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1 Introductio n

If you are the type that always orders vanilla in the ice cream shop, then you should probably sta y
away from parallel algorithm design, for you may never get past the fact that any given paralle l
algorithm may be designed for any one of several different computational models . If, on the other
hand, you are the type who thinks there are still not enough channels on cable TV, then you migh t
think the number of parallel models is woefully small . If you fall into neither camp, which, accordin g
to the Chernoff bounds [22], you probably should, then you may find this first SIGACT News column
on parallel algorithm design of some use . For here I review a "classic" model for parallel computatio n
and I survey some interesting work on alternative models for parallel computation .

2 A Classic Model for Parallel Computation : The PRA M

The shared-memory model, or parallel random access machine (PRAM), is classic in parallel al-
gorithm design . In this model processors share a common memory space, which they access in a
synchronous (lock-step) fashion . This model is further subdivided by assumptions placed on ho w
concurrent accesses to the same memory locations are to be handled, with the most popular conven-
tions being exclusive-read/exclusive-write (EREW), concurrent-read/exclusive-write (CREW), an d
concurrent-read/concurrent-write (CRCW) . The CRCW PRAM is further subdivided by the mech-
anism used to handle concurrent writes, with the most popular methods being common, where all
processors writing to a location must all be writing the same value, and arbitrary, where memor y
contention is handled arbitrarily (which, of course, is different than resolving the conflict randomly) .
The primary advantage of the PRAM model is that it is simple to design algorithms for it ; it is the
natural extension of the well-accepted RAM model . Typically, the first parallel algorithms solvin g
a particular problem are designed for the PRAM model, and it is often used to demonstrate th e
"parallelizability" of such a problem . Several good general publications addressing techniques fo r
designing algorithms for this model have been written, including the book edited by Reif [23] an d
those written by JaJa [24], Gibbons and Rytter [18], Akl [6], and Akl and Lyons [7], as well as the
book chapter by Karp and Ramachandran [27] . The primary disadvantage of the PR-AM model i s
that it doesn't realistically capture all the intricacies of parallel computation as we understand i t
today.
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3 More Realistic Parallel Computation Model s

For the remainder of this column I would therefore like to provide an overview properties of rea l
parallel architectures that are not explicitly modeled by the PRAM, giving references to work that
more closely models each such property . This is not intended to be a comprehensive survey, however ,
so please do not be offended if I have omitted some important recent work in this area . Nevertheless ,
I trust that I have provided enough references so that the dedicated reader can "come up to speed "
after a few pointer hops in the literature .

3 .1 Network Topology

One of the well-known intricacies of parallel computation ignored by the PRAM model is the method
for interconnecting the processors and their common memory space . In the network model this inter-
connection between processors is described explicitly . In it each processor is allocated some amount
of local memory (as in the RAM model) and then the processors are interconnected in a specifie d
communication network . The network model is then subdivided by assumptions about the topol-
ogy of this network . For example, this network might be a binary tree, a mesh, a hypercube, or an
expander graph . Published network algorithms tend to be more complicated than their PRAM coun-
terparts, since data movement through the network must be described in detail, but the algorith m
is usually more efficient than what can be derived by a straightforward simulation of the PRA M
algorithm. The published literature on such simulation results, as well as a host of specific network
algorithms, is quite rich, and several such methods can be found in the recent comprehensive boo k
by Leighton [30], as well as the somewhat older book by Ullman [42] .

3 .2 Asynchrony

Another fundamental issue that the PRAM models (and standard network models) do not specificall y
address is how to implement the synchronous parallel clocks driving the different processors . Existing
parallel machines may be implemented synchronously by having all the processors simultaneousl y
perform the same program, whose instructions are broadcast to them by a synchronized communica-
tion network, or the processors may be allowed to perform different computations in an asynchronou s
fashion. Simulating a PRAM algorithm in this latter framework is therefore complicated by this lac k
of synchrony .

Fortunately, this issue has not been lost on the parallel algorithms community, as severa l
researchers have described asynchronous versions of the PRAM model, and have given severa l
methods for solving specific problems, such as list ranking and parallel prefix sums, and fo r
simulating synchronous PRAM algorithms that possess "limited synchrony," on asynchronou s
PRAMs [8, 10, 9, 11, 12, 19, 29, 32, 33, 36, 41] . Typically, the asynchronous PRAM is define d
so that time is partitioned into "slots" in which processors may either "sit out" or may perfor m
some type of atomic read and write operation . Computations are usually analyzed in terms of an
expected work bound, which is either taken over all possible interleavings of atomic operations o r
over all possible random choices made by the asynchronous machine . For a survey of such work ,
please see the Ph .D . thesis of Subramonian [40] .

3 .3 Memory contention

Another important issue that is arguably not fully modeled by the standard PRAM models is memor y
contention . The performance of most existing parallel machines significantly degrades if there ar e
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a lot of simultaneous accesses to the same memory cell or to the same module of memory cells .
Typically, such requests get queued up and processed in a (slow) sequential fashion . Fortunately, thi s
issue is addressed in recent papers by Dwork, Herlihy, and Waarts [17], who define an asynchronou s
parallel model that serves simultaneous memory accesses in a queued fashion, and by Gibbons ,
Matias, and Ramachandran [20], who define synchronous and asynchronous versions of a model the y
call the QRQW PRAM . In this model k simultaneous accesses to the same memory cell require f (k )
time to process, for some function f (usually f(k) = k) . This model more-accurately accounts fo r
the way real parallel machines handle memory contention than the existing PRAM models, whic h
either assume that f(k) = oo for k > 1 (as in the EREW PRAM model) or assume that f(k) = 1 (as
in the CRCW PRAM model) . Interestingly, Gibbons et al . show that a randomized QRQW PRAM
is strictly stronger than a randomized EREW PRAM .

A related model is the Distributed Memory Machine (DMM) or Module Parallel Compute r
(MPC), where memory is partitioned into modules, one per processor, such that each module ca n
accept only one access at a time . Access to a module is made through an access window, which
is a register that can be read from or written to by the module as well as the processors in th e
DMM . As with the PRAM, the DMM is subclassified by the mechanism used to resolve acces s
conflicts to access windows, with EREW and CRCW schemes being common . This model mor e
realistically captures the fact that most memory modules have many more memory cells than in-
put/output pins with which to access those cells . The main computational issues addressed for
DMMs, then, is how they can simulate PRAMs, typically through the use of data replication and/o r
hashing [16, 25, 26, 31, 34, 35, 39] . For example, Karp, Luby, and Meyer auf der Heide [26] show how
to simulate an 0(n log log n)-processor CRCW PRAM on a randomized n-processor CRCW DM M
with delay 0 (log log n log* n) . For more information on such results, please see the survey paper b y
Meyer auf der Heide [35] .

3.4 Latency

Another issue that is not specifically addressed by the PRAM is latency, the time that elapse s
between the issuance of a memory access request and the receipt of the response to that request a t
the processor that issued it . Of course, if all accesses have the same latency and accesses cannot b e
pipelined, then one can simply multiply the running time of a PRAM algorithm by some latency dela y
factor in order to derive a more realistic running time . But if either of these conditions fails to hold ,
then one may wish to explicitly model the latency properties . For example, parallel architectures
that use caches, parallel disks, or other hierarchical memories are instances when these condition s
fail . There may be a considerable delay for accessing a specific memory cell, c, but accessing th e
memory cells neighboring c may subsequently become much faster . Several parallel hierarchica l
memory models have been introduced so as to model this phenomenon, and several researchers hav e
developed efficient algorithms for solving fundamental problems, such as routing and sorting, in thes e
models [1, 2, 3, 4, 5, 13, 14, 21, 37, 38, 45] . For more information on these algorithms and models ,
please see the survey paper by Vitter [44], as well as some of the more recent papers just referenced .

4 Conclusion

In broad brush strokes I have reviewed a classic parallel computational model 	 the PRAM—and I
have tried to outline recent work on methods for modeling aspects of parallel architectures that ar e
not captured by the PRAM model—network topology, asynchrony, memory contention, and latency .
I would be remiss, however, if I did not mention two recent models, Valiant's Bulk-Synchronous
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Parallel (BSP) model [43] and the LogP model of Culler et al . [15, 28], which try to capture th e
difficulties presented by all of these issues (in a topology-independent fashion) . The BSP and LogP
models both explicitly account for the latency in memory accesses, as well as the potential fo r
pipelining such accesses (with the LogP model being a bit more general) . They both deal wit h
memory contention, and they both allow for asynchrony (with the LogP model being a bit les s
restrictive) . It is more difficult to design optimal algorithms for these models, but, then again, the y
are dealing "head on" with fundamental difficulties of parallel computation .

Thus, we now have what can be viewed as a complete spectrum of computational models fo r
parallel computation, which ranges from the simple, yet unrealistic, PRAM model to the more -
complex, but fairly realistic, BSP and LogP models . One can therefore choose to concentrate o n
the study of the inherent parallelism in a problem via a PRAM algorithm or one can address th e
issues in parallel computation are not fully captured by such a PRAM algorithm . Current research
in parallel algorithm design seems to be well-balanced in this regard, as demonstrated by the paper s
that appeared in this year's (SIGACT co-sponsored) ACM Symposium on Parallel Algorithms an d
Architectures (SPAA) . According to my classification, there are a dozen papers describing PRA M
algorithms, a dozen describing network algorithms or protocols, and at least another dozen directe d
at methods for dealing with asynchrony, memory contention, and/or latency.
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