
Decision Tree Construction in Fixed Dimensions:Being Global is Hard but Local Greed is GoodMichael T. Goodrich�z Vincent Mirelli Mark Orletskyyz Jeffery SaloweJohns Hopkins US Army Res. Lab Johns Hopkins QuesTech, Inc.goodrich@cs.jhu.edu vmirelli@nvl.army.mil orletsky@cs.jhu.edu jsalowe@nvl.army.milAbstractWe study the problem of �nding optimal linear decision trees for classifying a set of points in IRdpartitioned into concept classes, where d is a �xed, but arbitrary, constant. We show that optimaldecision tree construction is NP-complete, even for 3-dimensional point sets. Nevertheless, we canprove a number of interesting approximation bounds on the use of random sampling for �nding optimalsplitting hyperplanes in greedy decision tree constructions. We give experimental evidence that, whileproviding asymptotic guarantees on split quality, this random sampling approach behaves as goodin practice as uniform randomization strategies that do not provide such guarantees. Finally, weprovide experimental justi�cation for coupling this random sampling strategy with locally-greedy \hillclimbing" methods.1 IntroductionA general framework for machine learning is that one is given a (hopefully representative) sample S of npoints taken from some much larger (possibly in�nite) set of points C � IRd, which is partitioned in anunknown way into a �nite number of concept classes. Each point p in S is given with its classi�cation|thename of the concept class to which p belongs. The learning problem is to build a classi�cation methodfrom the points in S such that given an arbitrary query point q 2 C one can quickly and accurately assigna concept class to q using this method. This framework di�ers from some other, more general learningframeworks (e.g., see [1, 3, 2, 12, 14, 15]), but is su�ciently powerful to contain many practical, \realworld" instances of the learning problem.In the linear decision tree approach to this learning problem one uses S to build a decision tree Twhere each decision involves testing if the query point is beneath or beyond a speci�c d-dimensionalhyperplane. A query proceeds down the tree T from the root until arriving at a leaf that is labeled withthe name of a concept class, which is then output as the classi�cation for the query point. An example ofclassi�ed points and an associated decision tree are shown in Figure 1. Research in arti�cial intelligenceis showing linear decision trees to be a powerful, practical method for performing these machine learningclassi�cation tasks [4, 5, 8, 13, 18, 19, 20, 21, 22, 23]. Typically, the \real world" problems where suchmethods are being applied involve points that are taken from IRd, with d being a reasonably-small constant(typically, d � 50). There has been a fairly extensive empirical study of such instances of the learningproblem, but there has not been a great deal of analytic study of linear decision tree learning for suchapplications. The goal of this paper is to give such an analytic study of �xed-dimensional decision-treeconstruction while also maintaining a close tie with results of experimental research.�This research supported in part by the NSF under Grants IRI-9116843 and CCR-9300079.yThis research supported in part by the NSF under Grant IRI-9116843.zThis work was also supported by the S3 Information Processing Directorate under the auspices of the U.S. Army ResearchO�ce Scienti�c Services Program administered by Battelle (Delivery Order 1330, Contract No. DAAL03-91-C-0034).
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Class 1 Class 3 Class 3 Class 2Figure 1: Two dimensional classi�ed data points and an associated decision tree.1.1 Being Global is HardOne of the main challenges in using a decision tree for the learning problem is in quickly constructinga tree that is accurate. It is well known, for example, that constructing a best decision tree in generalsettings [14, 15] or in arbitrary dimensions [7, 17] is NP-complete; hence, it is extremely unlikely thatwe will ever discover a polynomial-time algorithm for constructing a best decision tree in these contexts.In the context of �xed-dimensional learning, however, each of these NP-completeness proofs fail. Indeed,each of their respective optimization problems are polynomial-time solvable in a �xed-dimensional setting.Thus, one might be tempted to believe that global decision tree optimization might actually be tractablein �xed dimensions.Unfortunately, this is not the case. For, as we show in this paper, the problem of �nding an optimalk-node decision tree classifying n points taken from two classes in IR3 is NP-complete. Even so, one canstill produce very good decision trees in practice by relying on the greedy method.1.2 Local Greed is GoodThe greedy approach is to build the tree in a top-down fashion. Given a current tree node v, and a subsetS(v) � S (the learning set for v) in IRd, the goal is to �nd a splitting hyperplane h that minimizes someimpurity measure for the points in S(v). One then creates two children for v, which are respectivelyassociated with the points of S(v) beneath h and those beyond h (any points on h can be handled usingsome \tie-breaking" scheme). Finally, one recurses on the new children of v if their impurity measureis still above a desired threshold. Typically, this tree construction phase is then followed by a pruningphase, which improves the tree even more.Unfortunately, the greedy approach is perhaps a bit \too greedy" in this context. This is because�nding a best splitting hyperplane h appears to require testing all the �nd� hyperplanes determined bythe n points in S(v). Using a straightforward algorithm for �nding h, then, requires O(nd+1) time,although this can be reduced to O(nd) using computational geometry techniques1. Even though this isat least a polynomial-time computation when d is constant, it is still e�ectively intractable for realisticproblem sizes. For example, when n is, say, about 1,000 and d is about 10, this computation wouldtake approximately 2100 steps (which is more than the current estimate on the number of atoms inthe universe). To deal with this combinatorial explosion, of course, requires that we restrict the set ofcandidate hyperplanes in some way.1A more sophisticated method is to construct the arrangement of hyperplanes dual to the input points and then traversethis arrangement in a depth-�rst fashion. 2



Most previous approaches to decision tree construction have been to restrict the set of candidatehyperplanes to the O(dn) that are perpendicular to one of the coordinate axes. These hyperplanes areeasy to test (they only require a linear comparison for a single coordinate of a test point), and thebest such hyperplane can be found in O(dn log n) time. Unfortunately, restricting the candidate set ofhyperplanes in this way ignores any possible dependencies that may exist between coordinates, which iscommon in \real world" data sets. This is therefore very possibly much too restrictive.For this reason, several researchers, including the designers of the well-known and widely-used CARTsystem by Breiman et al. [8], have still allowed for non-axis-perpendicular splits, but have restricted theset of candidates to those encountered in a heuristic \hill-climbing" search. In this approach, one startswith an initial candidate hyperplaneh0 : a1x1 + a2x2 + � � �+ adxd = 1;and one iteratively varies a1, a2, and so on, each time �xing the value that achieves the lowest impuritymeasure. This approach can be implemented to run in O(dn log n) time, and it is guaranteed to �nd a(possibly non-axis-perpendicular) hyperplane that achieves a local minimum with respect to the impuritymeasure (and this iterative strategy). The main problem with this approach, however, is that it is highlysensitive to the choice of initial hyperplane h0 and it is insensitive to the way the input points aredistributed in IRd.We show how to overcome these de�ciencies, however, by designing a scheme that is distributionsensitive. Our method gives a collection of starting hyperplanes that can be found quickly and which also\cover" the input points, even if there are dense clouds of points packed into an area of small volume.In fact, we are able to provide worst-case bounds on the approximation error between the split ourmethod �nds and an optimal split. We give simple randomized methods as well as more sophisticateddeterministic procedures based upon computational geometry techniques. We have implemented therandomized strategies in the OC1 decision-tree learning system, which was developed by Murthy etal. [18] as an improvement to the well-known CART system [8]. We give empirical results that showthat classi�cation accuracies are as good as uniformly-random methods that do not provide worst-caseapproximation bounds. Moreover, we provide empirical justi�cation for the locally-greedy hill-climbingstrategy [8].2 Global Optimization is Hard even in 3-DimensionsIn this section we show that decision tree optimization is hard even if the points in the learning set Sare taken from IR3. In measuring the size of a decision tree we will only count the internal nodes, sincethis is the measure of the number of splits needed to classify a certain collection of points. Thus, in thisnomenclature, a decision tree that contains only one split will have one node, even though it actually hasthree vertices, two of which are leaves.The speci�c problem we address is the following:Decision-Tree. Given a set S of n points in IR3, divided into two concept classes \red"and \blue," is there a decision tree T with at most k nodes that separates the red points fromthe blue points?Theorem 2.1: Decision-Tree is NP-complete.Proof: First, let us observe that Decision-Tree is in NP. This is because each candidate split in alinear decision tree is determined by 3 points, hence, there are �(n3) candidate splits. We can thereforeguess k splits and a tree structure with one of these splits at each node, and we can then test that thisdecision tree separates all the red and blue points. 3



To prove that Decision-Tree is NP-hard we will reduce the Polytope Vertex-Cover problemproblem to it, which was shown to be NP -complete by Das and Goodrich [11]. In this problem, one isgiven a convex polyhedron P in IR3 and an integer k and asked if there is a subset of the vertices of Pthat cover all the edges of P .For the sake of simplicity, let us allow as input to the Decision-Tree problem point sets where redpoints and blue points \overlap". A complete classi�cation of such a pair of points must therefore have asplit that passes through this common location in space. (This restriction can be relaxed by forcing suchpairs to be separated by an \in�nitesimal" amount �.) Our reduction is based upon judiciously placingsuch pairs of points on the edges of Q, the Poincar�e dual to P , i.e., Q is a convex polyhedron whose1-skeleton is the graph-theoretic planar dual to the 1-skeleton of P . Thus, a face cover in Q correspondsimmediately to a vertex cover in P . We place two red-blue pairs along each edge of Q so that the onlyway four such pairs can be co-planar is if they all lie on the same face of Q. Let S denote this set of redand blue points. Note that, since Q is a convex polyhedron, each face of Q contains at least six pairs ofpoints in S. This construction can all be done in polynomial time.We claim that there is a k-node decision tree for S if and only if there is a k-face face-cover for Q(and, hence, a k-node vertex cover for P ). First, note that if there is a k-face face-cover for Q, then theremust be k planes that collectively contain all the pairs in S; hence, there is a k-node decision tree forS. For the more di�cult direction, suppose there is no k-face face-cover for Q; that is, any face coverrequires more than k faces. This implies that any decision tree restricted to splits containing faces of Pmust have more than k nodes. Note, however, that each such split contains at least six pairs of points inS whereas any other type of split contains at most three pairs of points in S. Therefore, since each pairof points in S must be contained in some split, there must be more then k nodes in any decision tree thatcompletely separates the pairs in S. This completes the proof. 2Thus, it is perhaps too ambitious to try to optimize an entire decision tree at once, even in a �xed-dimensional setting.3 E�cient Decision Tree ConstructionInstead, researchers have concentrated on using an e�ective heuristic for decision tree construction|thegreedy method. Recall that this approach is to build the tree in a top-down fashion, as mentioned in theintroduction. Given a current tree node v, and a set of n input points S(v) (the learning set for v) in IRd,the goal is to �nd a splitting hyperplane h that minimizes some impurity measure for the points in S(v).3.1 The Uniform StrategyThe OC1 decision-tree learning system gives a strategy for performing this task by performing k di�erenthill-climbing searches, each starting from one of a set of k starting hyperplanes h1; h2; : : : ; hk. The bestsplit encountered in all these hill-climbs is the one chosen for the current node v, where quality is measuredrelative to a given impurity function. The method for choosing each hi in the OC1 system is simple|justpick each of coordinates a1; a2; : : : ; ad at random (from the appropriate range for each feature). Thisovercomes the e�ect of a bad initial hyperplane choice to a degree (in that OC1 uniformly beats theCART system), but it does not easily lend itself to guaranteed performance bounds.The di�culty in providing such a point with a such a uniform strategy is that if the input points arenot uniformly distributed, then it is very possible that the uniform strategy will \miss" some dense, andpresumably information-rich, region in the space of candidate hyperplanes simply because it has smallvolume. Even though such a region could contain a large number of candidate hyperplanes, its smallvolume insures that the uniform strategy will most likely \pass it by". For this reason, our approachesfor selecting candidate starting hyperplanes are di�erent|they are distribution-sensitive.4



3.2 A Data-Sensitive StrategyOur method is to choose each of the k candidate hyperplanes hi to be the hyperplane determined byd of the n input points, selected at random from S(v). While on the surface this may seem to not bethat substantial a change from the uniform initialization procedure, it actually is quite di�erent in somefundamental ways. At an intuitive level the main advantage of this method is that is guaranteed toselect uniformly from the entire set of candidate hyperplanes|even if most of them are \packed" into asmall region in the space of candidate hyperplanes. More importantly, however, we can actually provesomething about how \far" one of are candidate hyperplanes can be from the optimal splitter, which issomething that is not possible with the uniform initialization procedure.For any hyperplane h, let A(h) denote the number of points in S(v) that are above h. Also, let hoptdenote the optimal splitter, and let hj denote the best initial hyperplane in our scheme (without evenperforming the hill-climbing improvement).Theorem 3.1: The expected di�erence between A(hopt) and A(hj) is onlyO(n=[kf(n=k1=d)]1=d);where f(l) denotes the expected size of the convex hull of a random subset of size l taken from S(v).Proof: Dualize the input points in S(v) to hyperplanes. Each point in this dual space corresponds toa candidate hyperplane. Measure the distance between two candidates points p and q (corresponding tohyperplanes in the primal) as being the number of (dual) hyperplanes one crosses in moving from p to q.Imagine performing a transformation of coordinates so that the point dual to hopt becomes the origin o.We wish to show that the point closest to o and dual to one of our candidate hyperplanes has expecteddistance O(n=[kf(k1=d)]1=d) from d. In [10] Clarkson and Shor show (using a di�erent notation, of course)that the number of points at distance l from o is expected to be �(ldf(n=l)). Thus, the expected numberof points at distance l from o that correspond to candidate hyperplanes in our scheme is" k�nd�# ldf(n=l):The theorem follows, then, by observing that this expectation is 
(1) if l is O(n=[kf(k1=d)]1=d). 2In other words, we can actually bound in a worst-case sense how close we expect to come to theoptimal splitter. Moreover, this bound can be expressed as a function of k, the number of candidatestarting hyperplanes. And this doesn't even take into consideration the improvements we achieve by thenperforming a hill-climbing procedure from each of these candidates.To make the above theorem concrete, consider a set S(v) of n points that are uniformly distributedinside a d-dimensional sphere. In this case f(k1=d) is �(k(d�1)=(d+1)); hence, the expected di�erencebetween A(hopt) and A(hj) in this case is O(n=k2=(d+1)). Thus, if n is, say, 50,000 and d is, say, 5, thenwe can expect to come within an additive factor of a third of the input points by considering just 27random candidate hyperplanes (and this is the worst-case!).3.3 Deterministic MethodsInterestingly, we can actually achieve the above results deterministically and in a worst-case fashionusing computational geometry techniques. One possible method is to dualize the input points in S(v)to hyperplanes and �nd an O(k)-sized (1=k1=d)-cutting for this set. Recall that a (1=r)-cutting of a setof hyperplanes is a simplicial complex � partitioning IRd such that the interior of each simplex � 2 � isintersected by at most n=r hyperplanes. Such a complex of size O(rd) can be found deterministically in5



O(nrd�1) time [9, 16], which, in terms of k, is a complex of size O(k) that can be found in O(nk(d�1)=d)time. Taking the hyperplanes dual to the vertices of this complex will achieve the same bounds quotedin Theorem 3.1.4 Error Bounds for Common Decision Tree Impurity MeasuresThe most natural impurity measure included in CART and OC1 is to choose a splitting hyperplanethat maximizes the number of correctly classi�ed points, where a region is classi�ed by a plurality ofthe points. (We call this \sum correctly classi�ed" below.) Breiman et al. [8], however, argue that thisimpurity measure has some important de�ciencies, so they de�ne other impurity measures, for which wegive worst-case approximation bounds in this section.Recall that the overall objective is to minimize classi�cation error at the leaves, so minimizing theclassi�cation error at an internal node may not be necessary. Theorem 3.1 implies that there is a startinghyperplane h (i.e., before hill-climbing) for which the cardinality of the set of points in the left halfspacede�ned by h is approximately the same as the cardinality of the left halfspace de�ned by h�, a hyper-plane that optimizes a particular impurity measure. In this section, we explore the relationship betweenTheorem 3.1 and some of the impurity measures.Recall that A(h) represents the number of points above hyperplane h; let B(h) = n � A(h) be thenumber of points below (or on) hyperplane h. Suppose there are c classes, labeled 1 through c. Denotethe cardinality of the points in class i above h by Ai(h), and denote the similar quantity below h by Bi(h).Let a(h) = A(h)=n, b(h) = B(h)=n, ai(h) = Ai(h)=A(h), and so on. Finally, let g(k; d) = [kf(k1=d)]1=d.The purpose of the \sum correctly classi�ed" impurity measure is to �nd a hyperplane h� thatmaximizes s1(h) = maxiAi(h) + maxj Bj(h). A slight extension of Theorem 3.1 implies that there is ahyperplane h such that Ai(h) 2 [Ai(h�)�O(n=g(k; d)); Ai(h�) +O(n=g(k; d))]:Therefore, hyperplane h satis�ess1(h�)�O(n=g(k; d)) � s1(h) � s1(h�) +O(n=g(k; d)):The analysis for the impurity measure \max minimum correctly classi�ed" is similar.The \twoing criterion" is de�ned in the following way. It �nds a hyperplane h� that maximizess2(h) = a(h)b(h)( cXi=1 jai(h)� bi(h)j)2:We must compare s2(h) with s2(h�) = a(h�)b(h�)( cXi=1 jai(h�)� bi(h�)j)2:Let e = jA(h�)� A(h)j. Then ja(h�) � a(h)j = jb(h�)� b(h)j = e=n. Furthermore, it is possible to showthat each term jai(h) � bi(h)j satis�esjjai(h)� bih)j � jai(h�)� ai(h�)jj = O� eminfA(h); B(h)g� :It is apparent that a hyperplane h with e = O(n=g(k; d)) satis�ess2(h�)�O� cnminfA(h); B(h)gg(k; d)� � s2(h) � s2(h�) +O� cnminfA(h); B(h)gg(k; d)� :The error bounds for the Gini index were determined in a similar fashion.A summary of the impurity measures and the error bounds is given in Table 4. All but the Gini indexare stated as maximization problems. 6



Impurity Measure De�nition Error BoundTwoing Criterion a(h)b(h)(Pci=1 jai(h)� bi(h)j)2 O( cnminfA(h);B(h)gg(k;d) )Gini Index a(h)(1 �Pci=1 ai(h)2) + b(h)(1 �Pci=1 bi(h)2) O( cnminfA(h);B(h)gg(k;d) )Max Minimum minfmaxiAi(h);maxj Bj(h)g O(n=g(k; d))Sum Correct maxiAi(h) + maxj Bj(h) O(n=g(k; d))5 Empirical ResultsIn this section we describe the implementation of the data-sensitive method for choosing a startinghyperplane (prior to hill climbing) and give some comparisons of the accuracies of the resultant decisiontrees produced by this method relative to those produced by the uniform method. The OC1 decision treesoftware package [18] was used to produce the decision trees for each of these starting methods. In allcases, the data-sensitive approach produces decision trees that are comparable in terms of match qualitiesto the uniform approach.5.1 The Data Sensitive Hyperplane Generation MethodThe method of generating a data-sensitive hyperplane used for these experiments is to choose the hyper-plane that is de�ned by d randomly chosen points from the set of current points to be classi�ed. In thisimplementation, sets of d points would be chosen from the current set until a linearly independent set wasobtained. The hyperplane de�ned by these points was then constructed using Gaussian elimination withbackward substitution. If, in choosing the points, a pre-de�ned number of attempts were made before alinerly independent set was found, the algorithm would revert to the uniform method of generating thehyperplane randomly. This pre-de�ned limit was 25 for all experiments presented below and this limitwas rarely reached.5.2 The Experimental SetupEach run of the software consisted of a �ve-fold cross-validation experiment. In such an experiment, thelearning data were randomly partitioned into �ve equal parts. Four of the �ve parts would be used toconstruct a decision tree and the remaining part would be used to assess the quality of the tree produced.In the �ve-fold cross validation experiment, each one of the �ve parts would be kept, in turn, as the partto be used for testing and the other four would be used to construct the tree. The accuracies of the �vedi�erent passes would then be averaged to determine the quality of the run. In the experiments below, theaccuracies of 100 such �ve-fold cross-validation experiments were averaged to obtain each point plotted.5.3 Experiment 1Experiment 1 was constructed to determine the extent to which the classi�cation accuracy of the de-cision trees produced by the data-sensitive approach would compare to (or track with) those producedby the uniform hyperplane generation approach. Three di�erent data sets were used and the relativeperformances of the two methods were comparable in all cases.5.3.1 Experiment 1 - Data Set 1Data Set 1 consists of three hundred three-dimensional points such that one hundred were randomlyselected with uniform distribution from the ball of 0.01 radius centered about the point (1, 0, 0), onehundred were similarly selected from an identical ball centered at (0, 1, 0), and the last third were selected7
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