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In this paper, we derive simplified Chernoff bounds with powers-of-two probabilities, and 
we show their uses in analyzing probabilistic algorithms.
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1. Introduction

Chernoff bounds [4,11] have been shown to be useful for analyzing a wide variety of different probabilistic algorithms 
and processes, e.g., see [1,9,12,13].

Suppose X1, X2, . . . , Xn are independent random variables taking values in {0, 1}. Let X = ∑n
i=1 Xi and let μ = E[X]

denote X ’s expected value. In their more general (multiplicative) forms for such a random variable, X , Chernoff bounds can 
be stated as follows, e.g., see [1,9,12–14].

Theorem 1. For any δ > 0,

Pr(X > (1+ δ)μ) <

(
eδ

(1+ δ)1+δ

)μ

.

Also, for any 0 < δ < 1,

Pr(X < (1− δ)μ) <

(
e−δ

(1− δ)1−δ

)μ

.

These formulas are unwieldy to use in practice, however; hence, researchers often use other forms of the Chernoff 
bounds, with the following being common (see, e.g., [1,2,9,12–14]):
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Theorem 2.

Pr(X > (1+ δ)μ) < e−δ2μ/(2+δ), for δ > 0, (1)

Pr(X < (1− δ)μ) < e−δ2μ/2. for 0 < δ < 1. (2)

As evidence for how influential these bounds have been, we note that a 1990 paper from Information Processing Letters, 
by Hagerup and Rüb [9], which includes bounds like those in Theorem 2, has been cited over 700 times! Indeed, these 
bounds have become so well-known that researchers often use them without citation.

As in Theorem 2, probabilities in simplified Chernoff bounds are typically expressed as powers of Euler’s number, e, 
whereas in Computer Science applications it is often preferred to express probabilities in terms of powers of 2, for which 
simplified Chernoff bounds are lacking. Indeed, some researchers apply a Chernoff bound, as in Theorem 2, and then convert 
the resulting probability to a power of two using the crude inequality, 2 ≤ e. For example, see Elsässer and Sauerwald [8]. 
Of course, one can use a slightly better inequality to derive the following.

Corollary 3.

Pr(X > (1+ δ)μ) < 2−1.442δ2μ/(2+δ) < 2−7δ2μ/(10+5δ), for δ > 0, (3)

Pr(X < (1− δ)μ) < 2−1.442δ2μ/2 < 2−7δ2μ/10, for 0 < δ < 1. (4)

Proof. Note that 27/5 < e, since log2 e ≈ 1.442695; hence, the bounds follow immediately from Theorem 2. �

In this paper, we are interested in simplified Chernoff bounds with powers-of-two probabilities for reasonable values of 
δ, as such bounds are often used in Computer Science applications. In terms of prior work, there is a notable upper-tail 
power-of-two Chernoff bound from a book by Mitzenmacher and Upfal [12] and the IPL paper by Hagerup and Rüb [9]:

Theorem 4 ([12] (p. 69) and [9]).

Pr(X > R) < 2−R , for R ≥ 6μ.

In addition, Motwani and Raghavan [13] leave as an exercise to prove Pr(X > R) < 2−R , for R ≥ 2eμ, which is a slightly 
better condition, since 2e ≈ 5.43656. Although this and the power-of-two Chernoff bound of Theorem 4 are useful, we 
show below that Pr(X > R) < 2−R , for R ≥ 4.5μ, which can lead to better analyses for randomized algorithms. Indeed, in 
this paper, we derive a number of such simplified Chernoff bounds with powers-of-two probabilities, for both upper and 
lower tails, for reasonable values of δ. We also mention some applications of our simplified powers-of-two Chernoff bounds, 
but these are just the tip of the iceberg in terms of improved analyses of algorithms that are possible, e.g., given that the 
IPL paper by Hagerup and Rüb [9] has been cited over 700 times.

2. The Lambert W function

Some of our proofs make use of the Lambert W function; hence, before we derive our simplified powers-of-two Chernoff 
bounds, let us first review this function. The Lambert W function is defined by the rule that W (z) = w iff w satisfies the 
equation

wew = z,

e.g., see Corless, Gonnet, Hare, Jeffrey, and Knuth [5] or Corless, Jeffrey, and Knuth [6]. Technically, W is not a function. 
Hence its real-valued expression is partitioned into two branches: W0(x), which is called the principal branch and is always 
greater than or equal to −1, and W−1(x), which is called the non-principal branch and is always less than or equal to −1. 
A plot of the two real branches is shown in Fig. 1. The two branches split at (− 1

e , −1). W0(yey) = y for y ≥ −1, and 
W−1(yey) = y for y ≤ −1.

The Lambert W function has many applications, including characterizing the number of unrooted trees [5]. It cannot be 
expressed in terms of elementary functions; hence, evaluating it typically requires one to use a numerical algorithm, e.g., 
see [3].

3. Improved powers-of-two Chernoff bounds

In this section, we derive simplified Chernoff bounds with powers-of-two probabilities.
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Fig. 1. The two real branches of the Lambert W function. Image Copyright © 2022 Michael Dillencourt; used with permission.

3.1. Upper-tail bounds

We begin with some upper-tail bounds. The first is a strict improvement of Theorem 4.

Theorem 5.

Pr(X > R) < 2−R , for R ≥ 4.5μ.

Proof. We actually show that Pr(X > R) < 2−R , for R ≥ 4.31107μ > −μ/W0(−1/2e), where W0(x) is the principal branch 
of the Lambert W function. From the general form of the Chernoff bound of Theorem 1, taking R = (1 + δ)μ,

Pr(X > R) = Pr(X > (1+ δ)μ) <

(
eδ

(1+ δ)1+δ

)μ

.

In order for this probability to be at most 2−R , we need 1 +δ ≥ 2eδ/(1+δ) . Setting x = 1 +δ, the breakpoint for this inequality 
occurs for x satisfying

x = 2e
x−1
x .

That is,

xe− x−1
x = 2.

Putting this into the form of the Lambert W function definition, let u = −(x − 1)/x, so x = 1/(1 + u). The equation becomes(
1

1+ u

)
eu = 2,

which can be rewritten as

−(1 + u)e−(1+u) = − 1

2e
.

This equation has u = −W0(−1/2e) − 1 as a solution. After back-substituting the solution is x = −1/W0(−1/2e). Numeri-
cally, −1/W0(−1/2e) ≈ −1/(−0.23196) ≈ 4.31107, which establishes the bound for R . �

We can also establish the following general bounds.

Theorem 6. The bound

Pr(X > (1+ δ)μ) < 2−αμ, (5)

holds:
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1. For fixed δ > 0 when

α ≤ log2

(
(1 + δ)1+δ

eδ

)
. (6)

2. For fixed α > 0 when

δ ≥ e
W0

(
α ln 2−1

e

)
+1 − 1. (7)

Proof. By Theorem 1, (5) holds whenever we have:

2−αμ ≥
(

eδ

(1 + δ)1+δ

)μ

. (8)

Part 1 follows from the observation that if (6) holds, so does (8). To establish part 2, we fix δ and determine the conditions 
for which (8) holds. (8) holds when

(
1+ δ

e

)1+δ

≥ 2α

e
.

Since ln x and x/e are both monotone increasing functions of x for positive x, this is equivalent to(
1+ δ

e

)
ln

(
1+ δ

e

)
≥ α ln 2− 1

e
.

Since the left-hand side is of the form xex where x = ln((1 + δ)/e), and since ln((1 + δ)/e) > −1 for any positive δ, we can 
rewrite the last equation as

ln

(
1+ δ

e

)
≥ W0

(
α ln 2− 1

e

)
,

from which (7) follows. �

We also have the following theorem, which provides a bound for modest values of δ.

Theorem 7.

Pr(X > (1+ δ)μ) < 2−δμ, for δ > 2.20603. (9)

Proof. From the general form of the Chernoff bound of Theorem 1,

Pr(X > (1+ δ)μ) <

(
eδ

(1+ δ)1+δ

)μ

.

For this probability to be at most 2−δμ , we need 2−δ(1 + δ)1+δ ≥ eδ . This can be rewritten as
(
1+ δ

2e

)1+δ

≥ 1

2e
. (10)

Taking both sides to the 1/(2e) power, and taking the log of both sides yields(
1+ δ

2e

)
ln

(
1+ δ

2e

)
≥

(
1

2e

)
ln

(
1

2e

)
. (11)

We can see by inspection that one breakpoint for (11) is δ = 0, which is the trivial value for which equality holds in 
(10). Since ln(1/(2e)) < −1, this corresponds to choosing the non-principal branch of the Lambert function. Choosing the 
principal branch, we see that equality occurs in (11) when

W0

(− ln2− 1)

2e

)
= ln

(
1+ δ

2e

)
.

This produces the solution

δ = 2e · eW0

( − ln 2−1
2e

)
− 1 ≈ 2e · eW0(0.31144) − 1 ≈ 2e · e−0.52811 − 1 ≈ 2.20603. �
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We can use Theorem 6 to derive the following specific upper-tail powers-of-two Chernoff bounds for smaller values of 
δ, all of which are tighter than the bounds of Corollary 3.

Corollary 8.

Pr(X > (1+ δ)μ) < 2−μ, for δ ≥ 1.4, (12)

Pr(X > (1+ δ)μ) < 2−0.557μ < 2−5μ/9, for δ ≥ 1, (13)

Pr(X > (1+ δ)μ) < 2−0.266μ < 2−μ/4, for δ ≥ 2/3, (14)

Pr(X > (1+ δ)μ) < 2−0.156μ < 2−3μ/20, for δ ≥ 1/2, (15)

Pr(X > (1+ δ)μ) < 2−0.072μ < 2−μ/14, for δ ≥ 1/3, (16)

Pr(X > (1+ δ)μ) < 2−0.0417μ < 2−μ/24, for δ ≥ 1/4. (17)

Proof. To derive (12), we set α = 1 and use part 2 of Theorem 6. By (7), the minimum value of δ is

e
W0

(
ln2−1

e

)
+1 − 1 ≈ eW0(−0.11288)+1 − 1 ≈ e−0.128337+1 − 1 ≈ 1.39088 < 1.4.

To derive (13), we set δ = 1 and use part 1 of Theorem 6. By (6), the maximum value of α is

log2

(
22

e2

)
≈ 0.557.

The derivations of (14) through (17) are similar to that of (13). �

3.2. Lower-tail bounds

We also derive lower-tail Chernoff bounds that improve the Chernoff bounds of Corollary 3. We first prove the following 
analog of Theorem 6.

Theorem 9. The bound

Pr(X < (1− δ)μ) < 2−βμ, (18)

holds:

1. For fixed δ with 0 < δ < 1 when

β ≤ log2
(
eδ(1 − δ)1−δ

)
. (19)

2. For fixed β > 0 when

1− e
W−1

(
β ln2−1

e

)
+1 ≤ δ < 1. (20)

Proof. By Theorem 1, (18) holds whenever we have:

2−βμ ≥
(

e−δ

(1 − δ)1−δ

)μ

(21)

Part 1 follows from the observation that if (19) holds, so does (21). To establish part 2, we fix β and determine the values 
of δ between 0 and 1 for which (21) holds. (21) holds when

(
1− δ

e

)1−δ

≥ 2β

e
. (22)

Since the functions ln x and x/e are both monotone increasing functions of x for positive x and since both quantities in (22)
are less than 1, this is equivalent to(

1− δ

e

)
ln

(
1− δ

e

)
≤ β ln2− 1

e
.

Since the left-hand side is of the form xex where x = ln((1 − δ)/e), and since ln((1 − δ)/e) < −1 for any positive δ, we can 
rewrite the last equation as
5
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ln

(
1− δ

e

)
≤ W−1

(
β ln2− 1

e

)
,

from which (20) follows. �

Corollary 10.

Pr(X < (1− δ)μ) < 2−μ, for 0.9099 ≤ δ < 1. (23)

Proof. To derive (23), we set β = 1 and use part 2 of Theorem 9. By (20), the minimum value of δ is

1 − e
W−1

(
ln2−1

e

)
+1 ≈ 1− eW−1(−0.11288)+1 − 1 ≈ 1− e−3.40737+1 ≈ 0.9099. �

If we are interested in bounds for slightly smaller values of δ, we can use the following theorem.

Theorem 11.

Pr(X < (1− δ)μ) < 2−δμ, for 0.8687 ≤ δ < 1. (24)

Proof. From the general form of the Chernoff bound of Theorem 1,

Pr(X < (1− δ)μ) <

(
e−δ

(1− δ)1−δ

)μ

.

For this probability to be at most 2−δμ , we need eδ(1 − δ)1−δ ≥ 2δ . This can be rewritten as(
2(1− δ)

e

)1−δ

≥ 2

e
. (25)

Taking both sides to the 2/e power, and taking the log of both sides yields(
2(1− δ)

e

)
ln

(
2(1− δ)

e

)
≥

(
2

e

)
ln

(
2

e

)
. (26)

We can see by inspection that one breakpoint for (26) is δ = 0, which is the trivial value for which equality holds in (25). 
Since ln(2/e) > −1, this corresponds to choosing the principal branch of the Lambert function. Choosing the non-principal 
branch, we see that equality occurs in (26) when

W−1

(
2(ln2− 1)

e

)
= ln

(
2(1− δ)

e

)
.

This produces the solution

δ = 1− e
W−1

(
2(ln2−1)

e

)
+1

2
≈ 1− eW−1(−0.2257)+1

2
≈ 1− e−2.3372+1

2
≈ 0.8687. �

We can also derive the following specific lower-tail powers-of-two Chernoff bounds for smaller values of δ, all of which 
are tighter than the bounds of Corollary 3.

Corollary 12. Suppose δ < 1. Then

Pr(X < (1− δ)μ) < 2−0.771μ < 2−3μ/4, for δ ≥ 5/6, (27)

Pr(X < (1− δ)μ) < 2−0.582μ < 2−5μ/9, for δ ≥ 3/4, (28)

Pr(X < (1− δ)μ) < 2−0.433μ < 2−3μ/7, for δ ≥ 2/3, (29)

Pr(X < (1− δ)μ) < 2−0.221μ < 2−μ/5, for δ ≥ 1/2, (30)

Pr(X < (1− δ)μ) < 2−0.09092μ < 2−μ/11, for δ ≥ 1/3, (31)

Pr(X < (1− δ)μ) < 2−0.049μ < 2−μ/21, for δ ≥ 1/4. (32)

Proof. To derive (27), we set δ = 5/6 and use part 1 of Theorem 9. By (19), the maximum value of β is

log2
(
e5/6(1/6)1/6

)
≈ 0.7714.

The derivations of (28) through (32) are similar to that of (27). �
6
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4. Applications

In this section, we highlight some improved analyses that are implied by the above simplified Chernoff bounds.
Hassin and Peleg [10] study a probabilistic local polling process, examine its properties, and propose its use in the 

context of distributed network protocols for achieving consensus. Their analysis uses Theorem 4 to show that a parallel 
random-walk process will succeed with half of the pairs of random walks meeting in 41M expected steps, where M is the 
maximum expected meeting time for two walks. Substituting Theorem 5 in their analysis improves the expected number of 
steps for half of the pairs meeting to 24M .

Diks and Pelc [7] present an algorithm to exchange values between all fault-free nodes in an n-node network where 
nodes and links fail with constant probabilities, basing their analysis, in part, on Theorem 4. Substituting Theorem 5 in their 
analysis improves the constant factor in their analysis and/or the probability of failure that their algorithm tolerates.

Elsässer and Sauerwald [8] study a randomized broadcasing protocol. Their analysis uses Theorem 2, with δ = 5/6, 
and the crude inequality 2 < e to bound the failure probability of their algorithm to be at most 1/n. Simply substituting 
Theorem 12 in their analysis improves their failure probability to n−3.5.
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