Parallel Algorithms Column 1:
Models of Computation

Michael T. Goodrich*
Department of Computer Science
Johns Hopkins University
Baltimore, MD 21218
goodrich@cs. jhu.edu

1 Introduction

If you are the type that always orders vanilla in the ice cream shop, then you should probably stay
away from parallel algorithm design, for you may never get past the fact that any given parallel
algorithm may be designed for any one of several different computational models. If, on the other
hand, you are the type who thinks there are still not enough channels on cable TV, then you might
think the number of parallel models is'woefully small. If you fall into neither camp, which, according
to the Chernoff bounds [22], you probably should, then you may find this first SIGACT News column
on parallel algorithm design of some use. For here I review a “classic” model for parallel computation
and I survey some interesting work on alternative models for parallel computation.

2 A Classic Model for Parallel Computation: The PRAM

The shared-memory model, or parallel random access machine (PRAM), is classic in parallel al-
gorithm design. In this model processors share a common memory space, which they access in a
synchronous (lock-step) fashion. This model is further subdivided by assumptions placed on how
concurrent accesses to the same memory locations are to be handled, with the most popular conven-
tions being exclusive-read/exclusive-write (EREW), concurrent-read/exclusive-write (CREW), and
concurrent-read /concurrent-write (CRCW). The CRCW PRAM i~ further subdivided by the mech-
anism used to handle concurrent writes, with the most popular methods being common, where all
processors writing to a location must all be writing the same value, and arbitrary, where memory
contention is handled arbitrarily (which, of course, is different than resolving the conflict randomly).
The primary advantage of the PRAM model is that it is simple to design algorithms for it; it is the
natural extension of the well-accepted RAM model. Typically, the first parallel algorithms solving
a particular problem are designed for the PRAM model, and it is often used to demonstrate the
“parallelizability” of such a problem. Several good general publications addressing techniques for
designing algorithms for this model have been written, including the book edited by Reif [23] and
those written by J4J4 [24), Gibbons and Rytter [18], Akl [6], and Akl and Lyons [7], as well as the
book chapter by Karp and Ramachandran [27]. The primary disadvantage of the PRAM model is
that it doesn’t realistically capture all the intricacies of parallel computation as we understand it

today.

*The author’s research is supported by the National Science Foundation under Grants IRI-9116843 and CCR-
9300079.

16

3 More Realistic Parallel Computation Models

For the remainder of this column I would therefore like to provide an overview properties of real
parallel architectures that are not explicitly modeled by the PRAM, giving references to work that
more closely models each such property. This is not intended to be a comprehensive survey, however,
so please do not be offended if I have omitted some important recent work in this area. Nevertheless,
I trust that [have provided enough references so that the dedicated reader can “come up to speed”
after a few pointer hops in the literature.

3.1 Network Topology

One of the well-known intricacies of parallel computation ignored by the PRAM model is the method
for interconnecting the processors and their common memory space. In the network model this inter-
connection between processors is described explicitly. In it each processor is allocated some amount
of local memory (as in the RAM model) and then the processors are interconnected in a specified
communication network. The network model is then subdivided by assumptions about the topol-
ogy of this network. For example, this network might be a binary tree, a mesh, a hypercube, or an
expander graph. Published network algorithms tend to be more complicated than their PRAM coun-
terparts, since data movement through the network must be described in detail, but the algorithm
is usually more efficient than what can be derived by a straightforward simulation of the PRAM
algorithm. The published literature on such simulation results, as well as a host of specific network
algorithms, is quite rich, and several such methods can be found in the recent comprehensive book
by Leighton [30], as well as the somewhat older book by Ullman [42].

3.2 Asynchrony

Another fundamental issue that the PRAM models (and standard network models) do not specifically
address is how to implement the synchronous parallel clocks driving the different processors. Existing
parallel machines may be implemented synchronously by having all the processors simultaneously
perform the same program, whose instructions are broadcast to them by a synchronized communica-
tion network, or the processors may be allowed to perform different computations in an asynchronous
fashion. Simulating a PRAM algorithm in this latter framework is therefore complicated by this lack
of synchrony.

Fortunately, this issue has not been lost on the parallel algorithms community, as several
researchers have described asynchronous versions of the PRAM model, and have given several
methods for solving specific problems, such as list ranking and parallel prefix sums, and for
simulating synchronous PRAM algorithms that possess “limited synchrony,” on asynchronous
PRAMs [8, 10, 9, 11, 12, 19, 29, 32, 33, 36, 41]. Typically, the asynchronous PRAM is defined
so that time is partitioned into “slots” in which processors may cither “sit out” or may perform
some type of atomic read and write operation. Computations are usually analyzed in terms of an
expected work bound, which is either taken over all possible interleavings of atomic operations or
over all possible random choices made by the asynchronous machine. For a survey of such work,
please see the Ph.D. thesis of Subramonian [40].

3.3 Memory contention

Another important issue that is arguably not fully modeled by the standard PRAM models is memory
contention. The performance of most existing parallel machines significantly degrades if there are

17

a lot of simultaneous accesses to the same memory cell or to the same module of memory cells.
Typically, such requests get queued up and processed in a (slow) sequential fashion. Fortunately, this
issue is addressed in recent papers by Dwork, Herlihy, and Waarts [17], who define an asynchronous
parallel model that serves simultaneous memory accesses in a queued fashion, and by Gibbons,
Matias, and Ramachandran [20], who define synchronous and asynchronous versions of a model they
call the QRQW PRAM. In this model k simultaneous accesses to the same memory cell require f(k)
time to process, for some function f (usually f(k) = k). This model more-accurately accounts for
the way real parallel machines handle memory contention than the existing PRAM models, which
either assume that f(k) = oo for & > 1 (as in the EREW PRAM model) or assume that f(k) =1 (as
in the CRCW PRAM model). Interestingly, Gibbons et al. show that a randomized QRQW PRAM
is strictly stronger than a randomized EREW PRAM.

A related model is the Distributed Memory Machine (DMM) or Module Parallel Computer
(MPC), where memory is partitioned into modules, one per processor, such that each module can
accept only one access at a time. Access to a module is made through an access window, which
is a register that can be read from or written to by the module as well as the processors in the
DMM. As with the PRAM, the DMM is subclassified by the mechanism used to resolve access
conflicts to access windows, with EREW and CRCW schemes being common. This model more
realistically captures the fact that most memory modules have many more memory cells than in-
put/output pins with which to access those cells. The main computational issues addressed for
DMMs, then, is how they can simulate PRAMs, typically through the use of data replication and/or
hashing (16, 25, 26, 31, 34, 35, 39]. For example, Karp, Luby, and Meyer auf der Heide [26] show how
to simulate an O(nloglog n)-processor CRCW PRAM on a randomized n-processor CRCW DMM
with delay O(loglognlog® n). For more information on such results, please see the survey paper by
Meyer auf der Heide [35].

3.4 Latency

Another issue that is not specifically addressed by the PRAM is latency, the time that elapses
between the issuance of a memory access request and the receipt of the response to that request at
the processor that issued it. Of course, if all accesses have the same latency and accesses cannot be
pipelined, then one can simply multiply the running time of a PRAM algorithm by some latency delay
factor in order to derive a more realistic running time. But if either of these conditions fails to hold,
then one may wish to explicitly model the latency properties. For example, parallel architectures
that use caches, parallel disks, or other hierarchical memories are instances when these conditions
fail. There may be a considerable delay for accessing a specific memory cell, ¢, but accessing the
memory cells neighboring ¢ may subsequently become much faster. Several parallel hierarchical
memory models have been introduced so as to model this phenomenon, and several researchers have
developed efficient algorithms for solving fundamental problems, such as routing and sorting, in these
models [1, 2, 3, 4, 5, 13, 14, 21, 37, 38, 45]. For more information on these algorithms and models,
please see the survey paper by Vitter [44], as well as some of the more recent papers just referenced.

4 Conclusion

In broad brush strokes I have reviewed a classic parallel computational model—the PRAM—and I
have tried to outline recent work on methods for modeling aspects of parallel architectures that are
not captured by the PRAM model-—network topology, asynchrony, memory contention, and latency.
I would be remiss, however, if I did not mention two recent models, Valiant’s Bulk-Synchronous

18

* Parallel (BSP) model [43] and the LogP model of Culler et al. [15, 28], which try to capture the
difficulties presented by all of these issues (in a topology-independent fashion). The BSP and LogP
models both explicitly account for the latency in memory accesses, as well as the potential for
pipelining such accesses (with the LogP model being a bit more general). They both deal with
memory contention, and they both allow for asynchrony (with the LogP model being a bit less
restrictive). It is more difficult to design optimal algorithms for these models, but, then again, they
are dealing “head on” with fundamental difficulties of parallel computation.

Thus, we now have what can be viewed as a complete spectrum of computational models for
parallel computation, which ranges from the simple, yet unrealistic, PRAM model to the more-
complex, but fairly realistic, BSP and LogP models. One can therefore choose to concentrate on
the study of the inherent parallelism in a problem via a PRAM algorithm or one can address the
issues in parallel computation are not fully captured by such a PRAM algorithm. Current research
in paralle] algorithm design seems to be well-balanced in this regard, as demonstrated by the papers
that appeared in this year’s (SIGACT co-sponsored) ACM Symposium on Parallel Algorithms and
Architectures (SPAA). According to my classification, there are a dozen papers describing PRAM
algorithms, a dozen describing network algorithms or protocols, and at least another dozen directed
at methods for dealing with asynchrony, memory contention, and/or latency.

References

[1] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir, “A model for hierarchical memory,” in
Proc. ACM Symp. on Theory of Computing, 305-314, 1987.

[2] A. Aggarwal, A. K. Chandra, and M. Snir, “On communication latency in PRAM computation,”
in Proc. (1st) ACM Symp. on Parallel Algorithms and Architectures, 11-21, 1989,

(3] A. Aggarwal, A. K. Chandra, and M. Snir, “On communication latency in PRAM computation,”
in Proc. (1st) ACM Symp. on Parallel Algorithms and Architectures, 11-21, 1989.

[4] A. Aggarwal and C. G. Plaxton, “Optimal parallel sorting in multi-level storage,” in Proc. 5th
ACM-SIAM Symp. on Discrete Algorithms, 1994,

[5] A. Aggarwal and J. S. Vitter, “The input/output complexity of sorting and related problems,”
Comm. ACM, 81, 1116-1127, 1987.

[6] S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood Cliffs, NJ,
1989.

[7] S. G. Akl and K. A. Lyons, Parallel Computational Geometry, Prentice-Hall, 1993.

(8] R. J. Anderson, “Primitives for asynchronous list compression,” in Proc. 4th ACM Symp. on
Parallel Algorithms and Architectures, 199-208, 1992,

[9] R. J. Anderson and H. Woll, “Wait-free parallel algorithms for the union-find problem,” in Proc.
23rd ACM Symp. on Theory of Computing, 370-380, 1991.

(10] J. Aspnes and M. Herlihy, “Wait-free data structures in the asynchronous PRAM model,” in
Proc. 2nd ACM Symp. on Parallel Algorithms and Architectures, 340-349, 1990.

(11] Y. Aumann, Z. M. Kedem, K. V. Palem, and M. O. Rabin, “Highly efficient asynchronous
execution of large-grained parallel programs,” in Proc. 34th IEEE Symp. on Foundations of
Computer Science, 1993.

19

[12] R. Cole and O. Zajicek, “The expected advantage of asynchrony,” in Proc. 2nd ACM Symp. on
Parallel Algorithms and Architectures, 85-94, 1990.

[13] T. H. Cormen, “Asymptotically tight bounds for performing BMMC permutations on parallel
disk systems,” in Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, 130-139,
1993.

[14] T. H. Cormen, “Fast permuting on disk arrays,” J. Par. and Dist. Comput., 17, 41-57, 1993.

[15] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. I%. Schauser, E. Santos, R. Subramonian,
and T. von Eicken, “LogP: Towards a realistic model of parallel computation,” in Proc. Jth ACM
SIGPLAN Symp. on Princ. and Practice of Parallel Programming, 1993.

[16] M. Dietzfelbinger and F. Meyer auf der Heide, “Simple, efficient shared memory simulations,”
in Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, 110-119, 1993.

[17) C. Dwork, M. Herlihy, and O. Waarts, “Contention in shared memory algorithms,” in Proc.
25th ACM Symp. on Theory of Computing, 174-183, 1993.

[18] A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge University Press, New
York, 1988.

[19] P. B. Gibbons, “A more practical PRAM model,” in Proc. (1st) ACM Symp. on Parallel Algo-
rithms and Architectures, 158-168, 1989.

[20] P. B. Gibbons, Y. Matias, and V. Ramachandran, “The QRQW PRAM: Accounting for con-
tention in parallel algorithms,” in Proc, 5th ACM-SIAM Symp. on Discrete Algorithms, 1994.

[21] M. T. Goodrich, J. J. Tsay, D. E. Vengroff, and J. S. Vitter, “External-memory computational
geometry,” in Proc. 34th IEEE Symp. on Foundations of Computer Science, 1993.

[22] T. Hagerup and C. Riib, “A guided tour of Chernoff bounds,” Information Processing Leilers,
33, 305-308, 1989/90.

[23] ed. J. H. Reif, Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo,
CA, 1993.

[24] J. 134, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, Mass., 1992.

[25] A. R. Karlin and E. Upfal, “Parallel hashing: An efficient implementation of shared memory,”
J. ACM, 85(4), 876-892, 1988,

[26] R. Karp, M. Luby, and F. Meyer auf der Heide, “Efficient pram simulation on distributed
machines,” in Proc. 24th ACM Symp. on Theory of Computing, 318-326, 1992,

[27] R. M. Karp and V. Ramachandran, “Parallel algorithms for shared memory machines,” in
Handbook of Theoretical Computer Science, J. van Leeuwen, editor, Elsevier/The MIT Press,
Amsterdam, 869-941, 1990.

[28] R. M. Karp, A. Sahay, E. Santos, and K. E. Schauser, “Optimal broadcast and summation in
the LogP model,” in Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, 142-153,
1993.

[29] C. Kruskal, L. Rudolph, and M. Snir, “A complexity theory of efficient parallel algorithms,”
Theoretical Computer Science, 71, 95-132, 1990.

20

[30] . T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan Kaufmann, San Mateo, CA, 1992.

[31] F. Luccio, A. Pietracaprina, and G. Pucci, “A new scheme for the deterministic simulation of
prams in vlsi,” Algorithmica, 5, 529-544, 1990.

[32] C. Martel, A. Park, and R. Subramonian, “Work-optimal asynchronous algorithms for shared
memory parallel computers,” SIAM J. Comput., 21(6), 1070-1099, 1992.

[33] C. Martel, R. Subramonian, and A. Park, “Asynchronous PRAMs are (almost) as good as
synchronous PRAMs,” in Proc., 30th IEEE Symp. on Foundations of Computer Science, 590—
599, 1990.

[34] K. Mehlhorn and U. Vishkin, “Randomized and deterministic simulations of PRAMs by parallel
machines with restricted granularity of parallel memories,” Acta Informatica, 9(1), 29-59, 1984,

[35] F. Meyer auf der Heide, “Hashing stratefies for simulating shared memory on distributed memory
machines,” in Parallel Architectures and Their Fffictent Use: First Heinz Nizdorf Symposium,
Lecture Notes in Computer Science, vol. 678, Springer-Verlag, 1993.

[36] N. Nishimura, “Asynchronous shared memory parallel computation,” in Proc. 2nd ACM Symp.
on Parallel Algorithms and Architectures, 76-84, 1990.

[37] M. H. Nodine and J. S. Vitter, “Large-scale sorting in parallel memories,” in Proc. 3rd ACM
Symp. on Parallel Algorithms and Architectures, 29-39, 1991.

[38] M. H. Nodine and J. S, Vitter, “Deterministic distribution sort in shared and distributed memory
multiprocessors,” in Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, 120-129,
1993.

[39] A. G. Ranade, “How to emulate shared memory,” J. on Computers and System Sci., 42, 307—
326, 1991.

[40] R. Subramonian, Asynchronous Algorithms for Shared Memory Parallel Computers, Ph.D. the-
sis, UC, Davis, 1991,

[41] R. Subramonian, “Designing synchronous algorithms for asynchronous processors,” in Proc. th
ACM Symp. on Parallel Algorithms and Architectures, 189-198, 1992.

[42] J. D. Ullman, Computational Aspects of VLSI, Morgan Kaufmann, San Mateo, CA, 1992.

[43] L. G. Valiant, “A bridging model for parallel computation,” Comm. ACM, 33, 103-111, 1990,

Y

[44] J. S. Vitter, “Efficient memory access in large-scale computation,” in Proc. 1991 Symposium
on Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer Science,
Springer-Verlag, 1991.

[45] J. S. Vitter and E. A. M. Shriver, “Optimal disk I/O with parallel block transfer,” in Proc. 22nd
ACM Symp. on Theory of Computing, 159-169, 1990.

21

