
Information Processing Letters 181 (2023) 106360

Contents lists available at ScienceDirect

Information Processing Letters

journal homepage: www.elsevier.com/locate/ipl

Improved kernels for tracking paths

Pratibha Choudhary a,∗, Michael T. Goodrich b,1, Siddharth Gupta c,2,
Hadi Khodabandeh b, Pedro Matias b, Venkatesh Raman d

a Czech Technical University in Prague, Prague, Czech Republic
b Dept. of Computer Science, Univ. of California Irvine, Irvine, United States
c Dept. of Computer Science, University of Warwick, Coventry, UK
d The Institute of Mathematical Sciences, HBNI, Chennai, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 September 2021
Received in revised form 4 January 2023
Accepted 5 January 2023
Available online 10 January 2023

Keywords:
Graph algorithms
Kernelization
Fixed-parameter tractability
Planar graphs
Tracking paths

Tracking of moving objects is crucial to security systems and networks. Given a graph G ,
terminal vertices s and t, and an integer k, the Tracking Paths problem asks whether there
exists at most k vertices, which if marked as trackers, would ensure that the sequence of
trackers encountered in each s-t path is unique. It is known that the problem is NP-hard
and admits a kernel (reducible to an equivalent instance) with O(k6) vertices and O(k7)
edges, when parameterized by the size of the output (tracking set) k [4]. In this paper
we improve the size of the kernel substantially by providing a kernel with O (k2) vertices
and edges for general graphs and a kernel with O (k) vertices and edges for planar graphs.
We do this via a new concept, namely a tree-sink structure. We also show that finding a
tracking set of size at most n − k for a graph on n vertices is hard for the parameterized
complexity class W[1], when parameterized by k.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Graphs serve as a systematic model for modeling and
analysis of many real life problems. One of the commonly
studied problems in areas of networks and machine learn-
ing is tracking of moving objects. Coordinated path track-
ing and framework for multi-target tracking have been
discussed in [26] and [25]. Tracking of moving objects
has been widely studied in networks, wireless sensor net-
works, neural networks and binary sensor networks [14],
[11], [24], [1]. Tracking algorithms can also be used in

* Corresponding author.
E-mail addresses: pratibha.choudhary@fit.cvut.cz (P. Choudhary),

goodrich@uci.edu (M.T. Goodrich), siddharth.gupta.1@warwick.ac.uk
(S. Gupta), khodabah@uci.edu (H. Khodabandeh), pmatias@uci.edu
(P. Matias), vraman@imsc.res.in (V. Raman).
1 Supported in part by NSF Grant 1815073.
2 Supported in part by the Engineering and Physical Sciences Research

Council (EPSRC) grant EP/V007793/1.
https://doi.org/10.1016/j.ipl.2023.106360
0020-0190/© 2023 Elsevier B.V. All rights reserved.
designing debugging tools in programs and for leakage de-
tection systems.

The problem of target tracking can be modeled as the
following graph theoretic problem. Let G = (V , E) be an
undirected graph without any self loops or parallel edges
with a unique entry vertex (source) s and a unique exit
vertex (destination) t . A simple path from s to t is called
an s-t path. The Tracking Paths problem asks to find a set
of vertices T ⊆ V such that for any two distinct s-t paths,
say P1 and P2, the sequence of vertices in T ∩ V (P1) as
encountered in P1 is different from the sequence of ver-
tices in T ∩ V (P2) as encountered in P2. Here T is called a
tracking set for the graph G , and the vertices in T are called
trackers. Banik, Katz, Packer and Simakov [6] first studied
the problem of tracking paths in graphs, where they fo-
cused on distinguishing all shortest s-t paths in a graph
and proved that the problem Tracking Shortest Paths is
NP-hard and APX-hard. They also gave a 2-approximate
algorithm for the same problem in planar graphs, along
with some other results. Tracking Shortest Paths was first

https://doi.org/10.1016/j.ipl.2023.106360
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2023.106360&domain=pdf
mailto:pratibha.choudhary@fit.cvut.cz
mailto:goodrich@uci.edu
mailto:siddharth.gupta.1@warwick.ac.uk
mailto:khodabah@uci.edu
mailto:pmatias@uci.edu
mailto:vraman@imsc.res.in
https://doi.org/10.1016/j.ipl.2023.106360

P. Choudhary, M.T. Goodrich, S. Gupta et al. Information Processing Letters 181 (2023) 106360
studied from a parameterized perspective in [3], [5], where
the problem was shown to be fixed-parameter tractable
(FPT). Tracking Paths is formally defined as follows.

Tracking Paths (G, s, t, k)
Input: An undirected graph G = (V , E) with two dis-
tinct vertices s and t , and a non-negative integer k.
Parameter: k
Question: Does there exist a tracking set T of size at
most k for G?

Banik et al. [4] proved Tracking Paths to be NP-
complete and fixed-parameter tractable by showing the
existence of a polynomial kernel. Specifically it was proven
that an instance of Tracking Paths can be reduced to
an equivalent instance of size O(k7) in polynomial time,
where k is the desired size of the tracking set.3 In this
paper we give improved kernels for general graphs and
planar graphs. We also give the first hardness result for
Tracking Paths with respect to parameterized complexity.
Our Contributions and Methods. We give a quadratic ker-
nel for Tracking Paths on general graphs, which is a major
improvement from the O(k7) kernel given in [4]. We also
give a linear kernel for Tracking Paths on planar graphs.
Further we prove that deciding if there exists a tracking set
of size at most n − k, where n is the number of vertices in
the graph, is W[1]-hard.

Given an instance (G, s, t, k), we give a polynomial time
algorithm that either determines that (G, s, t, k) is a NO
instance or produces an equivalent instance with O(k2)
vertices and O(k2) edges, where k is the size of a de-
sired tracking set. This polynomial time algorithm is called
a kernelization algorithm and the reduced instance is called
a kernel. For more details about parameterized complexity
and kernelization we refer to monographs [16,15].

The kernelization algorithm works along the following
lines. Let (G, s, t, k) be an input instance to Tracking Paths.
We start the algorithm with a 2-approximate solution for
Feedback Vertex Set (FVS) and makes of a useful structural
result that we give. Specifically, we prove that if there ex-
ists an induced subgraph in G which consists of a tree with
all of its leaves adjacent to a single vertex v , then the size
of a minimum tracking set for G is at least the number
of neighbors of v in this tree minus one. Then if S is an
FVS of size at most 2k, we give bounds on different types
of vertices in G \ S , based on how they share neighbors
in S . Combining all these bounds we show the existence
of a quadratic kernel for general graphs. We also give a
linear kernel for planar graphs. A planar graph is a graph
that can be embedded on a two-dimensional plane i.e. it
can be drawn on a two dimensional plane in such a way
that its edges intersect only at their endpoints and do not
cross over each other. Eppstein, Goodrich, Liu and Matias
[17] studied Tracking Paths for planar graphs and showed
that Tracking Paths remains NP-complete when the graph
is planar, and gave a 4-approximation algorithm for this
setting. Our linear kernel uses the bound on the number

3 Throughout the paper we assume k to be a non-negative integer.
2

Fig. 1. Graph G ′ is a minor of graph G . The set of circled vertices repre-
sents a minimum tracking set in each graph.

of faces with respect to the size of an optimal tracking set
for a planar graph, given in [17].

In parameterized complexity it is common to identify
tractable parameterizations. For a graph on n vertices, n is
a trivial upper bound for the size of a tracking set, so from
the perspective of ‘distance to triviality’ we consider the
question of whether we can find a tracking set with n − k
trackers. We prove that finding a tracking set of size at
most n − k is W[1]-hard on a graph with n vertices, where
the parameter is k.

Although a tracking set is also a feedback vertex set,
both are fundamentally very different. A graph may have
a small FVS but the tracking set may be arbitrarily larger
than the FVS. Moreover, Tracking Paths is more demand-
ing as a problem compared to the classic covering prob-
lems studied in graph theory. While covering problems aim
at hitting a particular type of structure in graphs, Track-
ing Paths requires distinguishing each s-t path uniquely
using a small set of vertices. Here we mention an impor-
tant property about this problem that distinguishes it from
many other covering problems. It can be shown using an
example that the problem is not closed on minors. See
Fig. 1.

Observe that graph G ′ can be obtained from graph
G by contracting the following edges: (s, a), (s, b), (s, c),
(m, t), (n, t), (o, t). However note that G ′ requires at least
8 trackers while G can be tracked with just 5 trackers.
Since Tracking Paths is not closed under minors, the well
known graph minor theorem does not apply to it [23,22,7].
Hence, the problem is inherently different from the stan-
dard covering problems and the well known techniques of
finding some specific obstructions and devising algorithms
to hit/cover them, shall not work for the case of Tracking
Paths.

Even proving that Tracking Paths is in NP is non-trivial.
See [4] for details. A combinatorial generalization of Track-
ing Paths has been studied in [5], where the input is a set
system, and it is required to find a set of elements from
the universe that have a unique intersection with each set
in the family. The problem has been shown to be a dual of
the test cover problem. Tracking Paths was proven to be
polynomial time solvable for chordal graphs, tournament
graphs and for the case when edges are used as trackers
instead of vertices [12], [13]. It is also known from [17]
that it is polynomial time solvable for graphs of bounded
clique-width (when the clique decomposition is given in
advance). Bilò, Gualà, Leucci and Proietti [8] discussed re-
sults on Tracking Shortest Paths with multiple source-
destination pairs, presenting an Õ(

√
n)-approximation al-

gorithm for general graphs and NP-hardness for cubic
planar graphs. They also give an FPT algorithm parame-

P. Choudhary, M.T. Goodrich, S. Gupta et al. Information Processing Letters 181 (2023) 106360
terized by the maximum number of vertices equidistant
from source, for the single source-destination pair sce-
nario. Recent work on Tracking Shortest Paths also in-
cludes results on quadratic kernels for general graphs and
linear kernel for planar graphs [10]. With regard to ap-
proximation, it was recently shown that there exists 6-
approximation algorithm for Tracking Paths [9]. A related
problem, Identifying Path Cover has been discussed in [19]
and [20]. Identifying Path Cover requires finding a set of
paths that cover all the vertices in a graph and uniquely
identify each vertex by inclusion in a distinct set of paths.

1.1. Roadmap

Section 2 explains the terms and notations used in the
paper. Section 3 analyzes graph structures (disjoint paths,
tree-sink structure) that have a strict lower bound in terms
of the number of trackers required in them if they appear
as subgraphs (not necessarily induced) in the input graph.
The lemmas in this section form the basis of the reduction
rules used in Sections 4 and 5 to get the respective kernels.
Section 4 gives an O(k2) kernel for general graphs, where
k is the desired size of a tracking set. We start by finding
a 2-approximate FVS S for the input graph G . Next the
vertices in V (G) \ S are categorized on the basis of how
they share neighbors in S with other vertices in V (G) \ S .
Section 5 derives an O(k) kernel for planar graphs using
a bound on the number of faces of a planar graph after
some preprocessing. Section 6 discusses the W[1]-hardness
for the problem of finding whether a graph can be tracked
with n − k trackers, where n is the number of vertices in
the graph. Finally Section 7 summarizes the results in the
paper with some open problems.

2. Preliminaries

A kernelization algorithm is typically obtained using
what are called reduction rules. These rules transform a
given parameterized instance in polynomial time to an
equivalent instance, preferably with some bound on the
size of the new instance. A rule is said to be safe if the
resulting graph is a YES instance if and only if the original
instance is a YES instance.

Throughout the paper, we assume graphs to have no
self loops or multi-edges. When considering tracking set
for a graph G = (V , E), we assume that the given graph is
an s-t graph, i.e. the graph contains a unique source s ∈ V
and a unique destination t ∈ V (both s and t are known),
and we aim to find a tracking set that can distinguish all
simple s-t paths. For a graph/subgraph G , V (G) represents
the vertex set of G and E(G) represents the edge set of
G , i.e. the set of edges whose both endpoints lie in V (G).
If a, b ∈ V then, unless otherwise stated, {a, b} represents
the set of vertices a and b, and (a, b) represents an edge
between a and b. For a vertex v ∈ V , neighborhood of v is
denoted by N(v) = {x | (x, v) ∈ E}. We use deg(v) = |N(v)|
to denote the degree of vertex v . For a graph G , we use
G ′ ⊆ G to denote that G ′ is a subgraph of G . For a vertex
v ∈ V and a subgraph G ′ , NG ′ (v) = N(v) ∩ V (G ′). Similarly,
for a vertex v ∈ V and a set of vertices V ′ , we use NV ′ (v)

to denote N(v) ∩V ′ . For a subset of vertices V ′ ⊆ V we use
3

N(V ′) to denote
⋃

v∈V ′ N(v). With slight abuse of notation
we use N(G ′) to denote N(V (G ′)). For a graph G and a set
of vertices S ⊆ V (G), G − S denotes the subgraph induced
by the vertex set V (G) \ S . If S is a singleton, we may use
G −x to denote G − S , where S = {x}. We use [m] to denote
the set of integers {1, . . . , m}.

A path in a graph G is a subgraph of G defined as P =
{v1.e1.v2.e2.v3 . . . vn}, where vi ∈ V (G), ei = (vi, vi+1) ∈
E(G), and vi �= v j , ei �= e j if i �= j. Let P1 be a path be-
tween vertices a and b, and P2 be a path between ver-
tices b and c, such that V (P1) ∩ V (P2) = {b}. Then we use
P1 · P2 to denote the path between a and c, formed by con-
catenating paths P1 and P2 at b. Two paths P1 and P2 are
said to be vertex disjoint if their vertex sets do not inter-
sect except possibly at the endpoints, i.e. V (P1) ∩ V (P2) ⊆
{a, b}, where a and b are the starting and endpoints of the
paths. By distance we mean length of the shortest path, i.e.
the number of edges in that path. For a graph G = (V , E),
an FVS is a set of vertices S ⊆ V such that G − S is a forest.

3. Structural properties

In this section we analyze the problem of distinguishing
paths in some specific graph structures along with provid-
ing some basic preprocessing steps. We start by recalling
some reduction rules and basic results from the previous
work on Tracking Paths, followed by giving some new
ones. Later we give some important lemmas based on tree-
like structures, which form the base for vertex counting
arguments for the kernels we give in subsequent sections.
Following reduction rules are applied exhaustively as long
as they are applicable.

Reduction Rule 1. Banik et al. [4] If there exists a vertex or an
edge that does not participate in any s-t path then delete it.

In the rest of the paper we assume that each vertex and
edge participate in at least one s-t path.

Reduction Rule 2. If V \ {s, t} = ∅, then return a trivial YES
instance. Else, if degree of s (or t) is 1 and N(s) �= t (N(t) �= s),
then delete s (t) and label the vertex adjacent to it as s (t).

Now we recall two reduction rules from [17] that help
us bound the number of degree two vertices in the graph.

Reduction Rule 3. Eppstein et al. [17] If there exist a, b, c ∈
V (G) such that deg(b) = deg(c) = 2, b, c /∈ {s, t}, (a, c) /∈
E(G), and N(b) = {a, c}, then delete b and introduce an edge
between a and c.

Reduction Rule 4. Eppstein et al. [17] If there exist a, b, c ∈
V (G) such that N(b) = {a, c} and (a, c) ∈ E(G) and b /∈ {s, t},
then mark b as a tracker, delete b from G and set k to k − 1.

Next we recall a monotonicity lemma and a corollary
from [4], which says that if a subgraph of G cannot be
tracked with k trackers, then G cannot be tracked with k
trackers either.

P. Choudhary, M.T. Goodrich, S. Gupta et al. Information Processing Letters 181 (2023) 106360
Lemma 3.1. Banik et al. [4] Let G = (V , E) be a graph and
G ′ = (V ′, E ′) be a subgraph of G such that {s, t} ⊆ V ′ . If T is
a tracking set for G and T ′ is a minimum tracking set for G ′ ,
then |T ′| ≤ |T |.

If the above Reduction Rules are applied then the block-
cut tree of the graph is a path i.e. each block is a bicon-
nected component [21]. A block-cut tree of a graph G is
a tree where each node represents either a biconnected
component or cut vertex of G; and a node representing a
cut vertex v in G is adjacent to all biconnected compo-
nents in G that contain v . Note if the block-cut tree is not
a path then at least one vertex shall not be participating
in any s-t path. Observe that the cut vertices cannot help
uniquely identify any s-t path. Hence we can consider each
biconnected component individually as a subproblem in it-
self.

Observation 1. If Reduction Rules 1, 2, 3 and 4 are applied then
the graph is a chain of biconnected components.

Observation 2. The tracking set for each biconnected compo-
nent can be computed individually and tracking set for G is the
union of tracking set of each of the biconnected components.

Definition 1. Let G ′ ⊆ G be a subgraph. If u, v ∈ V (G ′) is
a pair of distinct vertices then, for the subgraph G ′ , u is a
local source and v is a local destination if the following
hold: (a) there exists a path in G from s to u, say Psu , and
another path from v to t , say P vt , (b) V (Psu) ∩ V (P vt) = ∅,
(c) V (Psu) ∩ V (G ′) = {u} and V (P vt) ∩ V (G ′) = {v}.

Note that a subgraph may have multiple local source-
destination pairs.

Lemma 3.2. Banik et al. [4][Rephrased] If each vertex and edge
in graph G participates in an s-t path, then for a subgraph G ′ ⊆
G containing at least one edge, it holds that G ′ contains a local
source and a local destination.

In the rest of the paper the phrase ‘subgraph cannot be
tracked by k trackers’ implies that the paths between a lo-
cal source and destination in a subgraph cannot be tracked
with k trackers. Due to Lemma 3.1 and Lemma 3.2, we
have the following two corollaries.

Corollary 1. Banik et al. [4] If a subgraph of G that contains
both s and t cannot be tracked by k trackers, then G cannot be
tracked by k trackers either.

Corollary 2. If there exists a subgraph G ′ of G, and there exists a
pair of vertices u, v ∈ V (G ′), such that u is a local source for G ′
and v is a local destination for G ′ , and all paths between u and
v in G ′ cannot be tracked by at most k trackers, then G cannot
be tracked by at most k trackers.

Next corollary forms a starting point for the kerneliza-
tion algorithms.
4

Corollary 3. Banik et al. [4] If every vertex and edge in a graph
G is part of an s-t path in G then a tracking set T for G is also
an FVS for G.

For the rest of the paper, we assume that the in-
put graph has already been preprocessed using Reduction
Rules 1, 2, 3 and 4, and hence the following holds:

1. All vertices and edges in the graph participate in some
s-t path.

2. Degree of all vertices in the graph is at least two, and
each vertex of degree two has both its neighbors with
degree three or higher.

3. There exist at least two s-t paths in the graph.

3.1. Vertex disjoint paths

Here we give a bound on the number of vertex disjoint
paths that can exist between a pair of vertices in a graph
G , given that G can be tracked with at most k trackers.
While in [4] it is proven that there can exist at most k + 3
vertex disjoint paths between a pair of vertices in G , we
improve the bound to k + 1. The new bound allows easy
analysis and computation in future lemmas.

Lemma 3.3. If u, v ∈ V and there exists more than k + 1 vertex
disjoint paths between u and v, and the graph induced by these
k + 1 paths along with u and v has u as a local source and v
as a local destination, then G cannot be tracked with at most k
trackers.

Proof. For a contradiction assume that there exist k + 2
vertex disjoint paths P = {P1, . . . , Pk+2} between a pair of
vertices u and v in G i.e. u, v are end points for every
path in P , and G can be tracked with at most k trackers.
Let G ′ be the subgraph induced by V (P). Since u is a lo-
cal source for G ′ and v is a local destination for G ′ , there
exists a path Psu that starts at s and ends at u and does
not contain any vertex from G ′ − {u, v}, and there exists
a path P vt that starts at v and ends at t and does not
contain any vertex from G ′ − {u, v}. See Fig. 2. Consider
a pair of paths Pi, P j ∈ P . Let Pi and P j do not contain
any trackers (except for u and v). Now consider the s-t
paths P ′

i = Psu · Pi · P vt and P ′
j = Psu · P j · P vt . Note that P ′

i

and P ′
j contain the same sequence of trackers. Since these

paths differ only in the vertices on paths Pi and P j , at
least one vertex (except u and v) either on Pi or P j has
to be a tracker. Thus as long as there are two paths in P
without any trackers, there will be two s-t paths with the
same sequence of trackers. Hence, at least k +1 paths in P
need a tracker on them. Due to Corollary 2, we know that
if G ′ cannot be tracked with at most k trackers then G can-
not be tracked with at most k trackers. This contradicts the
initial assumption, and hence completes the proof. �

Lemma 3.4. If there exists two vertices u, v ∈ V such that there
exists more than k + 1 vertex disjoint paths between u and v,
then G cannot be tracked with at most k trackers.

P. Choudhary, M.T. Goodrich, S. Gupta et al. Information Processing Letters 181 (2023) 106360
Fig. 2. Vertex disjoint paths between a local source and destination.

Fig. 3. Vertex disjoint paths between a pair of vertices.

Proof. For a contradiction assume that there exist k + 2
vertex disjoint paths P = {P1, . . . , Pk+2} between a pair of
vertices u and v in G i.e. u, v are end points for every path
in P , and G can be tracked with at most k trackers. Let
G ′ be the subgraph induced by V (P). Due to Lemma 3.2,
there exists a local source, say u1, and a local destination,
say v1, in G ′ . We consider various cases possible based on
the positions of u1 and v1 in G ′ .

• When u = u1 and v = v1, or u = v1 and v = u1. Both
of these cases are symmetric to each other, and have
been proven in Lemma 3.3.

• When {u, v} ∩ {u1, v1} = ∅. First we consider the case
when u1 and v1 lie on different paths in P . See Fig. 3.
We denote the path between u and u1 (subpath of
Pk+2) by λ1, the path between u1 and v (subpath of
Pk+2) by λ2, the path between u and v1 (subpath of
P1) by λ3, and the path between v and v1 (subpath of
P1) by λ4. We denote the paths in P \ {P1, Pk+2} by
P ′ . Any s-t path in G that passes through G ′ will be
one among the following types:

1. Psu1 · λ1 · Pi · λ4 · P v1t , where Pi ∈P ′
2. Psu1 · λ2 · Pi · λ3 · P v1t , where Pi ∈P ′
3. Psu1 · λ1 · λ3 · P v1t
4. Psu1 · λ2 · λ4 · P v1t

Consider the first two cases. Let G ′′ be the graph in-
duced by P ′ . Observe that u and v are local source
and destination for G ′′ , since there exists a path Psu1 ·
λ1 from s to u, and a path P v1t · λ4 from v to t ,
and these paths intersect with G ′′ only at u and v .
Since there are k paths between u and v in G ′′ , due
5

to Lemma 3.3, these require at least k − 1 trackers
in V (P ′) \ {u, v}. If each of the k paths in P ′ has a
tracker, the paths indicated in cases 3,4 have the same
sequence of trackers, and this contradicts the assump-
tion that G has a tracking set of size k. Else, without
loss of generality, let Pk+1 be the path in P ′ that is
left without a tracker.
Cases 3,4 denote two vertex disjoint paths between u1

and v1 along P1 and Pk+2. Hence, due to Lemma 3.3,
there must be a tracker on either V (λ1) ∪ V (λ3) \
{u1, v1} or V (λ2) ∪ V (λ4) \ {u1, v1}. We consider fol-
lowing cases:
– There exists a tracker in V (λ1) \{u1, v1}: Paths Psu1 ·

λ1 ·λ3 · P v1t and Psu1 ·λ1 · Pk+1 ·λ4 · P v1t contain the
same set of trackers.

– There exists a tracker in V (λ2) \{u1, v1}: Paths Psu1 ·
λ2 · Pk+1 ·λ3 · P v1t and Psu1 ·λ2 ·λ4 · P v1t contain the
same set of trackers.

– There exists a tracker in V (λ3) \{u1, v1}: Paths Psu1 ·
λ1 ·λ3 · P v1t and Psu1 ·λ2 · Pk+1 ·λ3 · P v1t contain the
same set of trackers.

– There exists a tracker in V (λ4) \{u1, v1}: Paths Psu1 ·
λ1 · Pk+1 ·λ4 · P v1t and Psu1 ·λ2 ·λ4 · P v1t contain the
same set of trackers.

All the above cases contradict the assumption that G
can be tracked with at most k trackers.
Next we consider the case when both u1 and v1 lie on
the same path in P . Without loss of generality assume
that u1 and v1 both lie on P1. Here note that there
exists one path between u1 and v1 that is a strict sub-
path of P1, and the remaining paths between u1 and
v1 pass through P \ P1, via vertices u and v . Observe
that u and v are a local source and destination for
the subgraph G ′′′ induced by V (P \ P1). Since there
are k + 1 paths between u and v in the subgraph G ′′′ ,
due to Lemma 3.3, at least k trackers are required in
V (G ′′′). If there are k + 1 trackers in V (G ′′′), it con-
tradicts the assumption that G can be tracked with at
most k trackers. If there are k trackers in V (G ′′′), with-
out loss of generality, let P2 be the path without any
tracker. Now observe that there are two paths between
u1 and v1, the one that does not pass through u and v
(subpath of P1) and the one that passes through u and
v , through P2, that do not have any trackers on them.
Due to Lemma 3.3, at least one tracker is required on
one of these paths. Hence we have a contradiction to
the assumption that the graph can be tracked with at
most k trackers.

• When u = u1 and v �= v1, or, u �= u1 and v = v1. Con-
sider u = u1, and v �= v1. This case can be argued sim-
ilar to the second case, except that now λ1 = u = u1.
Similarly, if u �= u1, and v = v1, the case is similar to
the second case, except that now λ4 = v = v1.

Note that the case when u1 = v1, is not possible after
application of Reduction Rule 1. Correctness of the proof
follows from Corollary 1. Hence the lemma holds. �

Next we give a reduction rule based on Lemma 3.4.

P. Choudhary, M.T. Goodrich, S. Gupta et al. Information Processing Letters 181 (2023) 106360
Reduction Rule 5. Let G ′ be a subgraph of G, consisting of a
pair of vertices a, b such that a, b have i common neighbors,
each of degree two. If a is a local source for G ′ and b is a lo-
cal destination for G ′ , then arbitrarily mark i − 1 among the i
vertices of degree two as trackers and delete them. If i > k + 1
return a NO instance, else set k to k − i − 1.

Lemma 3.5. Reduction Rule 5 is safe and can be implemented
in polynomial time.

Proof. Let Vi be the set of i vertices of degree two that
are adjacent to a and b and let Vi−1 be the set of i − 1
vertices that were marked as trackers and deleted. Let G ′
be the newly created graph after the deletion of Vi−1. We
claim that G ′ has a tracking set of size k − i −1 if and only
if G has a tracking set of size k. Suppose G ′ has a tracking
set T ′ of size k − i − 1. If we add the vertices of Vi−1 back
to G ′ along with their edges, there exist i vertex disjoint
paths between a and b. Since a and b are the local source
and destination, due to Lemma 3.4 at least i − 1 trackers
are required on the vertices of Vi . We mark all the vertices
in Vi−1 as trackers. Now all paths between a and b are
tracked. Since all other paths were already being tracked
by T ′ in G ′ , T ′ ∪ Vi−1 is a tracking set of size k for G .

In the other direction let T be a tracking set of size k
in G . Let x ∈ Vi \ Vi−1. We claim that G ′ has a tracking set
T ′ = V (G ′) ∩ T of size k − i − 1. Suppose not. Then there
exist two s-t paths, say P1 and P2, in G ′ that have the
same sequence of trackers. Observe that this implies that
P1 and P2 are also two paths with the same sequence of
trackers in G . Note that the trackers on vertices in Vi−1
cannot be used to distinguish P1 and P2, as that would
leave some untracked paths between a and b in G . Thus T
is not a tracking set for G , which is a contradiction. This
completes the proof of safeness of Reduction Rule 5.

In order to implement Reduction Rule 5, we consider
each pair of vertices u, v ∈ V (G), and compare all their
neighbors, to check for common neighbors of degree two.
This can be done in O(n4) time. Hence the rule can be
applied in polynomial time. �
3.2. Tree-sink structure

In this section we discuss a specific graph structure,
namely the tree-sink structure, and prove a lower bound for
the number of trackers required if such a structure exists
in an s-t graph.

Definition 2. A tree-sink structure in a graph G is a sub-
graph G ′ such that V (G ′) = V (R) ∪ {x}, where R is a tree
with at least two vertices, and all of its leaves are adjacent
to x. Here R is the tree while x is the sink of the tree-sink
structure.

Note that x may or may not be adjacent to the non-
leaf vertices of R . See Fig. 4. We prove that if the sink x is
adjacent to more than k + 1 vertices in R , then G cannot
be tracked with at most k trackers. We start with a simple
case when the graph G itself is a tree-sink structure and
either s or t is the sink.
6

Fig. 4. Tree-sink structure: Solid lines are edges of tree, and dashed lines
are edges between the sink t and vertices of the tree.

Fig. 5. Possible cases when the sink t has two neighbors in the tree in-
duced by G − t .

Lemma 3.6. Let G be an s-t graph that forms a tree-sink struc-
ture with x ∈ V (G) as the sink and x ∈ {s, t}. If |N(x)| = δ, then
δ − 1 trackers are required in G, and these trackers have to be
in V (R), where R is the tree induced by G − x.

Proof. Without loss of generalization we assume that x =
t . We root R at the source vertex s. Consider that graph G
has already been preprocessed using Reduction Rules 1, 2
and 3.

We prove the lemma by induction on the value of δ.
Observe that due to Reduction Rule 1, 2 and 3, δ = 1 is not
possible. Thus the base case for induction is when δ = 2.
Note that in this case G is either a triangle or a four cycle.
See Fig. 5. Consider the case when G is a triangle. Due
to Reduction Rule 4, the vertex v ∈ V (G) \ {s, t} is marked
as a tracker and deleted. Consider the case when G is a
four cycle. Observe that there exist two vertices, say u, v ,
of degree two each, adjacent to s and t . Due to Reduction
Rule 5, one among u and v is marked as a tracker and
deleted. Note that in both the cases, after application of the
corresponding reduction rules, G comprises only the edge
(s, t). Due to Reduction Rule 2, this is a trivial YES instance.
Hence, when δ = 2, exactly one tracker is required in G .
This proves that the claim holds for the base case.

Next, for induction hypothesis, we assume that the
claim holds for δ = i, i.e. if the sink is adjacent to i ver-
tices, then i − 1 trackers are required in G . Consider the
case when δ = i +1. Note that here δ ≥ 3. Due to Reduction
Rule 1, all leaves in R are adjacent to t , R being the tree
induced by G − t . Consider a leaf vertex, say v1 ∈ V (R),
that is at maximum distance from s. Since deg(v1) = 2,
due to Reduction Rule 3, the degree of its parent node, say
vp , is at least 3. Thus either vp has another child node, or
vp is adjacent to t . We analyze both the possibilities:

• Case I: vp has another child node, say v2. Since v1 is at
maximum distance possible from s, v2 is a leaf node
in R . Observe that the graph G ′ induced by v1, v2, vp

and t has vp as a local source and t as a local desti-

P. Choudhary, M.T. Goodrich, S. Gupta et al. Information Processing Letters 181 (2023) 106360

Fig. 6. Removing edge (t̂, t) from G creates two tree-sink structures in G ′ , with trees R1 (shown with solid lines) and R2 (shown in dashed lines) and
sink x.
nation, and deg(v1) = deg(v2) = 2. Due to Reduction
Rule 5, either v1 or v2 will be marked a tracker and
deleted. This reduces the value of δ from i + 1 to i,
while using one tracker.

• Case II: vp is adjacent to t . Observe that v1, vp and t
form and triangle and deg(v1) = 2. Due to Reduction
Rule 4, v1 will be marked as a tracker and deleted.
This reduces the value of δ from i +1 to i, while using
one tracker.

Now δ = i. Due to the induction hypothesis, we know that
when δ = i, then i − 1 trackers are required in G . Since we
already used a tracker in both the above cases, the total
number of trackers required when δ = i + 1, is i. Since the
sink is t itself, all the trackers need to be in V (R). This
completes the proof. �

Next we give a corollary which makes the above lemma
more usable for the sake of our future arguments.

Corollary 4. Let G be a graph and G ′ be a subgraph of G such
that G ′ induces a tree-sink structure with v ∈ V (G ′) as its sink.
If |N(v) ∩ V (G ′)| = δ, and v is either a local source or a local
destination for G ′ , then the size of a tracking set for G is at least
δ − 1. Further these δ − 1 trackers need to be in V (G ′) \ {v}.

Proof. Consider the subgraph G ′ . Without loss of gener-
ality, we assume that v is a local destination for G ′ . Let
u ∈ V (G ′) be a local source corresponding to the local des-
tination v . Due to Lemma 3.6, we have that δ − 1 trackers
are required in V (G ′) \ {v} to track all paths between u
and v . From Corollary 2, if in a subgraph all paths between
a local source and destination cannot be tracked with k
trackers then the graph cannot be tracked with k trackers.
Hence if k < δ − 1, then G cannot be tracked with at most
k trackers. Thus the size of a tracking set for G is at least
δ − 1. It follows from Lemma 3.6 that these δ − 1 trackers
need to be in V (G ′) \ {v}. �

The next lemma generalizes the result in Corollary 4.
We prove that regardless of where s and t lie in graph G , if
G forms a tree-sink structure, then the size of the tracking
set for G is at least the number of neighbors of the sink in
the tree minus one.

Lemma 3.7. If an s-t graph G forms a tree-sink structure such
that x ∈ V (G) is the sink and G − x induces a tree and |N(x)| =
7

δ, then the size of a tracking set for G is at least δ − 1, and at
least δ − 2 trackers are required in G − x.

Proof. Let R be the tree induced by V (G \ {x}). The case
when x ∈ {s, t} has been proven in Lemma 3.6. Consider
the case when s, t ∈ V (R). We start by rooting the tree at
s. Now create a graph G ′ by removing the edge between t
and its parent vertex, say t̂ , in R . Observe that in G ′ , there
exists a tree, say R1 that can be considered rooted at s,
consisting of all those vertices in V (R) that are not descen-
dants of t in R , with all its leaves adjacent to the vertex x.
There exists another tree, say R2, rooted at t , consisting of
all of its descendants in R , with all of its leaves adjacent to
x. See Fig. 6. We denote the graph induced by V (R1) ∪ {x}
by G1, and the graph induced by V (R2) ∪ {x} by G2. Let δ1
be the number of leaves in R1, and δ2 be the number of
leaves in R2. Note that δ1 + δ2 = δ.

Note that x is a local destination for G1. Hence by
Corollary 4, since R1 has δ1 many leaves, the size of a
tracking set for G is at least δ1 − 1, and all these track-
ers must be in V (R1 − x).

Note that x is a local source for G2. Hence by Corol-
lary 4, since R2 has δ2 many leaves, the size of a tracking
set for G is at least δ2 − 1, and all these trackers must be
in V (R2 − x).

If there exists at least δ1 + δ2 −1 trackers in G , then the
lemma holds. Else there exist δ1 − 1 trackers in V (R1 −
x) and δ2 − 1 trackers in V (R2 − x). Hence, there exists
exactly one path in G1, say P1, from s to x that does not
contain any trackers, and exactly one path in G2, say P2,
from x to t without trackers. Consider the path P ′ = {s} ·
P1 · {x} · P2 · {t}. Note that if G contains a total of δ1 +δ2 −2
trackers, then x is not a tracker and hence P ′ does not
contain any trackers. Recall the edge e that was initially
removed between t and its parent, t̂ , in R . Consider the
path in G1 from s to t̂ , say Pst̂ . We consider the following
two cases.

• Pst̂ is a subpath of the path P1. Consider the paths
{s} · P1 · {x} · P2 · {t}, and {s} · Pst̂ · {t}. Observe that
both these paths have no trackers. Hence one more
tracker is needed, either in V (P1) or V (P2) in order
to distinguish them in G .

• Pst̂ is not a subpath of the path P1. If Pst̂ does not
have a tracker, both the paths {s} · P1 · {x} · P2 · {t} and
{s} · Pst̂ · {t} do not contain any trackers. If Pst̂ has a
tracker, let tr ∈ V (P ˆ) be the tracker that is closest
st

P. Choudhary, M.T. Goodrich, S. Gupta et al. Information Processing Letters 181 (2023) 106360
to t̂ . Since δ − 1 is the minimum number of trackers
required in R1, there exists a path from tr to x (and
not passing through s) in G1 that does not contain any
trackers. Lets denote this path by Ptr x . Let Pstr be the
path from s to tr that is a subpath of Pst̂ . Now ob-
serve that paths {s} · Pstr · Ptr x · {x} · P2 and {s} · Pst̂ · {t}
have the same set of trackers. Hence in both the cases
discussed one more tracker is required in G .

Thus the total number of required trackers in G is at
least δ1 + δ2 − 2 + 1, i.e. δ − 1. Since the sink can be a
tracker as well, a tree-sink structure requires at least δ − 2
trackers in the vertex set of the tree. �

Lemma 3.7 along with Corollary 1 gives us the follow-
ing corollary.

Corollary 5. In a graph G, if there exists a subgraph G ′ and a
vertex v ∈ V (G ′), such that G ′ forms a tree-sink structure with
v as a sink, and |N(v) ∩ V (G ′)| = δ then the size of a tracking
set for G is at least δ − 1. Further at least δ − 2 trackers are
required to be in V (G ′) \ {v}.

Observe that if a vertex v in a subgraph G ′ has δ neigh-
bors in G ′ and G ′ − v is connected, then there exists a
tree-sink structure in G ′ such that v is the sink that is
adjacent to δ vertices of the tree. Hence we have the fol-
lowing two corollaries following from Corollary 5.

Corollary 6. Let G ′ be subgraph of a reduced graph G and v ∈
V (G ′) be a vertex such that G ′ − v is connected and NG ′(v) = δ.
Then any tracking set of G contains at least δ − 1 trackers and
δ − 2 of them are required to be in G ′ − v.

Corollary 7. If there exists a non-cut vertex in a reduced graph
G with degree δ then the size of a tracking set for G is at least
δ − 2.

Reduction Rule 6. If there exists a non-cut vertex of degree
more than k + 2, return a trivial NO-instance.

The safeness of Reduction Rule 6 follows from Corol-
lary 7. Henceforth we assume that the input graph has
already been preprocessed by the reduction rules stated so
far.

4. Quadratic kernel for general graphs

In this section we show that an instance (G, k) of
Tracking Paths can be reduced to an equivalent instance
(G ′, k′) such that if (G, k) is a YES instance then |V (G ′)| =
O(k′2), |E(G ′)| = O(k′2) and k′ ≤ k. We achieve this by
expanding on the notion of tree-sink structures (see 3.2),
allowing us to bound the maximum degree among non-
cut vertices (Corollary 7). We start by applying Reduction
Rules 1, 2, 3, 4, 5 and 6. If the instance is not termed a
NO instance by any of the reduction rules, then recall that
the resultant graph is a series of biconnected components
and tracking set for each component can be computed in-
dividually (Observations 1, 2). Recall from Corollary 3, that
8

the size of a minimum tracking set T for G is at least the
size of a minimum FVS for G . We start by finding a 2-
approximate feedback vertex set S , using [2]. From Corol-
lary 3, we have the following reduction rule.

Reduction Rule 7. Banik et al. [4] Apply the algorithm of [2]
to find a 2-approximate solution S for Feedback Vertex set. If
|S| > 2k, then return that the given instance is a NO instance.

Observe that F = G \ S is a forest. Now we try to bound
the number of vertices and edges in F for the case when
all s-t paths in G can be tracked with at most k track-
ers. In general, by ‘tree’ we mean a tree in the forest F .
When referring to a tree-sink structure, by ‘tree’ we mean
the tree that forms the tree-sink structure. After applying
Reduction Rule 7, the kernelization algorithm applies the
following rule.

Reduction Rule 8. If the number of vertices (resp. edges) is
more than 4k2 + 9k − 5 (resp. 5k2 + 10k − 6), return a triv-
ial NO-instance.

It can be seen that the rule is applicable in polynomial
time. Next, we show the safeness of Reduction Rule 8.

Lemma 4.1. If S is an FVS for a reduced graph G then |V (G −
S)| ≤ 4|X | − 5, where X is the cut set defined by (S, G − S)
consisting of edges with endpoints in both S and G − S.

Proof. Let V1, V2, V3 be the set of vertices in G − S with
degrees one, two and three or greater respectively. Ob-
serve that since G − S is a forest, |V1| ≤ |X | (due to Re-
duction Rules 1, 2) and |V3| ≤ |V1| − 2 = |X | − 2. We
use V ∗ to denote the vertices that are incident with the
edge set X . Let V ′

2 be the set of vertices in V2 that are
not adjacent to S . Observe that V2 \ V ′

2 is bounded by
|X |. Due to Reduction Rules 3, 4, it is known that V ′

2
induces an independent set. Hence, |V ′

2| is bounded by
|V1 + V3| − 1 and the number of vertices in V ∗ ∩ V2, since
vertices of V ′

2 can alternate with vertices of V ∗ ∩ V2. It
follows that |V ′

2| ≤ |V1| + |V3| + |V2 ∩ V ∗| − 1. Thus we
have |V (G − S)| ≤ 2|V1| + 2|V2 ∩ V ∗| + 2|V3| − 1. Since
|V1| + |V2 ∩ V ∗| ≤ |X |, we have |V (G − S)| ≤ 4|X | − 5. �
Lemma 4.2. Let G be a biconnected reduced graph, with start s
and finish t. Then, G has at most 4O P T 2 + 9O P T − 5 vertices
and at most 5O P T 2 + 10O P T − 6 edges, where O P T denotes
the size of an optimal tracking set of G.

Proof. Let T ∗ be an optimal tracking set of G , i.e., |T ∗| =
O P T . Since every tracking set is an FVS of a reduced
graph (see Corollary 3), we can apply Lemma 4.1 and ob-
tain |V (G − T ∗)| ≤ 4|X | − 5, where X is the set of edges
with endpoints in both T ∗ and G − T ∗ . By the fact that
G is biconnected and by Corollary 7, G has maximum de-
gree O P T + 2 and, hence, |X | ≤ O P T (O P T + 2). Note that
|V (G)| = O P T + |V (G − T ∗)|. It follows that

|V (G)| ≤ 4O P T 2 + 9O P T − 5
The edges of G consist of edges with no endpoint in T ∗ (at

P. Choudhary, M.T. Goodrich, S. Gupta et al. Information Processing Letters 181 (2023) 106360
most |V (G −T ∗) −1|) and edges with at least one endpoint
in T ∗ (at most O P T (O P T + 2)), giving us

|E(G)| ≤ 5O P T 2 + 10O P T − 6 �
We can now apply Lemma 4.2 individually to each bi-

connected component, giving us the following.

Lemma 4.3. Any reduced graph G with start s and finish t has
at most 4O P T 2 + 9O P T − 5 vertices and at most 5O P T 2 +
10O P T − 6 edges, where O P T denotes the size of an optimal
tracking set of G.

Proof. Let Gi denote the ith biconnected component of
G , with entry-exit vertices si, ti (see Reduction Rule 2).
Further, let O P Ti denote the size of a minimum track-
ing set of (Gi, si, ti). It follows from Reduction Rule 2 that
O P T = ∑

i O P Ti . Moreover, Lemma 4.2 gives us |V (Gi)| ≤
p(O P Ti), where p(x) = 4x2 + 9x − 5. Thus,

|V (G)| ≤
∑
i

|V (Gi)|

≤
∑
i

p(O P Ti) (Lemma 4.2)

≤ p

(∑
i

O P Ti

)
(p is degree-2 polynomial)

= p(O P T) (Observation 2)

The number of edges in G can be upper bounded in a sim-
ilar manner. �
Lemma 4.4. Reduction Rule 8 is safe and can be applied in
polynomial-time.

Correctness of all reduction rules leads us to the follow-
ing theorem.

Theorem 1. Tracking Paths admits a kernel of size bounded
by 4k2 + 9k − 5 vertices and 5k2 + 10k − 6 edges.

We show that Theorem 1 implies an O (
√
n)-approxima-

tion algorithm (output all the vertices in the kernel).

Lemma 4.5. There exists an O (
√
n)-approximation algorithm

for Tracking Paths.

Proof. Let G be an input graph, |V (G)| = n. The approx-
imation algorithm runs the kernelization algorithm for
Tracking Paths on G for non-negative integer values of
k starting from 1, as long as the algorithm gives a trivial
NO instance or until k = √

n. Let k be the smallest inte-
ger value for which the kernelization algorithm returns an
O(k2) kernel. It holds that k ≤ O P T where O P T is the size
of a minimum tracking set for G . If k >

√
n, then we return

the whole graph as an approximate tracking set. Note that
here the approximation ratio is O(

√
n). Else, k ≤ √

n. This
implies that O(k2) ≤ √

n.k since O(k2) ≤ n. Since k ≤ O P T ,
it follows that O(k2) ≤ √

n.O P T . �

5

T

to
in
li
s

b
fa

L
re
n

e
o

R
o

T
p

P
a
L
V
th
v
ti
w
s
is
b
s
th
F
b
o
d

|E
D

|F

H

|V

6

9

. Linear kernel for planar graphs

In this section we show that an instance (G, k) of
racking Paths, where G is a planar graph, can be reduced
 an equivalent instance (G ′, k′) such that if (G, k) is a YES
stance then |V (G ′)| = O(k), |E(G ′)| = O(k) and k′ ≤ k. A
near kernel for planar graphs is derived by using an ob-
ervation from [17].

We apply Reduction Rules 1, 2, 3, 4, and 5, followed
y the another reduction rule that bounds the number of
ces/regions in a reduced graph.

emma 5.1. Eppstein et al. [17] The number of faces |F | in a
duced planar graph is at most 2.O P T + 1, where O P T is the
umber of trackers in an optimum tracking set in the graph.

It follows from Lemma 5.1 that if the number of faces
xceeds 2k +1 then the graph does not have a tracking set
f size k. Hence we have the following reduction rule.

eduction Rule 9. In a reduced planar graph G, if the number
f faces |F | > 2k + 1, then return a trivial NO instance.

heorem 2. Tracking Paths admits a kernel of size O(k) in
lanar graphs.

roof. Let G = (V , E) be a reduced planar graph that is
 YES instance and F be the set of faces/regions in G .
et V≥3 be the set of vertices with degree at least 3 and
2 be the set of vertices with degree equal to 2. Observe
at after applying Reduction Rules 1 and 2 there are no
ertices of degree one in the graph. Further, due to Reduc-
on Rules 3 and 5 each vertex of degree two has vertices
ith degree three or more as its neighbors. First we con-
truct a graph G ′ = (V ′, E ′) by short-circuiting (the vertex
 deleted and an edge is introduced between its neigh-
ors) all vertices in V2. Due to Reduction Rules 4, 5 the
hort-circuiting does not create parallel edges. Note that
e number of faces |F | in G is the same as that in G ′ .
urther, |V ′| = |V≥3|, |V2| ≤ |E ′| and |E| ≤ 2|E ′|. We now
ound the size of V≥3 in G ′ . Since summation of degrees
f vertices in a graph is twice the number of edges, and
egree of all vertices in G ′ is at least three,

| ≥ 3|V ′|/2 (1)

ue to Euler’s theorem,

| = |E ′| − |V ′| + 2

≥ |V ′|/2+ 2 (Due to Equation (1))

ence,

≥3| = |V ′| ≤ 2(|F | − 2)

≤ 2(2k + 1− 2) (Due to Reduction Rule 9)

≤ 4k − 2

Thus |V2| = |E ′| = |F | + |V ′| − 2 ≤ 2k + 1 + 4k − 2 − 2 =
k − 3. The total number of vertices in G is |V | = |V2| +

P. Choudhary, M.T. Goodrich, S. Gupta et al. Information Processing Letters 181 (2023) 106360
|V≥3| ≤ 6k − 3 + 4k − 2 = 10k − 5. Since |E| ≤ 2|E ′|, |E| ≤
12k − 6. Hence, we have a kernel with O(k) vertices and
O(k) edges. �
6. Hardness result

Here we show that finding a tracking set of size at most
n − k for a graph G with n vertices is W[1]-hard.

Theorem 3. For general graphs, the problem of finding a track-
ing set of size at most n −k in a graph of n vertices isW[1]-hard
when parameterized by k.

Proof. Tracking Paths has been shown NP-hard by a re-
duction from Vertex Cover in [4]. Specifically it has been
shown that given a graph G = (V , E) on n vertices one can
construct in polynomial time a graph G ′ = (V ′, E ′), where
|V ′| = n′ = |V | + |E| + 5, such that G has a vertex cover of
size k if and only if G ′ has a tracking set of size k +|E| +2.
It follows that G has an independent set of size k if and
only if G ′ has a tracking set of size n − k + |E| + 2, i.e.
n′ − k − 3. Hence G has an independent set of size k + 3 if
and only if G ′ has a tracking set of size n′ − k. Since Inde-

pendent Set is W[1]-hard [16], it follows that the problem
of finding a tracking set of size at most n − k is W[1]-hard
as well. �
7. Conclusions

In this paper, we have given an O(k2) sized kernel for
Tracking Paths in general graphs improving from the pre-
vious O(k7) bound. This is obtained using a lower bound
for the number of trackers in what we call a tree-sink
structure. This structure and the lower bound have already
been used to obtain a linear kernel for H-minor free graphs
and to obtain efficient approximation algorithms for the
problem in H-minor free and general graphs [21].

It would be nice to show lower bound for the kernel
size of Tracking Paths. Note that for the related problem
FVS a conditional lower bound (no O(k2−ε)) is already
known for the size of kernel in general graphs [18]. An-
other interesting open problem is to obtain improved FPT
algorithms for the problem when parameterized by the so-
lution size.

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

Data availability

No data was used for the research described in the ar-
ticle.

References

[1] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, D. Rus, Track-
ing a moving object with a binary sensor network, in: Proceedings
10
of the 1st International Conference on Embedded Networked Sensor
Systems, Association for Computing Machinery, New York, NY, USA,
2003, pp. 150–161.

[2] V. Bafna, P. Berman, T. Fujito, A 2-approximation algorithm for the
undirected feedback vertex set problem, SIAM J. Discrete Math. 12
(1999) 289–297.

[3] A. Banik, P. Choudhary, Fixed-parameter tractable algorithms for
tracking set problems, in: Algorithms and Discrete Applied Mathe-
matics - 4th International Conference, Proceedings, CALDAM 2018,
Guwahati, India, February 15-17, 2018, 2018, pp. 93–104.

[4] A. Banik, P. Choudhary, D. Lokshtanov, V. Raman, S. Saurabh, A poly-
nomial sized kernel for tracking paths problem, Algorithmica 82
(2020) 41–63.

[5] A. Banik, P. Choudhary, V. Raman, S. Saurabh, Fixed-parameter
tractable algorithms for tracking shortest paths, Theor. Comput. Sci.
846 (2020) 1–13, https://doi .org /10 .1016 /j .tcs .2020 .09 .006, https://
www.sciencedirect .com /science /article /pii /S0304397520305053.

[6] A. Banik, M.J. Katz, E. Packer, M. Simakov, Tracking paths, Discrete
Appl. Math. 282 (2020) 22–34.

[7] D. Bienstock, M.A. Langston, Chapter 8 algorithmic implications of
the graph minor theorem, in: Network Models, in: Handbooks in
Operations Research and Management Science, vol. 7, Elsevier, 1995,
pp. 481–502.

[8] D. Bilò, L. Gualà, S. Leucci, G. Proietti, Tracking routes in commu-
nication networks, Theor. Comput. Sci. 844 (2020) 1–15, https://
doi .org /10 .1016 /j .tcs .2020 .07.012.

[9] V. Blažej, P. Choudhary, D. Knop, J.M. Křišťan, O. Suchý, T. Valla,
Constant factor approximation for tracking paths and fault toler-
ant feedback vertex set, Discrete Optim. 47 (2023) 100756, https://
doi .org /10 .1016 /j .disopt .2022 .100756.

[10] V. Blažej, P. Choudhary, D. Knop, J.M. Křišťan, O. Suchý, T. Valla,
Polynomial kernels for tracking shortest paths, Inf. Process. Lett. 179
(2023) 106315, https://doi .org /10 .1016 /j .ipl .2022 .106315.

[11] Chih-Yu Lin, Wen-Chih Peng, Yu-Chee Tseng, Efficient in-network
moving object tracking in wireless sensor networks, IEEE Trans. Mob.
Comput. 5 (2006) 1044–1056.

[12] P. Choudhary, Polynomial time algorithms for tracking path prob-
lems, in: Combinatorial Algorithms - 31st International Workshop,
Proceedings, IWOCA 2020, Bordeaux, France, June 8-10, 2020, 2020,
pp. 166–179.

[13] P. Choudhary, Polynomial time algorithms for tracking path
problems, CoRR, https://arxiv.org /abs /2002 .07799, arXiv:2002 .07799,
2020.

[14] A. Čivilis, C.S. Jensen, S. Pakalnis, Tracking of Moving Objects with
Accuracy Guarantees, Springer Berlin Heidelberg, Berlin, Heidelberg,
2007, pp. 285–309.

[15] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M.
Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, 1st ed.,
Springer Publishing Company, Incorporated, 2015.

[16] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer-
Verlag, 1999.

[17] D. Eppstein, M.T. Goodrich, J.A. Liu, P. Matias, Tracking paths in planar
graphs, in: 30th International Symposium on Algorithms and Com-
putation, ISAAC 2019, December 8-11, 2019, Shanghai University of
Finance and Economics, Shanghai, China, 2019, pp. 54:1–54:17.

[18] F.V. Fomin, D. Lokshtanov, S. Saurabh, M. Zehavi, Kernelization:
Theory of Parameterized Preprocessing, Cambridge University Press,
2019.

[19] F. Foucaud, M. Kovse, On graph identification problems and the spe-
cial case of identifying vertices using paths, in: S. Arumugam, W.F.
Smyth (Eds.), Combinatorial Algorithms, 23rd International Work-
shop, IWOCA 2012, Tamil Nadu, India, July 19-21, 2012, in: Revised
Selected Papers, Springer, 2012, pp. 32–45.

[20] F. Foucaud, M. Kovse, Identifying path covers in graphs, J. Discret.
Algorithms 23 (2013) 21–34.

[21] M.T. Goodrich, S. Gupta, H. Khodabandeh, P. Matias, How to
catch marathon cheaters: new approximation algorithms for track-
ing paths, in: A. Lubiw, M. Salavatipour (Eds.), Algorithms and
Data Structures, Springer International Publishing, Cham, 2021,
pp. 442–456.

[22] N. Robertson, P.D. Seymour, Graph minors. v. excluding a planar
graph, J. Comb. Theory, Ser. B 41 (1986) 92–114.

[23] N. Robertson, P.D. Seymour, Graph minors. xiii: The disjoint paths
problem, J. Comb. Theory, Ser. B 63 (1995) 65–110.

http://refhub.elsevier.com/S0020-0190(23)00003-0/bibA30DF721FF759EFBE689B43BEE0DFB43s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibA30DF721FF759EFBE689B43BEE0DFB43s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibA30DF721FF759EFBE689B43BEE0DFB43s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibA30DF721FF759EFBE689B43BEE0DFB43s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibA30DF721FF759EFBE689B43BEE0DFB43s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib52D0B069205586E2EE7925937BCE4899s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib52D0B069205586E2EE7925937BCE4899s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib52D0B069205586E2EE7925937BCE4899s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib3E2A83B989427FD5BB855408368B9A64s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib3E2A83B989427FD5BB855408368B9A64s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib3E2A83B989427FD5BB855408368B9A64s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib3E2A83B989427FD5BB855408368B9A64s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibD887CB499F0B3E916A84E21F53324CD3s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibD887CB499F0B3E916A84E21F53324CD3s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibD887CB499F0B3E916A84E21F53324CD3s1
https://doi.org/10.1016/j.tcs.2020.09.006
https://www.sciencedirect.com/science/article/pii/S0304397520305053
https://www.sciencedirect.com/science/article/pii/S0304397520305053
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibC41FCEECBFF8BB95F476FC814AC37CB7s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibC41FCEECBFF8BB95F476FC814AC37CB7s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib201372550A22867DF60890017DD61AE9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib201372550A22867DF60890017DD61AE9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib201372550A22867DF60890017DD61AE9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib201372550A22867DF60890017DD61AE9s1
https://doi.org/10.1016/j.tcs.2020.07.012
https://doi.org/10.1016/j.tcs.2020.07.012
https://doi.org/10.1016/j.disopt.2022.100756
https://doi.org/10.1016/j.disopt.2022.100756
https://doi.org/10.1016/j.ipl.2022.106315
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib003993D88C8222634537338262ABEEC3s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib003993D88C8222634537338262ABEEC3s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib003993D88C8222634537338262ABEEC3s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibB339F512BBBAE734769D4F4CF60983E8s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibB339F512BBBAE734769D4F4CF60983E8s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibB339F512BBBAE734769D4F4CF60983E8s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibB339F512BBBAE734769D4F4CF60983E8s1
https://arxiv.org/abs/2002.07799
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib91BE815DBC2F8ACA87AB015A3E3EABB1s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib91BE815DBC2F8ACA87AB015A3E3EABB1s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib91BE815DBC2F8ACA87AB015A3E3EABB1s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib4D9CBBFB52F267635E67DC0DC83FF12Fs1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib4D9CBBFB52F267635E67DC0DC83FF12Fs1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib4D9CBBFB52F267635E67DC0DC83FF12Fs1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibF95768EF3F002118C8C50514467DB5ABs1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibF95768EF3F002118C8C50514467DB5ABs1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib482F22DCE2DB12D06B3239BCA0EE6C45s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib482F22DCE2DB12D06B3239BCA0EE6C45s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib482F22DCE2DB12D06B3239BCA0EE6C45s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib482F22DCE2DB12D06B3239BCA0EE6C45s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibCAB7D1DDFE9D20A6259DC33C28F05E4As1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibCAB7D1DDFE9D20A6259DC33C28F05E4As1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibCAB7D1DDFE9D20A6259DC33C28F05E4As1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibFAEC7523FCD774730FD65AC9C018B342s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibFAEC7523FCD774730FD65AC9C018B342s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibFAEC7523FCD774730FD65AC9C018B342s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibFAEC7523FCD774730FD65AC9C018B342s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibFAEC7523FCD774730FD65AC9C018B342s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib00C4E1D3BADD1414F1BF439F8A508EA3s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib00C4E1D3BADD1414F1BF439F8A508EA3s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibEB48D08F165E1585A8A7EEA296F116C9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibEB48D08F165E1585A8A7EEA296F116C9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibEB48D08F165E1585A8A7EEA296F116C9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibEB48D08F165E1585A8A7EEA296F116C9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibEB48D08F165E1585A8A7EEA296F116C9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibE91D5515331FE12712696F7C5A2E0AE2s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibE91D5515331FE12712696F7C5A2E0AE2s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib373845A34B3FA2C93E5D44477245E371s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib373845A34B3FA2C93E5D44477245E371s1

P. Choudhary, M.T. Goodrich, S. Gupta et al. Information Processing Letters 181 (2023) 106360
[24] G. Schram, F. van der Linden, B. Kröse, F. Groen, Visual tracking of
moving objects using a neural network controller, Robot. Auton. Syst.
18 (1996) 293–299, IAS-4 Conference.

[25] B. Song, T.Y. Jeng, E. Staudt, A.K. Roy-Chowdhury, A stochastic graph
evolution framework for robust multi-target tracking, in: Computer
Vision – ECCV 2010, Springer Berlin Heidelberg, 2010, pp. 605–619.

[26] Q. Zhang, L. Lapierre, X. Xiang, Distributed control of coordinated
path tracking for networked nonholonomic mobile vehicles, IEEE
Trans. Ind. Inform. 9 (2013) 472–484.
11

http://refhub.elsevier.com/S0020-0190(23)00003-0/bib6794595022812A174CD382B94059B7A9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib6794595022812A174CD382B94059B7A9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib6794595022812A174CD382B94059B7A9s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib25D59CBE2502822B755A06A2C4F97F47s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib25D59CBE2502822B755A06A2C4F97F47s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bib25D59CBE2502822B755A06A2C4F97F47s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibB61C2FB3B4ED274CAF64D9F486AF6583s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibB61C2FB3B4ED274CAF64D9F486AF6583s1
http://refhub.elsevier.com/S0020-0190(23)00003-0/bibB61C2FB3B4ED274CAF64D9F486AF6583s1

	Improved kernels for tracking paths
	1 Introduction
	1.1 Roadmap

	2 Preliminaries
	3 Structural properties
	3.1 Vertex disjoint paths
	3.2 Tree-sink structure

	4 Quadratic kernel for general graphs
	5 Linear kernel for planar graphs
	6 Hardness result
	7 Conclusions
	Declaration of competing interest
	Data availability
	References

