
Graph Sparsifications using Neural Network Assisted Monte Carlo Tree Search

Alvin Chiu1, Mithun Ghosh2, Reyan Ahmed2, Kwang-Sung Jun2,
Stephen Kobourov2, Michael T. Goodrich1

1University of California, Irvine, CA, USA
2University of Arizona, Tucson, AZ, USA

Abstract

Graph neural networks have been successful for machine

learning, as well as for combinatorial and graph problems

such as the Subgraph Isomorphism Problem and the Trav-

eling Salesman Problem. We describe an approach for com-

puting graph sparsifiers by combining a graph neural net-

work and Monte Carlo Tree Search. We first train a graph

neural network that takes as input a partial solution and pro-

poses a new node to be added as output. This neural network

is then used in a Monte Carlo search to compute a sparsifier.

The proposed method consistently outperforms several stan-

dard approximation algorithms on different types of graphs

and often finds the optimal solution.

1 Introduction

Graph representation of data is a powerful approach
to hold the relationships between different objects.
Graphs arise in many real-world applications that deal
with relational information. Classical machine learning
models, such as neural networks and recurrent neural
networks, do not naturally handle graphs. Graph neural
networks (GNN) were introduced to better capture
graph structures [22]. A GNN is a recursive neural
network where nodes are treated as state vectors and
the relationships between the nodes are quantified by
the edges.

Many real-world problems are modeled by combi-
natorial and graph problems that are known to be NP-
hard. GNNs offer an alternative to traditional heuristics
and approximation algorithms; indeed the initial GNN
model [22] was used to approximate solutions to two
classical graph problems: subgraph isomorphism and
clique detection.

Recent GNN work [17, 26] suggests that combining
neural networks and tree search leads to better results
than neural networks alone. Li et al. [17] combine
a convolutional neural network with tree search to
compute independent sets and other NP-hard problems
that are efficiently reducible to the independent set

problem. AlphaGo [26] combines deep convolutional
neural networks and Monte Carlo Tree Search (MCTS)
to assess Go board positions and reduce the search
space. Xing et al. [26] used the same framework to tackle
the traveling salesman problem (TSP).

Since Xing et al. [26] showed that the AlphaGo
framework is effective for TSP, a natural question is
whether this framework can be applied to other combi-
natorial problems such as different graph sparsification
problems [6]. The Steiner tree and graph spanners are
some examples of graph sparsification. Although these
graph sparsification problems are NP-hard similar to
TSP, there are several major differences among the na-
tures of these problems. First, the sparsification prob-
lems contain a subset of the nodes called terminals that
must be spanned, whereas in TSP all nodes are equiv-
alent. Second, the output of the sparsification problem
is a subgraph, whereas the output of TSP is a path (or
a cycle). When iteratively computing a TSP solution,
the next node to be added can only be connected to
the previous one, which is much easier than having to
choose from a set of nodes when growing a sparsification.
Third, TSP and Go are similar in terms of the length of
the instance: both the length of the game and the num-
ber of nodes in the TSP solution are fixed, and taking an
action in Go is equivalent to adding a node to the tour,
while the number of nodes in the sparsification problem
varies depending on the graph instance. Finally, Xing
et al. [26] only considered geometric graphs, which is a
restricted class of graphs.

1.1 Background: A sparsification of a graph G is a
subgraph that preserves some properties of G [6]. Ex-
amples of sparsifications include spanning trees, Steiner
trees, spanners, and distance preservers. Many spar-
sification problems are defined with respect to a given
subset of vertices T ⊆ V which we call terminals: e.g., a
Steiner tree over (G,T) requires a tree in G which spans
T .

The Steiner tree problem is a classical NP-hard

ar
X

iv
:2

31
1.

10
31

6v
1

 [
cs

.L
G

]
 1

7
N

ov
 2

02
3

problem [2]. In this problem, we are given an edge-
weighted graph G = (V,E), and a set of terminals
T ⊆ V . And we want to compute a minimum weighted
subtree that spans all terminals. For |T | = 2 this
is equivalent to the shortest path problem, for |T | =
|V | this is equivalent to the minimum spanning tree
problem, while the problem is NP-hard for 2 < |T | <
|V | [9]. Due to applications in many domains, there is
a long history of heuristics, approximation algorithms,
and exact algorithms for the Steiner tree problem [2].

A spanner is a subgraph that approximately pre-
serves pairwise distances in the original graph G [4].
A subset spanner needs only approximately preserve
distances between a subset T ⊆ V of vertices. Two
common types of spanners include multiplicative α-
spanners, which preserve distances in G up to a mul-
tiplicative α factor, and additive +β spanners, which
preserve distances up to additive +β error. A dis-
tance preserver is a special case of the spanner where
distances are preserved exactly. The multiplicative α–
spanner problem is NP-hard [4]. Further, it is NP-hard
to approximate the multiplicative α–spanner problem
to within a factor of O(log |V |), even when restricted to
bipartite graphs [4]. There exists a classical greedy al-
gorithm [4] that constructs a multiplicative α–spanner
given a graph G and a real number α ≥ 1. It has
been shown that given a weighted graph G and t ≥ 1,
there is a greedy (2t− 1)–spanner (α = 2t− 1) H con-
taining at most n⌈n1/t⌉ edges, and whose weight is at
most w(MST (G))(n/t) where w(MST (G)) denotes the
weight of a minimum spanning tree of G. Later, this
greedy spanner algorithm has been generalized for sub-
setwise spanners [6].

For very large graphs, additive error is arguably a
much more appealing paradigm. It has been shown that
all graphs have +2, +4, and +6 spanners on O(n3/2),
O(n7/5), and O(n4/3) edges respectively [4]. There are
several major differences between multiplicative span-
ners and additive spanners. The construction of ad-
ditive spanners depends on the additive error as men-
tioned earlier. Unlike multiplicative spanners, the num-
ber of edges in additive spanners does not always de-
crease as the error increases; an interesting result shows
that there exists a class of graphs that do not have +c
spanners on n4/3−ϵ edges [4] where c and ϵ are a small
integer and a positive real number respectively. Also,
the algorithms for additive spanners do not naturally
generalize for weighted graphs. Recently, several algo-
rithms for weighted additive spanners have been pro-
vided that require significant changes to the algorithms
of unweighted spanners [11, 3].

1.2 Problem Statement: We consider three spar-
sification problems: the Steiner tree, subsetwise multi-
plicative spanner, and subsetwise additive spanner prob-
lems. In the Steiner Tree Problem, we are given a
weighted graph G = (V,E) and a set of terminals
T ⊆ V , and we want to compute a minimum weighted
subtree H that spans T . The non-terminal nodes in H
are called the Steiner nodes. We denote the shortest
path distance from u to v in the graph G by dG(u, v).
In the subsetwise multiplicative spanner problem, be-
sides G and T , we are also given a multiplicative stretch
α ≥ 1, and we want to compute a subgraph H such that
for all u, v ∈ T, dH(u, v) ≤ α · dG(u, v). In the subset-
wise additive spanner problem, instead of a multiplica-
tive stretch α, we are given an additive error β ≥ 0.
The objective is to compute a subgraph H such that
for all u, v ∈ T, dH(u, v) ≤ dG(u, v) + βW , where W is
the maximum edge weight in G. The objective of these
problems is to either minimize the total edge weights or
the number of edges of H.

1.3 Summary of Contributions: We describe an
approach for computing the above sparsifications by
combining a graph neural network and Monte Carlo
Tree Search (MCTS). We first train a graph neural
network that takes as input a partial solution and
proposes a new node to be added as output. This
neural network is then used in an MCTS to compute
a sparsification. The proposed method consistently
outperforms the standard approximation algorithms on
different types of graphs and often finds the optimal
solution. We illustrate our approach in Figure 1.
Our approach builds on the work of Xing et al. [26]
for TSP. Since TSP is non-trivially different from the
sparsification problems, we needed to address challenges
in both training the graph neural network and testing
the MCTS. We summarize our contribution below:

• To train the neural network we generate exact so-
lutions of different graph sparsification instances.
From each instance, we generate several data
points. The purpose of the neural network is to
predict a new important node, given a set of cur-
rent important nodes. Since any permutation of the
set of solution nodes can lead to a valid sequence of
predictions, we use random permutations to gener-
ate data points for the network.

• After we select a set of important nodes for a
given instance, it is not straightforward to com-
pute a sparsification. We utilize various existing
algorithms to compute the sparsification from the
selected set of important nodes.

• Our method can work for non-Euclidean graphs as

Figure 1: GNN assisted MCTS: first, train a GNN to evaluate non-terminal nodes, then use the network and
heuristics to compute a Steiner tree with MCTS.

well. We evaluate our method on some known hard
instances from the SteinLib database [16] that are
non-Euclidean.

• We compare our framework with different well-
known approximation algorithms. The experimen-
tal result shows that our method outperforms these
existing algorithms. The proposed method is fully
functional and available on GitHub.

2 Our approach

Our approach keeps a set of important nodes S =
{v1, v2, · · · , vi} for the sparsification instance, and grad-
ually adds more nodes in S. Initially, S is equal to the
set of terminals T . Then, S = V −S is the set of candi-
date nodes to be added to S. A natural approach is to
train a neural network to predict which node to add to
S at a particular step. That is, neural network f(G|S)
takes the graph G and S as input, and returns probabil-
ities for the remaining nodes, indicating the likelihood
they are important for the sparsification. We adapt the
GNN of [26] to represent f(G|S).

Intuitively, we can directly use the probability
values, selecting all nodes with a probability higher than
a given threshold. We can then construct a subgraph
from the selected nodes in different ways. For example,
we can compute the induced graph of the selected nodes
(add an edge if it connects to selected nodes) and extract
a minimum spanning tree [9] for the case of the Steiner
tree problem. Note that the induced graph may be
disconnected and therefore the spanning tree will be
also disconnected. Hence it may not provide a valid
solution. This issue can be addressed by reducing the
given threshold until we obtain a valid solution.

However, deriving sparsifications in this fashion
might not be reliable since it has only one chance to
compute the solution, and it never goes back to reverse
the decision. To overcome this drawback, we leverage
the MCTS. In the MCTS, each tree node represents a
state that is a possible set of important nodes for the
sparsification problem. We use a variant of PUCT [20]
to balance exploration (i.e., visiting a state as suggested
by the neural network policy) and exploitation (i.e.,
visiting a state that has the best value). The overall
approach is illustrated in Figure 1.

2.1 Graph neural network architecture: Some
combinatorial problems like the independent set prob-
lem and minimum vertex cover problem do not consider
edge weights. However, edge weight is an important
feature of the sparsification problem as the objective
and shortest path distances are computed based on the
weights. Hence, we adapt the static edge graph neu-
ral network (SE-GNN) [26], to efficiently extract node
and edge features. The SE-GNN model only works for
Euclidean graphs due to the dependency of node posi-
tions. Our generalized SE-GNN (GSE-GNN) model can
handle non-Euclidean graphs as well. We illustrate the
architecture of the GSE-GNN model in Figure 2.

2.1.1 The input module: To train a neural net-
work, information about the structures of the concerned
graph, terminal nodes, and contextual information, i.e.,
the set of important nodes S, is required. We tag node
u with xt

u = 1 if it is a terminal, otherwise xt
u = 0.

We also tag u with xa
u = 1 if it is already added, oth-

erwise xa
u = 0. The SE-GNN model only considers Eu-

https://github.com/abureyanahmed/gnn-msts-sparsification

(a) Different modules of GSE-GNN.

(b) The embedding
module. (c) The convolution module.

Figure 2: The generalized static edge graph neural
network (GSE-GNN) model.

clidean graphs since it tags each node by the position
of the nodes. For non-Euclidean graphs, there is no
trivial way to compute the coordinates of the nodes.
In our GSE-GNN model, we resolve this issue by com-
puting the coordinates of non-Euclidean graphs using a
spring embedder [15]. Besides that, we also tag each
node by several other properties of the input instance:
node degree, clustering coefficients [21], and different
node centrality values [8]. Let xu be the feature vector
containing all the tags of node u. Intuitively, f(G|S)
should summarize the state of such a “tagged” graph (a
concatenation of all the feature vectors) and generate
the prior probability for each node to get included in S.

2.1.2 The embedding module: The embedding
module has a multi-layer perceptron MLP1 that maps a
feature vector xu of node u to a higher embedding space
vector H0

u, see Figure 2b. The multi-layer perceptron
MLP1 is followed by a convolution module that consists
of a stack of L neural network layers, where each layer
aggregates local neighborhood information, i.e., features
of neighbors of each node, and then passes this aggre-
gated information to the next layer. This procedure
of aggregating neighborhood information is known as
message-passing; the original SE-GNN model only con-
sidered the graph convolutional message-passing proce-
dure [14] whereas we incorporate the graph attention
procedure [24] as well. We use H l

u ∈ Rd to denote
the real-valued feature vector associated with node u
at layer l. Specifically, the basic GNN model [12] can
be implemented as follows. In layer l = 1, 2, · · · , L, a
new feature is computed as given by 2.1.

(2.1) H l+1
u = σ

(
θl1H

l
u +

∑
v∈N(u)

θl2H
l
v

)
In 2.1, N(u) is the set of neighbors of node u, θl1,

and θl2 are the parameter matrices for layer l, and σ(·)
denotes a component-wise non-linear function such as
a ReLU function. The edge features are not taken into

account in 2.1. There are some edge features, e.g. edge
weights and common neighborhoods [18], that we want
to incorporate into our model. We denote the edge
features of edge uv by euv. Some previous methods [25]
use the following equation to incorporate edge features.

(2.2)

H l+1
u = σ

(
θ1xu + θ2

∑
v∈N(u)

H l
v + θ3

∑
v∈N(u)

σ(θ4euv)
)

In 2.2, θ1, θ2, θ3, and θ4 are all model parameters.
We can see in 2.1 and 2.2 that the nonlinear mapping
of the aggregated information is a single-layer percep-
tron, which is not enough to map distinct multisets into
unique embeddings. Hence, as suggested in [26], we
replace the single perceptron with a multi-layer percep-
tron. Finally, we compute a new node feature Hu us-
ing 2.3.

(2.3)

H l+1
u = MLPl

2

(
θl1H

l
u +

∑
v∈N(u)

θl2H
l
v +

∑
v∈N(u)

θl3euv

)
In 2.3, θl1, θ

l
2, and θl3 are parameter matrices, and

MLPl
2 is the multi-layer perceptron for layer l.

2.1.3 The aggregation and output modules:
Once the feature for every node is computed after up-
dating L layers, we aggregate the new feature vector
by summing up all the elements of the vector. We
then pass that aggregated value to the softmax function
(softmax(z) = ez/

∑
i e

zi) and denote it by f(G|S; θ).
This function f(G|S; θ) returns the prior probability for
each node indicating how likely is the node to be in S.
Specifically, we fuse all node feature HL

u as the cur-
rent state representation of the graph and parameterize
f(G|S; θ) as expressed by 2.4.

(2.4) f(G|S; θ) = softmax(sum(HL
1), · · · , sum(HL

|V |))

Here, sum(z) =
∑

i zi. During training, we min-
imize the cross-entropy loss for each training sample
(Gi, Si) in a supervised manner as given by 2.5.

(2.5)

ℓ(Si, f(Gi|Si; θ)) = −
N∑

j=|Ti|+1

yTj log f(Gi|Si(1 : j−1); θ)

In 2.5, Si is an ordered set of important nodes of a
sparsification which is a permutation of a subset of the
nodes of graph Gi, with Si(1 : j− 1) the ordered subset
containing the first j−1 elements of Si, N the number of

nodes in the sparsification, yTj the transpose of yj , and
yj a vector of length |V | with 1 in the Si(j)-th position
and 0 otherwise. We provide more details in Section 3.

2.2 GNN assisted MCTS: Several recent GNN-
based models for solving combinatorial problems lever-
age different kinds of greedy or tree searches [10, 17, 26].
We use an MCTS for our sparsification problems. The
search space of a sparsification instance can be huge.
In a traditional MCTS, random sampling of the search
space gradually expands the search tree. Our graph
neural network assisted MCTS (GNN-MCTS) adds new
nodes in the search tree from the prediction of GSE-
GNN instead of random sampling.

For each MCTS node v, there is an action space
A(v). Each action a ∈ A(v) represents a node in S. The
MCTS counts the number of times a particular action a
has been selected from an MCTS node v to compute
the uncertainty of a from v. We denote this action
count by N(v, a). We adapt the standard PUCT [20]
algorithm to compute the uncertainty U(v, a) of a from
v. Similar to PUCT [20], we set the value of U(v, a)

equal to cpuctP (v, a)

√∑
b N(v,b)

1+N(v,a) where cpuct is a tuning

parameter and P (v, a) is the neural network policy.
Another important quantity of our MCTS is the

quality Q(v, a) of an action a from an MCTS node v.
Let H be the sparsification after executing a from v.
We denote the cost of H by cost(H). Notice that the
value cost(H) can be large if the number of edges in
H is relatively larger. However, the standard MCTS
takes quality values in the range [0, 1] [20]. We address
this issue by normalizing the sparsification cost cost(H)
as suggested by [26]. We set the quality Q(v, a) equal

to cost(H)−w
b−w where b and w are the minimum and

maximum sparsification costs among the actions of v.
Following the standard MCTS algorithm, we aggre-

gate the quality and uncertainty; and select the best
action according to the aggregated value. We also
strengthen the MCTS by selecting an action uniformly
with a small probability ϵ to better explore the search
space [23]. In other words, at time step t, our MCTS
selects the action at with probability 1− ϵ such that:

(2.6) at = argmaxa(Q(vt, a) + U(vt, a))

And with a small probability ϵ, the MCTS selects
randomly from among all the nodes in S with equal
probability. Each round of the MCTS consists of four
steps:

• Selection: The MCTS selects a leaf node u starting
from the root node using 2.6.

• Expansion: The MCTS creates a new leaf node v
such that v is the child of selected node u.

• Simulation: The MCTS gradually adds nodes from
S using the neural network prediction. After each
addition, the MCTS computes a sparsification (as
described later). The number of nodes added is the
sample size. Finally, the MCTS selects the best
sample and updates the state of v accordingly.

• Backpropagation: The MCTS updates the best and
worst costs from the state of v to its ancestors.

Our MCTS is similar to a recent MCTS proposed
for computing TSP [26]. However, there are several
major changes in our method as described below:

• The graph sparsification problem is significantly
different from TSP that was considered in [26].
Unlike the sparsification problem, all nodes must
be present in a traveling salesman tour. Hence in
the MCTS of [26], initially the set S was empty, and
gradually they added all the nodes in S. However,
in the sparsification problem, all terminals must be
in the final solution. Hence at the beginning of our
search, the set S contains all terminals. Our initial
experiment also showed that starting with a set S
that contains all terminals significantly improves
the running time than starting from an empty set.

• The sample size of TSP is huge since different per-
mutations of the nodes provide different tours. A
sparsification is the same for different permuta-
tions and a large sample size will increase the run-
ning time as well since we compute a shortest path
tree for each additional node in O(n log n) time [9].
Hence we keep the sample size relatively small. De-
tails are provided in the following sections.

• Since we keep the sample size relatively small,
we strengthen the exploration process by mixing
in a random search strategy that has been found
effective in reinforcement learning [23]: use the
uncertainty value from the count of visited nodes
most of the time, but every once in a while, say with
small probability ϵ, select randomly from among all
the nodes in S with equal probability.

2.3 Computing a sparsification from S: Our
heuristics are motivated by existing algorithms of spar-
sification problems. An algorithm for a sparsification
problem takes the set of terminals T as a parameter.
Our MCTS uses the same algorithm, however, instead
of T , the MCTS uses S as the set of terminals. Initially,
the MCTS sets S = T as described above and gradually
adds more nodes using the guidance of the GNN. After
computing the sparsification, the MCTS applies differ-
ent pruning algorithms since S usually contains more

Figure 3: Example graph for the Steiner tree heuristic.
Considering D as a terminal node and computing the
MST on the metric closure provides a better solution
than the 2-approximation algorithm.

nodes than T . We now describe the existing algorithms
we have used.

1. The 2-approximation algorithm for comput-
ing Steiner trees: In this algorithm [1], given an
input graph G = (V,E) and a set of terminals S, we
first compute a metric closure graph G′ = (S,E′).
Every pair of nodes in G′ is connected by an edge
with a weight equal to the shortest path distance
between them in G. The minimum spanning tree
of the metric closure provides a 2-approximation to
the optimal Steiner tree (if S = T). The MCTS im-
proves the quality by adding new nodes in S. For
example, in Figure 3, A, B, and C are terminal
nodes and D is not. Note that D does not appear
in any shortest path as each shortest path distance
between pairs of terminals is 5 and none of them
goes through D. Without loss of generality, the 2-
approximation algorithm (when S = T) chooses the
A−C−B path with a total cost of 10, while the op-
timal solution that usesD has a cost of 9. While the
2-approximation algorithm (when S = T) does not
consider any node that does not belong to a short-
est path between two terminal nodes, the MCTS
considers such nodes.

2. The greedy algorithm for computing subset-
wise multiplicative spanners: In this greedy
algorithm [6], we are also given a multiplicative
stretch α. We again first compute a metric closure
graph. Then we sort the edges of the metric closure
in non-decreasing order of weights. Initially, the
sparsification H does not contain any edges. We go
through each edge e = uv according to the sorted
order and add it in H if α ·w(e) ≤ distH(u, v). Fi-
nally, we replace each abstract edge of H with the
corresponding shortest path of G.

3. The subsetwise +2W algorithm for comput-
ing additive spanners: Here, the additive stretch
β = 2W , where W is the maximum edge weight of
G. There exist several algorithms for this problem;
a recent study compares different algorithms [5].
We use an algorithm in this paper that performs
well in practice. This algorithm starts with an
empty set H and for each node in G, it adds
|S|2/3 lightest neighboring edges in H. Later,
it adds some more edges to H such that for all
u, v ∈ S, distH(u, v) ≤ distG(u, v) + 2W . We call
this algorithm the subsetwise +2W algorithm.

Since the MCTS adds additional nodes in S, at the end
of the algorithm we prune some nodes and edges that are
not necessary. We now describe the pruning algorithms
that we have used.

1. Pruning for Steiner trees: Let H be the output
of the 2-approximation. Since our goal is to
compute a tree, we remove some edges from H if
there exist any cycles. To do that, we compute
a minimum spanning tree H ′ of H. A node is a
pendant node if it has a degree equal to one. We
then check whether there exist any pendant nodes
that are not in T . We remove all pendant nodes
not in T from H ′. We denote the new tree by H ′′.
We return H ′′ as the final output.

2. Pruning for spanners: We sort all the edges of
the computed spanner H in the decreasing order
of edge weights. We go through each edge e in this
order and delete e fromH ifH−e is a valid spanner.
Note that, we use the same pruning algorithm for
multiplicative and additive spanners.

3 Model setup and training

Our training data consists of input graphs G = (V,E),
edge weights w : E → R+, terminals T ⊆ V , and
a stretch value depending on the type of sparsifica-
tion. Given G,w, T , and a stretch value (for spanner
instances), our goal is to give label 1 to the next node
to be added and 0 to all others. Initially, we set S = T
as all terminals must be in the sparsification. Consider
a graph with 6 nodes u1, u2, · · · , u6, a set of terminals
T = {u1, u2, u3}, and an optimal sparsification H con-
tains the first five nodes u1, u2, · · · , u5. For this ex-
ample, initially, we set S = T = {u1, u2, u3}. Since
we have two non-terminal nodes u4 and u5 in H, both
permutations u4, u5 and u5, u4 are valid. For the first
permutation, after setting S = {u1, u2, u3}, the next
node to be added to the solution is u4. Hence for this
data point, only the label for u4 is 1. This permutation
provides another data point where S = {u1, u2, u3, u4}

and only the label for u5 is equal to 1. Similarly, we
can generate two more data points from the other per-
mutation. This exhaustive consideration of all possible
permutations does not scale to larger graphs, so we ran-
domly select at most 100 permutations from each opti-
mal solution. The model is trained using the ADAM op-
timizer [13] to minimize the cross-entropy loss between
the model’s prediction and the ground truth (a vector in
{0, 1}|V | indicating whether a node is the next solution
node or not) for each training sample.

3.1 Data generation: We produce sparsification in-
stances using the random geometric graph generation
model [19]. Let n be the number of nodes of the graph.
In the random geometric graph model, we uniformly
select n points from the Euclidean cube, and connect
nodes whose Euclidean distance is not larger than a

threshold r. If r ≥
√

lnn
πn , then the graph is connected

with high probability. To produce relatively denser

graphs, we set r =
√

2 lnn
πn .

We generate Steiner tree, multiplicative, and addi-
tive spanner instances using the above random graph
generation model. We assign random integer weights
in the range {1, 2, · · · , 10} to each edge. As discussed
earlier, we set the multiplicative stretch α = 2 and the
additive stretch β = 2W , where W is the maximum
edge weight of the graph. The number of nodes is in
{20, 50, 100}. We randomly select half of the nodes of
each graph and set them as terminals.

For the Steiner tree and multiplicative spanner
problems, we train the graph neural network on 5000
random geometric instances of 100 nodes. For the ad-
ditive spanner problem, we train on the same number
of geometric instances of 50 nodes. We use smaller in-
stances for additive spanners because it is not possible
to compute optimal solutions of larger instances by the
maximum 20 hours time limit we use. Each of these in-
stances generates multiple training data points from dif-
ferent permutations of non-terminal nodes as described
above. The number of nodes in the test dataset of
MCTS is in {20, 50, 100}. As random geometric in-
stances can be “easy” to solve, we also evaluate our ap-
proach on graphs from the SteinLib library [16], which
provides hard instances for the Steiner tree problem.
Specifically, we perform experiments on two SteinLib
datasets: I080 and I160. Each instance of the I080 and
I160 datasets contains 80 nodes and 160 nodes respec-
tively. Unlike geometric graphs, these datasets contain
non-Euclidean graphs. We use the spring embedder [15]
to compute the positions of SteinLib instances as one of
our input features is node position.

3.2 Computing optimal solutions: We need to
compute the optimal solutions to evaluate the perfor-
mance of our approach (and other existing algorithms).
There are different integer linear programming (ILP)
models for the sparsification problems. The cut-based
approach considers all possible combinations of parti-
tions of terminals and ensures that there is an edge
between that partition. This ILP is simple but intro-
duces an exponential number of constraints. A better
ILP approach in practice considers a set of terminals
as source nodes and sends a flow to the rest of the ter-
minals; see [2, 7] for details about these and other ILP
methods for the exact sparsification problems.

We compute the exact solution with the flow-based
ILP. We use CPLEX 20.10 as the ILP solver on a
high-performance computer (Lenovo NeXtScale nx360
M5 system with 400 nodes with 192 GB of memory
each). We use Python 3.10 to implement the algorithms
described above.

3.3 GNN architecture: We illustrate the architec-
ture of our GNN in Figure 2. We use a 12-dimensional
node feature vector that includes node positions, an
indicator for terminal nodes, an indicator for solution
nodes, node degree, clustering coefficients [21], and dif-
ferent node centrality values [8]. For edge features, we
use the edge weight and common neighborhoods [18].
The input feature vector is embedded into a higher di-
mension using a multi-layer perceptron (MLP). We keep
three hidden layers and use ReLU activation in the
MLP. We set the embedding dimension equal to 128.
We use a graph convolutional network (GCN) [14] as a
message-passing procedure for our experimental analy-
sis and provide more details about this design choice in
the Appendix.

As discussed in Section 2, we use another MLP
before mapping the node embedding into the probability
space. We use two hidden layers and ReLU activation
for that MLP. We have noticed that the GNN achieves
good accuracy after 30 epochs and gets saturated during
training. Hence we set the maximum epoch equal to
60 with early stopping equal to 15 (the model will
automatically stop training when the chosen metric does
not improve for 15 epochs).

3.4 MCTS parameters: We set cpuct = 1.3 accord-
ing to our initial experiment as well as following the sug-
gestions from previous experimental results [26]. With ϵ
probability, the MCTS selects an action uniformly. We
set ϵ = 0.1 since that gives us a reasonable performance
confirming existing literature [23]. The MCTS gradu-
ally adds new nodes in the simulation step. We set the
number of new nodes added at most n where n is the

http://steinlib.zib.de/showset.php?I080
http://steinlib.zib.de/showset.php?I160

(a) Twenty nodes graphs (b) Twenty nodes graphs (c) Twenty nodes graphs

(d) Fifty nodes graphs (e) Fifty nodes graphs (f) Fifty nodes graphs

(g) Hundred nodes graphs (h) Hundred nodes graphs (i) Hundred nodes graphs

Figure 4: Performance on random geometric Steiner instances. The lower the cost the better the algorithm is.
Our algorithm (MCTS) is nearly optimal and performs better than 2-approximation.

number of nodes in the input graph. We stop the MCTS
when the height of the search tree is equal to 20% of the
number of nodes in the input graph. We discuss the rea-
son for these design choices in the Appendix.

4 Experimental results

We evaluate the performance of the proposed approach
by comparing the computed sparsification to those com-
puted by the standard algorithms described in Sec-
tion 2.3 and the optimal solutions. The proposed ap-
proach never performs worse than the standard algo-
rithms. We also report running times.

The results for geometric graphs on the Steiner
tree problem are shown in Figure 4. We train the

model only on geometric graphs having 100 nodes.
We test the MCTS on geometric graphs of different
node sizes. We illustrate the performance of different
algorithms on geometric graphs having 20 nodes in
the top row of Figure 4. We illustrate a comparison
between the MCTS and the standard 2-approximation
algorithm in Figure 4a. We can see that the costs
of the MCTS are noticeably smaller compared to the
2-approximation algorithm for several instances. As
illustrated in Figure 4b, the cost difference between
the MCTS and the optimal solution is significantly
smaller. On the other hand, the cost of 2-approximation
is relatively larger compared to the optimal cost as
illustrated in Figure 4c. We illustrate the performance

Figure 5: Performance on SteinLib I080 dataset. The lower the cost the better the algorithm is. Our algorithm
(MCTS) performs better than 2-approximation.

of different algorithms on geometric graphs having 50
nodes and 100 nodes in the middle and bottom rows of
Figure 4 respectively.

It is natural that our method will perform well on
geometric graphs since it has been trained on geometric
graphs as well. A more interesting experiment would
be to run our method on graphs not generated from the
same generator. Not only the graphs are not geometric,
but also these graphs are from the SteinLib library that
contains different datasets of hard Steiner tree instances.
We test our MCTS algorithm on the I080 SteinLib
dataset; each of these instances contains 80 nodes and
six of these nodes are terminals. We illustrate a cost
comparison of this dataset in Figure 5.

We discuss the experimental results of the subset-
wise multiplicative spanner problem in the Appendix
due to the page limit. We here discuss the experimen-
tal results of the subsetwise additive spanner problem.
For this problem, we consider geometric graphs as be-
fore, however, we train the GNN on instances having
50 nodes instead of 100 nodes. The additive spanner
problem is relatively harder [4] and computing an exact
solution also takes significantly more running time. We
set a time limit equal to 20 hours to compute an ex-
act solution, and additive spanner instances having 100
nodes need more than the limit. We test the MCTS on
instances having 20 and 50 nodes. Here, we compare
our method with the subsetwise +2W algorithm that
performs well in practice [5]. The results are illustrated
in Figure 6. We can see that the MCTS performs signif-
icantly well compared to the subsetwise +2W algorithm
and generates nearly optimal solutions.

4.1 Running time: We train the GNN for each of
the sparsification problems. For the Steiner tree and
subsetwise multiplicative spanner problem, we train on
geometric instances having 100 nodes. The training
times are 20.48 and 21.29 hours respectively. For

Graphs/
Algo.

ST
20

ST
50

ST
80

ST
100

MS
20

MS
50

MS
100

AS
20

AS
50

Approx. 0.16 0.74 1.29 1.86 0.21 2.38 10.92 0.27 2.72

MCTS 0.64 3.90 5.77 6.32 0.98 9.83 57.17 1.24 11.79

OPT 5.92 165.8 1051 3139 11.79 318.9 16139 37.19 19107

Table 1: Average running time of different algorithms
in seconds on test datasets.

the subsetwise additive spanner problem, we train on
geometric instances having 50 nodes. The training
time is 4.92 hours. The average running times of the
optimal algorithm, existing approximation algorithms,
and our algorithm for different test datasets are shown
in Table 1. We denote the Steiner tree, multiplicative
spanner, and additive spanner problem instances by ST,
MS, and AS respectively. These acronyms are followed
by the number of nodes. All of these instances are
geometric except the ST 80 dataset which represents
the SteinLib 1080 dataset. We can see in Table 1 that
the approximation algorithms (Approx.) are the fastest
algorithms. Our algorithm is a little slower, however,
the solution values are closer to the optimal values.

4.2 Impact of GNN prediction: The performance
of the MCTS depends on the prediction of GNN. The
task of GNN is to predict an important node u from
S in each step. This non-terminal node u should
connect the terminal nodes in such a way that overall
the cost of the sparsification gets reduced. We provide
a simple comparison to indicate the importance of the
GNN prediction. We compare the MCTS that uses
the GNN prediction with another MCTS method that
selects random non-terminal nodes (Random MCTS)
without using the GNN prediction. We take a dataset
of geometric Steiner tree instances having 50 nodes.
We illustrate the comparison in Figure 7. Our MCTS
method computes Steiner trees with lower costs as
expected.

(a) Twenty nodes graphs (b) Twenty nodes graphs (c) Twenty nodes graphs

(d) Fifty nodes graphs (e) Fifty nodes graphs (f) Fifty nodes graphs

Figure 6: Performance on random geometric additive spanner instances (β = 2W). The lower the cost the better
the algorithm is. Our algorithm (MCTS) is nearly optimal and performs better than the subsetwise +2W spanner.

Figure 7: A comparison of our MCTS with another
MCTS that selects random nodes from S (Random
MCTS). This comparison illustrates the importance of
GNN prediction. This is a dataset of geometric Steiner
tree instances having 50 nodes.

4.3 Performance on larger instances: We test
our model on instances larger than the training in-
stances to show the scalability of the model. We provide
some results in the appendix due to the page limit. For
the additive spanner problem, we train the GNN on in-
stances having 50 nodes. We are unable to compute an
optimal solution for instances having 100 nodes due to
the time limit. However, the MCTS can find a solution
only in a few minutes. The solution computed by the

MCTS is significantly better than the subsetwise +2W
spanner algorithm, see Figure 8. The average running
times of subsetwise +2W spanner algorithm and the
MCTS are 14.82 and 79.13 seconds respectively.

Figure 8: Performance on random geometric additive
spanner instances (β = 2W). Each of these instances
has a hundred nodes. Our algorithm (MCTS) is signif-
icantly better than the subsetwise +2W spanner.

5 Conclusion

We have described an approach for different sparsifi-
cation problems based on GNNs and MCTS. An ex-
perimental evaluation shows that the proposed method
computes solutions that are closer to optimal solutions

on different datasets in a reasonable time. The pro-
posed method is a generalization of the approximation
algorithms and never performs worse than the approx-
imation algorithms. The source code and experimental
data can be found on GitHub.

References

[1] Ajit Agrawal, Philip Klein, and Ramamoorthi Ravi.
When trees collide: An approximation algorithm for
the generalized steiner problem on networks. SIAM
journal on Computing, 24(3):440–456, 1995.

[2] Reyan Ahmed, Patrizio Angelini, Faryad Darabi
Sahneh, Alon Efrat, David Glickenstein, Martin
Gronemann, Niklas Heinsohn, Stephen G Kobourov,
Richard Spence, Joseph Watkins, and Alexander Wolff.
Multi-level steiner trees. Journal of Experimental
Algorithmics (JEA), 24:1–22, 2019.

[3] Reyan Ahmed, Greg Bodwin, Keaton Hamm, Stephen
Kobourov, and Richard Spence. On additive span-
ners in weighted graphs with local error. In
Graph-Theoretic Concepts in Computer Science: 47th
International Workshop, WG 2021, Warsaw, Poland,
June 23–25, 2021, Revised Selected Papers 47, pages
361–373. Springer, 2021.

[4] Reyan Ahmed, Greg Bodwin, Faryad Darabi Sah-
neh, Keaton Hamm, Mohammad Javad Latifi Jebelli,
Stephen Kobourov, and Richard Spence. Graph span-
ners: A tutorial review. Computer Science Review,
37:100253, 2020.

[5] Reyan Ahmed, Greg Bodwin, Faryad Darabi Sah-
neh, Keaton Hamm, Stephen Kobourov, and Richard
Spence. Multi-level weighted additive spanners. arXiv
preprint arXiv:2102.05831, 2021.

[6] Reyan Ahmed, Keaton Hamm, Stephen Kobourov,
Mohammad Javad Latifi Jebelli, Faryad Darabi Sah-
neh, and Richard Spence. Multi-priority graph sparsi-
fication. In International Workshop on Combinatorial
Algorithms, pages 1–12. Springer, 2023.

[7] Reyan Ahmed, Stephen Kobourov, Faryad Darabi Sah-
neh, and Richard Spence. Approximation algorithms
and an integer program for multi-level graph spanners.
Analysis of Experimental Algorithms, page 541.

[8] Phillip Bonacich. Power and centrality: A family of
measures. American journal of sociology, 92(5):1170–
1182, 1987.

[9] Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. Introduction to algorithms.
MIT press, 2009.

[10] Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilk-
ina, and Le Song. Learning combinatorial optimiza-
tion algorithms over graphs. In Proceedings of Neural
Information Processing Systems, 2017.

[11] Michael Elkin, Yuval Gitlitz, and Ofer Neiman.
Improved weighted additive spanners. Distributed
Computing, pages 1–10, 2022.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. In-
ductive representation learning on large graphs. In
Advances in neural information processing systems,
pages 1024–1034, 2017.

[13] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[14] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
Proceedings of The International Conference on
Learning Representations (ICLR), 2016.

[15] Stephen G Kobourov. Spring embedders and force
directed graph drawing algorithms. arXiv preprint
arXiv:1201.3011, 2012.

[16] T. Koch, A. Martin, and S. Voß. SteinLib: An updated
library on Steiner tree problems in graphs. Technical
Report ZIB-Report 00-37, Konrad-Zuse-Zentrum für
Informationstechnik Berlin, Takustr. 7, Berlin, 2000.

[17] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Com-
binatorial optimization with graph convolutional net-
works and guided tree search. In Proceedings of Neural
Information Processing Systems, 2018.

[18] David Liben-Nowell and Jon Kleinberg. The link
prediction problem for social networks. In Proceedings
of the twelfth international conference on Information
and knowledge management, pages 556–559, 2003.

[19] Mathew Penrose. Random geometric graphs, volume 5.
Oxford university press, 2003.

[20] Christopher D Rosin. Multi-armed bandits with
episode context. Annals of Mathematics and Artificial
Intelligence, 61(3):203–230, 2011.

[21] Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela,
Kimmo Kaski, and Janos Kertesz. Generalizations
of the clustering coefficient to weighted complex net-
works. Physical Review E, 75(2):027105, 2007.

[22] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2008.

[23] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[24] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Ben-
gio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[25] Tian Xie and Jeffrey C Grossman. Crystal graph con-
volutional neural networks for an accurate and inter-
pretable prediction of material properties. Physical
review letters, 120(14):145301, 2018.

[26] Zhihao Xing and Shikui Tu. A graph neural network
assisted monte carlo tree search approach to traveling
salesman problem. IEEE Access, 8:108418–108428,
2020.

https://github.com/abureyanahmed/gnn-msts-sparsification

Appendix

A GNN architecture:

One key component of the GNN model is the message-
passing procedure that aggregates information from
the local neighborhood. We have incorporated two
common message-passing procedures: graph convolu-
tional network (GCN) [14] and graph attention network
(GAT) [24]. We show a comparison of these two net-
works on a set of geometric Steiner tree instances having
50 nodes in Figure 9.

Figure 9: A comparison of GCN and GAT message-
passing framework on geometric Steiner instances hav-
ing 50 nodes.

Since the cost difference between the two types of
message-passing models is not significant, we set the
GCN model as the default.

B Experimental results

We now consider the subsetwise multiplicative spanner
problem. Here, the multiplicative stretch α is equal to 2.
Similar to the Steiner tree problem, we train the GNN
on geometric instances having 100 nodes and test the
MCTS on instances having 20, 50, and 100 nodes. Here,
we compare our method with the well-known greedy al-
gorithm and an optimal algorithm. The greedy algo-
rithm produces asymptotically tight spanners assuming
the Erdős girth conjecture and performs well in prac-
tice [4]. The results are illustrated in Figure 10. We
can see that the MCTS performs significantly well com-
pared to the greedy algorithm for instances having dif-
ferent numbers of nodes. Also, the cost of MCTS is
comparable with the optimal cost.

C Impact of sample size and height of the
search tree:

The sample size and height of the search tree are im-
portant parameters of the MCTS. We keep the sample
size equal to n, where n is the number of nodes of the
input graph. We stop the MCTS when the height of the
search tree is equal to 20% of n. The reasons for keeping
the height only 20% of n are the computational cost per

iteration and the effectiveness of the GNN prediction as
discussed in Section 4.2. For each sample node, we need
to compute a single source shortest path that increases
the total computational cost of the MCTS. Also, the
GNN predicts most of the important nodes by the ini-
tial set of samples and after that, the sampling process
gets saturated and does not increase the solution qual-
ity that much. For example, we illustrate the impact of
a larger sample size and height of the search tree on ge-
ometric instances of the Steiner tree problem having 50
nodes in Figure 11. We can see that the solution quality
does not improve that much when we increase the sam-
ple size from n to 2n and the height of the search tree
from 20% to 40%. However, we significantly increase the
solution quality after keeping the sample size equal to n
and the height of the search tree equal to 20% of n, see
Figure 4f. On the other hand, the average running time
of the MCTS with the first setting is 3.90 seconds. The
average running time increases to 7.13 seconds when we
increase the sample size and height of the search tree.
For each of the settings studied in this paper, we have
found that a sample size equal to n and the height of
the search tree equal to 20% of n is enough. Hence we
use this setting for all experiments.

D Performance on larger instances:

For the Steiner tree problem, we train the GNN on
instances having 100 nodes. In an earlier section, we
compared our method with instances having 100 or
fewer nodes. We now compare our method to larger
instances. In Figure 12, we illustrate the performance
of our method on SteinLib I160 graphs; each of these
instances contains 160 nodes. These results indicate
that our method performs well on larger instances even
after training on small instances.

(a) Twenty nodes graphs (b) Twenty nodes graphs (c) Twenty nodes graphs

(d) Fifty nodes graphs (e) Fifty nodes graphs (f) Fifty nodes graphs

(g) Hundred nodes graphs (h) Hundred nodes graphs (i) Hundred nodes graphs

Figure 10: Performance on random geometric multiplicative spanner instances (α = 2). The lower the cost the
better the algorithm is. Our algorithm (MCTS) performs better than the greedy algorithm.

Figure 11: A comparison of the MCTS using a sample
size equal to n and the height of the search tree equal to
20% of n with a sample size equal to 2n and the height of
the search tree equal to 40% of n. Here, n is the number
of nodes in the input graph. The MCTS gets saturated
after using the first setting and does not provide a
significant improvement with the second setting. This
is a dataset of geometric Steiner tree instances having
50 nodes.

Figure 12: Performance on SteinLib I160 dataset. The lower the cost the better the algorithm is. Our algorithm
(MCTS) performs better than 2-approximation.

	Introduction
	Background:
	Problem Statement:
	Summary of Contributions:

	Our approach
	Graph neural network architecture:
	The input module:
	The embedding module:
	The aggregation and output modules:

	GNN assisted MCTS:
	Computing a sparsification from S:

	Model setup and training
	Data generation:
	Computing optimal solutions:
	GNN architecture:
	MCTS parameters:

	Experimental results
	Running time:
	Impact of GNN prediction:
	Performance on larger instances:

	Conclusion
	Appendices
	GNN architecture:
	Experimental results
	Impact of sample size and height of the search tree:
	Performance on larger instances:

