is separated
into tightly-knit groups. To compute it, the students need to count the
number of triangles in a graph, which is an interesting problem of growing
interest in its own right, e.g., see [21].

• Degree distribution: for each possible degree in a graph, the number
of vertices in the graph with that degree. This parameter is known to
exhibit a power law [20] in many real-world networks,2 so the goal of
this component of the project is for the students to see if the graph in
question has a degree distribution that exhibits a power law, by using
the now-familiar log-log plot.

For reference graphs to use, one possibility is to use random graphs, which
is the choice we took in our first implementation:

2Recall that data exhibits a power law if its frequency distribution can be characterized
by a function P (x) = cx−α, for constants c, α > 0. Typically, 2 < α < 3. See also, e.g.,
https://en.wikipedia.org/wiki/Power_law.
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1. Erdős-Rényi [22] random graphs: these graphs, G(n, p), are defined
in terms of n vertices and the parameter, p, such that each pair of vertices
in the graph is independently and uniformly chosen with probability p at
random to form an edge. So as to avoid making the graph too dense, we
recommend choosing p to be small, e.g., p = (2 lnn)/n.

2. Preferential-attachment [3] random graphs: these graphs are de-
fined by starting with two vertices connected by an edge and adding
vertices to that at each step we add one new vertex v with a constant,
d, number of edges back to previous vertices so that the probability a
previously added vertex u receives a new edge from v is proportional to
the (current) degree of u.

Using these definitions requires Θ(n2) time to compute a given instance, even
for sparse graphs. Fortunately, Batagelj and Brandes [4] provide simple linear-
time algorithms for generating such graphs. Thus, in the final project, stu-
dents generate random graphs for various numbers, n, of vertices. They then
compute the diameter, clustering coefficient, and degree distribution for each
graph. Students then plot average diameters and clustering coefficients for
these graphs as a function of n, and students also plot the degree distribution
for a specific graph instance to determine if it obeys a power law. In the for-
mer case, the growth rates tend to be so small that students are asked to plot
the results using a lin-log scale, but they should still use a log-log scale for
degree-distribution plots. The expected results are that Erdős-Rényi random
graphs should not display a power law for their degree distributions, whereas
preferential-attachment random graphs should.

An example set of charts produced from this project is as follows:
Thus, this latter chart empirically confirms a Erdős-Rényi random graph

without a power law for its degree distribution and a preferential-attachment
random graph with one.

Alternatives for this type of project include the following:

• Instead of using random graphs, use real-world graphs, such as found at
the Stanford GraphBase [15] or SNAP [16].3

• Use other types of network science statistics, such as centrality measures,
number of paths of length k, H-index, or numbers of small subgraphs of
certain types, i.e., “graphlets” [6].

• Instead of problems in network science, choose a different application
domain, such as machine learning, machine vision, or natural language
processing.

3See also https://snap.stanford.edu/data/.
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Figure 3: Project 3 charts.

34



A.1 Student Performance

3. (a) Students should understand and be able to use mixed linear-
log plots. This learning outcome is a component of the third
project when measuring average diameter of graphs, since, by the
small worlds phenomenon, real-world graphs and popular random
graphs tend to have small diameters. While students were told to
plot this on a lin-log scale, completion of the analysis requires them
to understand what the line fitting they will be doing means, as
opposed to merely finding a new way to graph the output of their
programs. This learning outcome also is designed to reinforce the
related learning outcome for log-log plots. Based on our reading of
student reports, over 90% of students achieved this learning out-
come.

(b) Students should be able to determine whether the degree
distributions of sample of graphs of increasing size exhibit
a power-law distribution. Students were taught the general
concept of power-law distributions [20] and asked to determine for
their random graphs, whether the distribution of degrees exhibited
a power-law distribution. Based on our reading of the reports, over
80% of the students were able to successfully do this.

A.1.1 Sample Student Submissions

In Project 1, sorting algorithms, one of the questions asked of the students
is to describe which sorting algorithms were most sensitive to input size and
distribution, and which were least sensitive. Below are two student responses
taken from their reports. In the first response, the student displays an accurate
interpretation of the data. Conversely, in the second response, the student
displays a clear lack of understanding of the sorting algorithm performance.

1. First student response:

Insertion sort performs consistently worse on reverse input by a constant
factor, and insertion sort performs significantly faster on almost-sorted
input (the slope is much less).
Merge sort has the same performance on all input permutations.
All four shell sort versions have worse performance on uniform random
input, and the same performance for reverse and almost-sorted input.
The only exception is shell sort 3 having the same performance for all
three input permutation types.
Hybrid sort 1’s asymptotic performance is most similar to insertion sort
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with reverse input being slightly slower than uniform input and almost-
sorted input being significantly faster. This is because a large part of
hybrid sort 1 is insertion sort.
Hybrid sort 2’s performance on different input permutation types are bal-
anced. Hybrid sort 3 has equal performance in almost-sorted and reversed
input, and uniform input is slightly worse. This is similar to merge sort
because hybrid sort 3 uses mostly merge sort.

2. Second student response:

Least sensitive to input size - Insertion sort
Most sensitive to input size - Hybrid sort
Least sensitive to distribution - Shell Sort (does not care at all)
Most sensitive to distribution - Merge Sort (it’s perfect)
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