
Parallel Algorithms Column 1 :
Models of Computatio n

Michael T. Goodrich *
Department of Computer Scienc e

Johns Hopkins Universit y
Baltimore, MD 21218
goodrich@cs .jhu .edu

1 Introductio n

If you are the type that always orders vanilla in the ice cream shop, then you should probably sta y
away from parallel algorithm design, for you may never get past the fact that any given paralle l
algorithm may be designed for any one of several different computational models . If, on the other
hand, you are the type who thinks there are still not enough channels on cable TV, then you migh t
think the number of parallel models is woefully small . If you fall into neither camp, which, accordin g
to the Chernoff bounds [22], you probably should, then you may find this first SIGACT News column
on parallel algorithm design of some use . For here I review a "classic" model for parallel computatio n
and I survey some interesting work on alternative models for parallel computation .

2 A Classic Model for Parallel Computation : The PRA M

The shared-memory model, or parallel random access machine (PRAM), is classic in parallel al-
gorithm design . In this model processors share a common memory space, which they access in a
synchronous (lock-step) fashion . This model is further subdivided by assumptions placed on ho w
concurrent accesses to the same memory locations are to be handled, with the most popular conven-
tions being exclusive-read/exclusive-write (EREW), concurrent-read/exclusive-write (CREW), an d
concurrent-read/concurrent-write (CRCW) . The CRCW PRAM is further subdivided by the mech-
anism used to handle concurrent writes, with the most popular methods being common, where all
processors writing to a location must all be writing the same value, and arbitrary, where memor y
contention is handled arbitrarily (which, of course, is different than resolving the conflict randomly) .
The primary advantage of the PRAM model is that it is simple to design algorithms for it ; it is the
natural extension of the well-accepted RAM model . Typically, the first parallel algorithms solvin g
a particular problem are designed for the PRAM model, and it is often used to demonstrate th e
"parallelizability" of such a problem . Several good general publications addressing techniques fo r
designing algorithms for this model have been written, including the book edited by Reif [23] an d
those written by JaJa [24], Gibbons and Rytter [18], Akl [6], and Akl and Lyons [7], as well as the
book chapter by Karp and Ramachandran [27] . The primary disadvantage of the PR-AM model i s
that it doesn't realistically capture all the intricacies of parallel computation as we understand i t
today.

* The author's research is supported by the National Science Foundation under Grants IRI-9116843 and CCR-
9300079 .

16



3 More Realistic Parallel Computation Model s

For the remainder of this column I would therefore like to provide an overview properties of rea l
parallel architectures that are not explicitly modeled by the PRAM, giving references to work that
more closely models each such property . This is not intended to be a comprehensive survey, however ,
so please do not be offended if I have omitted some important recent work in this area . Nevertheless ,
I trust that I have provided enough references so that the dedicated reader can "come up to speed "
after a few pointer hops in the literature .

3 .1 Network Topology

One of the well-known intricacies of parallel computation ignored by the PRAM model is the method
for interconnecting the processors and their common memory space . In the network model this inter-
connection between processors is described explicitly . In it each processor is allocated some amount
of local memory (as in the RAM model) and then the processors are interconnected in a specifie d
communication network . The network model is then subdivided by assumptions about the topol-
ogy of this network . For example, this network might be a binary tree, a mesh, a hypercube, or an
expander graph . Published network algorithms tend to be more complicated than their PRAM coun-
terparts, since data movement through the network must be described in detail, but the algorith m
is usually more efficient than what can be derived by a straightforward simulation of the PRA M
algorithm. The published literature on such simulation results, as well as a host of specific network
algorithms, is quite rich, and several such methods can be found in the recent comprehensive boo k
by Leighton [30], as well as the somewhat older book by Ullman [42] .

3 .2 Asynchrony

Another fundamental issue that the PRAM models (and standard network models) do not specificall y
address is how to implement the synchronous parallel clocks driving the different processors . Existing
parallel machines may be implemented synchronously by having all the processors simultaneousl y
perform the same program, whose instructions are broadcast to them by a synchronized communica-
tion network, or the processors may be allowed to perform different computations in an asynchronou s
fashion. Simulating a PRAM algorithm in this latter framework is therefore complicated by this lac k
of synchrony .

Fortunately, this issue has not been lost on the parallel algorithms community, as severa l
researchers have described asynchronous versions of the PRAM model, and have given severa l
methods for solving specific problems, such as list ranking and parallel prefix sums, and fo r
simulating synchronous PRAM algorithms that possess "limited synchrony," on asynchronou s
PRAMs [8, 10, 9, 11, 12, 19, 29, 32, 33, 36, 41] . Typically, the asynchronous PRAM is define d
so that time is partitioned into "slots" in which processors may either "sit out" or may perfor m
some type of atomic read and write operation . Computations are usually analyzed in terms of an
expected work bound, which is either taken over all possible interleavings of atomic operations o r
over all possible random choices made by the asynchronous machine . For a survey of such work ,
please see the Ph .D . thesis of Subramonian [40] .

3 .3 Memory contention

Another important issue that is arguably not fully modeled by the standard PRAM models is memor y
contention . The performance of most existing parallel machines significantly degrades if there ar e

17



a lot of simultaneous accesses to the same memory cell or to the same module of memory cells .
Typically, such requests get queued up and processed in a (slow) sequential fashion . Fortunately, thi s
issue is addressed in recent papers by Dwork, Herlihy, and Waarts [17], who define an asynchronou s
parallel model that serves simultaneous memory accesses in a queued fashion, and by Gibbons ,
Matias, and Ramachandran [20], who define synchronous and asynchronous versions of a model the y
call the QRQW PRAM . In this model k simultaneous accesses to the same memory cell require f (k )
time to process, for some function f (usually f(k) = k) . This model more-accurately accounts fo r
the way real parallel machines handle memory contention than the existing PRAM models, whic h
either assume that f(k) = oo for k > 1 (as in the EREW PRAM model) or assume that f(k) = 1 (as
in the CRCW PRAM model) . Interestingly, Gibbons et al . show that a randomized QRQW PRAM
is strictly stronger than a randomized EREW PRAM .

A related model is the Distributed Memory Machine (DMM) or Module Parallel Compute r
(MPC), where memory is partitioned into modules, one per processor, such that each module ca n
accept only one access at a time . Access to a module is made through an access window, which
is a register that can be read from or written to by the module as well as the processors in th e
DMM . As with the PRAM, the DMM is subclassified by the mechanism used to resolve acces s
conflicts to access windows, with EREW and CRCW schemes being common . This model mor e
realistically captures the fact that most memory modules have many more memory cells than in-
put/output pins with which to access those cells . The main computational issues addressed for
DMMs, then, is how they can simulate PRAMs, typically through the use of data replication and/o r
hashing [16, 25, 26, 31, 34, 35, 39] . For example, Karp, Luby, and Meyer auf der Heide [26] show how
to simulate an 0(n log log n)-processor CRCW PRAM on a randomized n-processor CRCW DM M
with delay 0 (log log n log* n) . For more information on such results, please see the survey paper b y
Meyer auf der Heide [35] .

3.4 Latency

Another issue that is not specifically addressed by the PRAM is latency, the time that elapse s
between the issuance of a memory access request and the receipt of the response to that request a t
the processor that issued it . Of course, if all accesses have the same latency and accesses cannot b e
pipelined, then one can simply multiply the running time of a PRAM algorithm by some latency dela y
factor in order to derive a more realistic running time . But if either of these conditions fails to hold ,
then one may wish to explicitly model the latency properties . For example, parallel architectures
that use caches, parallel disks, or other hierarchical memories are instances when these condition s
fail . There may be a considerable delay for accessing a specific memory cell, c, but accessing th e
memory cells neighboring c may subsequently become much faster . Several parallel hierarchica l
memory models have been introduced so as to model this phenomenon, and several researchers hav e
developed efficient algorithms for solving fundamental problems, such as routing and sorting, in thes e
models [1, 2, 3, 4, 5, 13, 14, 21, 37, 38, 45] . For more information on these algorithms and models ,
please see the survey paper by Vitter [44], as well as some of the more recent papers just referenced .

4 Conclusion

In broad brush strokes I have reviewed a classic parallel computational model 	 the PRAM—and I
have tried to outline recent work on methods for modeling aspects of parallel architectures that ar e
not captured by the PRAM model—network topology, asynchrony, memory contention, and latency .
I would be remiss, however, if I did not mention two recent models, Valiant's Bulk-Synchronous

18



Parallel (BSP) model [43] and the LogP model of Culler et al . [15, 28], which try to capture th e
difficulties presented by all of these issues (in a topology-independent fashion) . The BSP and LogP
models both explicitly account for the latency in memory accesses, as well as the potential fo r
pipelining such accesses (with the LogP model being a bit more general) . They both deal wit h
memory contention, and they both allow for asynchrony (with the LogP model being a bit les s
restrictive) . It is more difficult to design optimal algorithms for these models, but, then again, the y
are dealing "head on" with fundamental difficulties of parallel computation .

Thus, we now have what can be viewed as a complete spectrum of computational models fo r
parallel computation, which ranges from the simple, yet unrealistic, PRAM model to the more -
complex, but fairly realistic, BSP and LogP models . One can therefore choose to concentrate o n
the study of the inherent parallelism in a problem via a PRAM algorithm or one can address th e
issues in parallel computation are not fully captured by such a PRAM algorithm . Current research
in parallel algorithm design seems to be well-balanced in this regard, as demonstrated by the paper s
that appeared in this year's (SIGACT co-sponsored) ACM Symposium on Parallel Algorithms an d
Architectures (SPAA) . According to my classification, there are a dozen papers describing PRA M
algorithms, a dozen describing network algorithms or protocols, and at least another dozen directe d
at methods for dealing with asynchrony, memory contention, and/or latency.

References

[1] A. Aggarwal, B . Alpern, A . K . Chandra, and M . Snir, "A model for hierarchical memory," i n
Proc. ACM Symp . on Theory of Computing, 305-314, 1987 .

[2] A . Aggarwal, A . K . Chandra, and M . Snir, "On communication latency in PRAM computation, "
in Proc. (1st) ACM Symp. on Parallel Algorithms and Architectures, 11-21, 1989 .

[3] A . Aggarwal, A . K . Chandra, and M . Snir, "On communication latency in PRAM computation, "
in Proc. (1st) ACM Symp, on Parallel Algorithms and Architectures, 11-21, 1989 .

[4] A . Aggarwal and C . G . Plaxton, "Optimal parallel sorting in multi-level storage," in Proc. 5th
ACM-SIAM Symp . on Discrete Algorithms, 1994 .

[5] A . Aggarwal and J . S . Vitter, "The input/output complexity of sorting and related problems, "
Comm. ACM, 31, 1116-1127, 1987 .

[6] S . G . Akl, The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood Cliffs, NJ ,
1989 .

[7] S . G . Aid and K . A . Lyons, Parallel Computational Geometry, Prentice-Hall, 1993 .

[8] R . J . Anderson, "Primitives for asynchronous list compression," in Proc. 4th ACM Symp. on
Parallel Algorithms and Architectures, 199-208, 1992 .

[9] R. J . Anderson and H . Woll, "Wait-free parallel algorithms for the union-find problem," in Proc .
23rd ACM Symp . on Theory of Computing, 370-380, 1991 .

[10] J. Aspnes and M. Herlihy, "Wait-free data structures in the asynchronous PRAM model," in
Proc. 2nd ACM Symp. on Parallel Algorithms and Architectures, 340-349, 1990 .

[11] Y. Aumann, Z . M . Kedem, K . V. Palem, and M . O. Rabin, "Highly efficient asynchronou s
execution of large-grained parallel programs," in Proc. 34th IEEE Symp. on Foundations of
Computer Science, 1993 .

19



[12] R. Cole and O . Zajicek, "The expected advantage of asynchrony, " in Proc. 2nd ACM Symp . on
Parallel Algorithms and Architectures, 85-94, 1990 .

[13] T. H . Cormen, "Asymptotically tight bounds for performing BMMC permutations on paralle l
disk systems, " in Proc. 5th ACM Symp . on Parallel Algorithms and Architectures, 130-139 ,

1993 .

[14] T. H. Cormen, "Fast permuting on disk arrays, " J . Par. and Dist . Comput ., 17, 41-57, 1993 .

[15] D . E. Culler, R . M . Karp, D . A. Patterson, A. Sahay, K . E . Schauser, E . Santos, R . Subramonian ,
and T. von Eicken, "LogP : Towards a realistic model of parallel computation," in Proc. 4th ACM
SIGPLAN Symp. on Princ . and Practice of Parallel Programming, 1993 .

[16] M . Dietzfelbinger and F . Meyer auf der Heide, "Simple, efficient shared memory simulations, "
in Proc. 5th ACM Symp . on Parallel Algorithms and Architectures, 110-119, 1993 .

[17] C . Dwork, M . Herlihy, and 0 . Waarts, "Contention in shared memory algorithms," in Proc .

25th ACM Symp . on Theory of Computing, 174-183, 1993 .

[18] A . Gibbons and W . Rytter, Efficient Parallel Algorithms, Cambridge University Press, New
York, 1988 .

[19] P . B . Gibbons, "A more practical PRAM model," in Proc. (1st) ACM Symp. on Parallel Algo-
rithms and Architectures, 158-168, 1989 .

[20] P. B . Gibbons, Y . Ivlatias, and V . Ramachandran, "The QRQW PRAM : Accounting for con-
tention in parallel algorithms," in Proc. 5th ACM-SIAM Symp . on Discrete Algorithms, 1994 .

[21] M . T . Goodrich, J . J . Tsay, D . E. Vengroff, and J . S . Vitter, "External-memory computational
geometry," in Proc. 34th IEEE Symp . on Foundations of Computer Science, 1993 .

[22] T . Hagerup and C . Rub, "A guided tour of Chernoff bounds, " Information Processing Letters ,
33, 305-308, 1989/90 .

[23] ed . J . H . Reif, Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, Inc ., San Mateo ,
CA, 1993 .

[24]J . JJa, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, Mass ., 1992 .

[25] A. R. Karlin and E. Upfal, "Parallel hashing : An efficient implementation of shared memory, "
J . ACM, 35(4), 876-892, 1988 .

[26] R. Karp, M . Luby, and F . Meyer auf der Heide, "Efficient pram simulation on distribute d
machines, " in Proc. 24th ACM Symp . on Theory of Computing, 318-326, 1992 .

[27] R. M . Karp and V . Ramachandran, "Parallel algorithms for shared memory machines," i n
Handbook of Theoretical Computer Science, J . van Leeuwen, editor, Elsevier/The MIT Press ,
Amsterdam, 869-941, 1990 .

[28] R. M. Karp, A . Sahay, E. Santos, and K. E . Schauser, "Optimal broadcast and summation i n
the LogP model," in Proc. 5th ACM Symp . on Parallel Algorithms and Architectures, 142-153 ,

1993 .

[29] C . Kruskal, L . Rudolph, and M . Snir, "A complexity theory of efficient parallel algorithms, "
Theoretical Computer Science, 71, 95-132, 1990 .

20



[30] F . T . Leighton, Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hyper -
cubes, Morgan Kaufmann, San Mateo, CA, 1992 .

[31] F . Luccio, A . Pietracaprina, and G. Pucci, "A new scheme for the deterministic simulation o f
prams in vlsi, " Algorithmica, 5, 529-544, 1990 .

[32] C . Martel, A . Park, and R. Subramonian, "Work-optimal asynchronous algorithms for share d
memory parallel computers, " SIAM J. Comput ., 21(6), 1070-1099, 1992 .

[33] C. Martel, R. Subramonian, and A . Park, "Asynchronous PRAMs are (almost) as good a s
synchronous PRAMs," in Proc. 30th IEEE Symp . on Foundations of Computer Science, 590-
599, 1990 .

[34] K . Mehlhorn and U . Vishkin, "Randomized and deterministic simulations of PRAMs by paralle l
machines with restricted granularity of parallel memories, " Acta Informatica, 9(1), 29-59, 1984 .

[35] F . Meyer auf der Heide, "Hashing stratefies for simulating shared memory on distributed memor y
machines," in Parallel Architectures and Their Efficient Use : First Heinz Nixdorf Symposium ,
Lecture Notes in Computer Science, vol . 678, Springer-Verlag, 1993 .

[36] N . Nishimura, "Asynchronous shared memory parallel computation," in Proc. 2nd ACM Symp .
on Parallel Algorithms and Architectures, 76-84, 1990 ,

[37] M . H . Nodine and J . S . Vitter, "Large-scale sorting in parallel memories," in Proc. 3rd ACM
Symp. on Parallel Algorithms and Architectures, 29-39, 1991 .

[38] M . H. Nodine and J . S . Vitter, "Deterministic distribution sort in shared and distributed memor y
multiprocessors," in Proc . 5th ACM Symp . on Parallel Algorithms and Architectures, 120-129 ,
1993 .

[39] A . G . Ranade, "How to emulate shared memory," J . on Computers and System Sci ., 42, 307-
326, 1991 .

[40] R . Subramonian, Asynchronous Algorithms for Shared Memory Parallel Computers, Ph.D . the-
sis, UC, Davis, 1991 .

[41] R . Subramonian, "Designing synchronous algorithms for asynchronous processors," in Proc . 4th
ACM Symp. on Parallel Algorithms and Architectures, 189-198, 1992 .

[42] J. D . Ullman, Computational Aspects of VLSI, Morgan Kaufmann, San Mateo, CA, 1992 .

[43] L . G . Valiant, "A bridging model for parallel computation, " Comm. ACM, 33, 103-111, 1990 ,

[44] J . S . Vitter, " Efficient memory access in large-scale computation, " in Proc . 1991 Symposium
on Theoretical Aspects of Computer Science (STAGS), Lecture Notes in Computer Science ,
Springer-Verlag, 1991 .

[45] J . S . Vitter and E. A . M . Shriver, "Optimal disk I/O with parallel block transfer," in Proc . 22nd
ACM Symp . on Theory of Computing, 159-169, 1990 .

21


