Strategic Directions in Computational Geometry
Working Group Report

Roberto Tamassia (editor and working group chair),

Pankaj K. Agarwal, Nancy Amato, Danny Z. Chen, David Dobkin,

Robert L. Scot Drysdale, Steven Fortune, Michael T. Goodrich, John Hershberger,
Joseph O’Rourke, Franco P. Preparata, Jérg-R. Sack, Subhash Suri,

loannis G. Tollis, Jeffrey S. Vitter, and Sue Whitesides

ACM Computing Surveys 28(4), 591-606, December 1996. Copyright (© 1996 by the

Association for Computing Machinery, Inc.

This report outlines the evolution of computational geometry, highlights its past accomplishments,
and discusses strategic directions for the future. It complements a recent report by Chazelle et al.
on the impact of computational geometry on applied fields.

1. INTRODUCTION

Computational geometry investigates algorithms for geometric problems. For
an introduction to the field, see the textbooks [Edelsbrunner 1987; Mulmuley
1994; O’Rourke 1994; Preparata and Shamos 1985] and the forthcoming hand-
books [Goodman and O’Rourke 1997; Sack and Urrutia 1997]. Resources on the
World Wide Web are also available (see, e.g., the Directory of Computational Ge-
ometry Software [Amenta |, the Computational Geometry Pages [Erickson]), and
Geometry in Action [Eppstein |. This report outlines the evolution of computational
geometry, discusses strategic research directions with emphasis on methodological
issues, and proposes a framework for interaction between computational geometry
and related applied fields.

A preliminary version of this document is available on the World Wide Web at
http://www.cs.brown.edu/people/rt/sdcr/report.html.

Address: Department of Computer Science, Brown University, 115 Waterman Street, Providence,
RI 02912-1910, USA. rt@cs.brown.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm. org.

2 . R. Tamassia

1.1 Evolution of the Discipline

Motivated by the need for geometric computing in science and engineering appli-
cations that deal with the physical world, about twenty years ago a community of
researchers started forming around the study of algorithms for geometric problems.
A new discipline, christened computational geometry, was soon chartered with the
dual mission of investigating the combinatorial structure of geometric objects and
providing practical tools and techniques for the analysis and solution of fundamen-
tal geometric problems.

As a testimony to the original success of this mission, the initial body of compu-
tational geometry literature had a prominent presence both in the field of theory of
computing and in applied areas, such as graphics, robotics, mechanical engineering,
and pattern matching (see, e.g., the 1984 survey of the area [Lee and Preparata
1984]).

As the discipline came of age through the establishment of specialized conferences
and journals, powerful new techniques of considerable mathematical sophistication
were added to the existing repertory. With this formal strengthening, however,
came an increased emphasis on the combinatorial aspects of computational geom-
etry, which, in a sense, softened the original link with applications.

Such an inward research orientation freed computational geometers from the
unpleasantness of modeling the complexity and imperfections of the physical world
and of coping with the limitations of realistic computing devices. It allowed them
to focus on the analysis of a Platonic world of simple, well-behaved, geometric
objects that can be manipulated by idealized computing machines with unbounded
memory space and real number arithmetic.

As mentioned above, the outcome of this research trend (see Section 2) was an im-
pressive wealth of results on the combinatorics of objects with simple shape (such as
points, lines, and polygons) in low-dimensional space (mostly two and three dimen-
sions), and on the asymptotic complexity of fundamental geometric computations
(e.g., convex hull, intersection reporting, point location, and proximity queries).
The impact of computational geometry was especially strong in the field of de-
sign and analysis of algorithms. Indeed, major progress on general techniques for
searching (e.g., fractional cascading), dynamic data structures (e.g., incremental re-
building), randomized computing (e.g., random sampling), and parallel computing
(e.g., cascading divide-and-conquer) was effected within the computational geome-
try community.

However, at the same time as the accomplishments of computational geometers
were celebrated within the general field of theory of computing, they also became
less understood and appreciated in applied circles. The simplifying models that
enabled theoretical research to flourish turned out to be major impediments to
technology transfer, and hindered computational geometry from accomplishing in
full its dual mission. In particular, the following apparently innocent assumptions
appear to be the main culprits:

—the reliance on asymptotic analysis as the ultimate gauge for estimating the
performance of geometric algorithms, disregarding more practical aspects of effi-
ciencys;

—the adoption of real arithmetic, disregarding numerical finite-precision issues;

Strategic Directions in Computational Geometry . 3

—the neglect of degenerate configurations, disregarding the difficulty of taking them
into account in implementations;

—the model of uniform access to data in memory, disregarding the huge gap be-
tween the speed of main memory and disks.

As a consequence, the excitement of the computational geometry community
at its theoretical accomplishments was mitigated by a sense of discomfort at the
perceived loosening of ties with the very same applications that motivated the
establishment of the discipline. The “pipeline” towards graphics, robotics, GIS, etc.
continued to work successfully, but the rate of technology transfer lagged behind
the growth of the “reservoir” of theoretical results.

It became clear within the community that a correction of course was needed
to achieve a more balanced evolution of the field. Indeed, the last couple of years
have witnessed an increasing consensus in the computational geometry community
towards a renovation of the discipline that would reconcile theory with practice
and reaffirm the original dual mission. It is interesting to notice that a renewed
interest in applications is also developing in the theory of computation community
(see, e.g., the report on “Strategic Directions in Theory of Computing” [Loui et al.

1996)).

1.2 Goals of the Report

A recent report entitled “Application Challenges to Computational Geome-
try” [Chazelle et al. 1996], by the Computational Geometry Impact Task Force
chaired by Bernard Chazelle, stresses the importance of a reorientation of the field
towards providing practical solutions to the specific needs of the applications that
use geometric computing. That report makes several recommendations aimed at
strengthening the pipeline with geometric computing applications, and identifies
ten problem areas where computational geometry can have a major impact.

This report aims at complementing the Impact Task Force Report by identifying
key research directions for the computational geometry community. Our focus is
methodological rather than on specific problem areas.

1.3 Organization of the Report

In Section 2, we highlight selected past accomplishments of computational geome-
try, which illustrate the richness and depth of combinatorial and algorithmic results
obtained so far. Sections 3—4 discuss strategic directions for the field. In partic-
ular, Section 3 addresses the methodological frameworks of robustness, finer-grain
complexity analysis, implementation, and experimentation, while Section 4 deals
with realistic computational paradigms such as parallel and distributed computing,
external-memory algorithms, real-time computing, and randomized and approxi-
mation algorithms. In Section 5, we describe the emerging application domain (not
mentioned in the Impact Task Force Report) of information visualization. A frame-
work for interaction between computational geometry and related applied fields,
such as graphics and geographic information systems, is presented in Section 6.
Final remarks are made in Section 7.

4 . R. Tamassia

2. PAST CONTRIBUTIONS

In this section, we outline some of the major achievements of computational geom-
etry, and provide a visual depiction of the state of advancement of the discipline.

2.1 Selected Major Accomplishments

The purpose of the the following list of accomplishments is to provide ezamples of
fundamental results in various subfields of computational geometry. As discussed
in Sections 1.1 and 2.2, the majority of such results are combinatorial in nature and
deal with asymptotic time complexity. Less explored are practical implementations
and numerical robustness issues. Due to the nature of this report, all technical
references have been omitted. Most of them can be found in [O’Rourke 1996] and
by searching the Geometry Literature Database [Jones].

(1) Simple polygons. For nearly every problem based on simple polygons, asymp-
totically optimal algorithms have been found (e.g., finding the kernel). One of
the last to succumb was triangulation: a simple polygon of n vertices can be
triangulated in O(n) time.

(2) Segment intersection. After many attempts, an output-size optimal algorithm
was constructed for intersecting n segments in O(nlogn + k) time, where k is
the number of pairs of intersecting segments.

(3) Conver hulls. The convex hull of n points in d dimensions has O(nl4/2])
facets, and asymptotically worst-case optimal O(nlogn + nLd/ZJ) algorithms
were found both for even and odd dimensions.

(4) Voronoi diagrams and Delaunay triangulations. An optimal and practical
sweepline algorithm was discovered for constructing Voronoi diagrams in the
plane; implementations are now widely distributed. The deep insight that De-
launay triangulations, the duals of Voronoi diagrams, are projections of convex
hulls from one higher dimension unified two principal lines of research.

(5) Linear programming. Remarkably, it was established that linear programming
could be accomplished in linear time (in the number of constraints) for fixed
dimension d. The doubly-exponential dependence on d was steadily improved
and eventually simple randomized algorithms were found whose expected de-
pendence on d is subexponential. These results generalize to other optimization
problems, such as finding the minimum spanning ellipsoid.

(6) Point location. Point location is a classical geometric searching problem, and
is used as a subroutine in a variety of geometric algorithms. Various optimal
algorithms for point location in a planar map have been devised. They use
O(n) space and support point location queries in O(logn) time, where n is the
size of the map. Simpler data structures that are not asymptotically optimal
but are very efficient in practice also exist. Progress has also been made on
three-dimensional point location.

(7) Range searching. A significant achievement in the last decade was the near-
complete resolution of the range searching problem, with almost-matching
upper and lower bounds. The introduction of e-nets led to linear-size data
structures with near-optimal query times for simplex range searching (report-
ing points inside query simplices). Trading off space with query time permits

Strategic Directions in Computational Geometry .)

achieving faster (logarithmic) query times, using “1/r-cuttings”: given an ar-
rangement of n lines and a parameter r» < n, the plane may be quickly (and
deterministically) decomposed into O(r?) “triangles” (some unbounded), so
that no triangle meets more than O(n/r) of the lines. A similar result holds
for arrangements of hyperplanes in d dimensions.

Complezity of arrangements. Great strides were made in establishing the com-
plexity of arrangements: The “Zone Theorem” established that the “neigh-
borhood” of any one hyperplane in an arrangement of n hyperplanes in d-
dimensions has complexity O(n¢=1). A difficult technical achievement was
showing that any m faces in an arrangement of n lines in the plane have total
complexity O(m2/3n2/3 + m + n). This bound applies, for example, to the
number of incidences between n points and m lines. One long-sought result is
that the complexity of the lower envelope of n surface patches in d-dimensions
is O(n9=11¢) (for any € > 0). The beautiful and intricate theory of Davenport-
Schinzel sequences was shown to be central to the combinatorics of arrange-
ments, establishing, for example, that the complexity of the lower envelope of
n (perhaps interpenetrating) segments in the plane is @(na(n)), where « is the
inverse Ackermann function.

Visibility graphs. Efficient computation of visibility graphs has been achieved in
a polygon and in a polygonal environment: for a visibility graph with n vertices
and k edges, O(n+ k) time suffices to find all shortest path trees (from a vertex
to all others) in a polygon, and O(nlogn + k) is achievable for construction of
the visibility graph among obstacles in the plane.

(10) Motion planning. Many motion planning algorithms have been proved to be

NP- or PSPACE-hard. Two general algorithms for solving any motion planning
problem have been developed: cell decomposition and the roadmap algorithm,
which run in time exponential with respect to the number of degrees of freedom
of the robot, in the Turing machine model. For many special cases more effi-
cient algorithms have been found, most notably for a polygon translating and
rotating in the plane, for which a nearly-quadratic algorithm was developed.

(11) Graph drawing. A variety of techniques for constructing geometric represen-

tations of graphs have been devised. Major theoretical achievements include
showing that the problems of upward planarity testing and representing a tree
as a Fuclidean minimum spanning tree are NP-hard. Algorithms have been
discovered for upward drawings of trees with linear-area, planar straight-line
drawings with integer coordinates and quadratic area, convex drawings in two
and three dimensions, visibility representations and orthogonal drawings with
the minimum number of bends, and upward planarity testing of embedded di-
graphs. In addition, algorithms with good performance in practice exist for
trees, directed graphs, and undirected graphs.

(12) Randomized geometric algorithms. The introduction of random sampling tech-

niques showed that many complex geometric problems have startlingly simple
and efficient randomized solutions. Notable is the simple randomized incre-
mental algorithm for construction of the convex hull, whose expected running
time in d dimensions is asymptotically optimal. Simple optimal expected-time
algorithms were also found for segment intersection (item 2 above). Deran-

6 . R. Tamassia

domization led to several advances in deterministic running times, the even-d
optimal hull algorithm (item 3 above) being a prominent instance. Finally,
the introduction of the “backwards analysis” technique led to running-time
analyses for randomized algorithms as simple as the algorithms themselves.

(13) Dynamic geometric algorithms. The study of dynamic algorithms and data
structures has received major momentum from computational geometry. Basic
dynamic geometric data structures include the segment tree, range tree, and
interval tree. Based on them, efficient dynamic data structures have been de-
vised for several fundamental geometric problems, including convex hull, point
location, proximity, intersection, range searching, and path problems.

(14) Parallel geometric algorithms. Optimal or near-optimal work bounds were re-
alized for many geometry problems under a variety of parallel computing mod-
els. For example, algorithms for the convex hull (cf. item 3 above) achieve in
the EREW PRAM model an optimal runtime-processors product of O(nLd/2J)
for even d, and a polylog(n) factor more for odd d.

2.2 A Visual Depiction of the State of Advancement

The space of geometric problems so far explored can be loosely characterized by
two parameters: the dimension of the geometric space and the shape complexity
of the objects in that space. Most of the computational geometry accomplish-
ments of the past deal with low-dimensional space (especially two and three dimen-
sions), and simple objects, such as points, polygons, and subdivisions (planar maps,
three-dimensional cell complexes). Higher dimensions and curved objects remain
relatively unexplored. A third parameter can be used to characterize the method-
ology used by researchers. The majority of the computational geometry literature
deals with combinatorial analysis and asymptotic computational complexity. As
discussed in the next section, the pursuit of numerical robustness and the devel-
opment of practical implementations appear to be strategic methodological choices
for the evolution of the field.

Figure 1 schematically illustrates the state of advancement of computational
geometry research as a portion of a virtual “cube” whose z-, y- and z-axes are
associated with methodology, dimensionality, and shape complexity. A vast portion
of the cube remains to be explored.

3. METHODOLOGIES

We believe that the most important strategic direction for computational geometry
is to substantially enlarge its arsenal of tools to include methods that can handle
the practical aspects of geometric computing. While combinatorial and asymptotic
analysis remains a cornerstone of the discipline, it is essential to start an extensive
reexamination of geometric problems from the following viewpoints:

—robustness;
—finer-grain complexity analysis;
—implementation; and

—experimental evaluation.

Strategic Directions in Computational Geometry

dimension

123 .. 100

combinatorial

. curved

robus

practical subdivision
polygon
point

Fig. 1. State of the art of computational geometry.

8 . R. Tamassia

Problems considered completely solved and no longer interesting from the view-
point of asymptotic complexity reveal unexpected challenges when studied under a
new light. For example, conventional asymptotically optimal algorithms for mini-
mum link paths in a simple polygon and proximity queries on set of planar point
sites perform poorly with respect to the arithmetic precision of the numerical com-
putations, and new data structures and approximation schemes are needed to rec-
oncile efficiency with robustness.

3.1 Robustness

Geometric algorithms are usually described in the conceptual model of the real
numbers, with unit-cost exact arithmetic operations. However, the original as-
sumption of a computational model obtained by extending the traditional RAM
to real-number arithmetic proved less innocent than originally thought. Imple-
menters often substitute floating-point arithmetic for real arithmetic. This leads to
the well-known problem of numerical robustness, since geometric predicates depend
upon sign evaluation, which is unreliable if expression evaluation is approximate.
To equate floating-point arithmetic to real-number arithmetic turned out to be
indefensible in practical applications.

Another convenient assumption has been the hypothesis of “general position,”
which dispenses with the detailed consideration of special cases. Unfortunately, de-
generate conditions (colinearity, cocircularity) which are likely to be generated by
coarse-grid data as they occur in practice, give rise to numerically critical events.
Failures originating from these assumptions have fundamentally hindered the adop-
tion of computational geometry by practitioners.

Over the years several approaches have been proposed to remedy these shortcom-
ings. It is likely that no single approach may be capable of conferring robustness
to geometric algorithms. Presumably, several tools may be included in an arsenal
designed to achieve robust computations.

However, an approach that has the potential to yield a useful methodology is the
following. The numerical computations of a geometric algorithm are basically of
two types, which we may designate as tests and constructions. These two types have
clearly distinct roles. Tests are evaluations of geometric predicates associated with
branching decisions in the algorithm that determine the flow of control, whereas
constructions are used to produce the geometric objects that normally represent
the output of the application.

Approximations in the execution of the constructions give rise to approximate
results, which may nevertheless be entirely acceptable as long as the maximum
error does not exceed the resolution required by the application (in all cases, some
more or less coarse grid). On the other hand, approximations in the execution of
tests may produce incorrect branchings, which may have catastrophic consequences,
since they may yield structurally (i.e., topologically) incorrect results (such as a
missed intersection or an open polygon). Therefore, tests have much more stringent
requirements, which leads to the conclusion that they must be carried out with
complete accuracy, whereas some tolerance is permitted for constructions. (It must
be observed, however, that such tolerance must be consistent with the topological
structure of the result as provided by the tests.)

Complete accuracy would seem to require the infinite precision implied by real-

Strategic Directions in Computational Geometry . 9

number arithmetic. Fortunately, the inherently coarse nature of the input data
comes to the rescue in this connection. Each predicate is expressible as the sign
of a multivariate polynomial in the input variables. If input variables are assumed
of degree 1, the degree of such a polynomial specifies the maximum precision re-
quired by the test in question. Of course, the maximum precision may have to be
deployed only in near-degenerate cases. In typical cases, much lower precision may
be sufficient to confidently evaluate the predicate. It is therefore the function of
an “arithmetic filter” to identify the adequate precision. In this framework, the
development of cost-effective filters may be one of the major challenges in the quest
for robustness.

There is considerable evidence that adaptive-precision arithmetic, if engineered
carefully, can substantially reduce the effective cost of extended-precision evalua-
tion. Performance comparable to floating-point arithmetic has been achieved for
algorithms with relatively modest precision requirements, e.g. evaluating simple
predicates on points, lines, and planes in dimensions two and three.

A related issue is the problem of rounding geometric structures. The goal is to
represent derived geometric structures in fixed precision, so that the key combina-
torial /topological properties of the structures are preserved.

3.2 Finer-Grain Complexity Analysis

Asymptotic performance, rather than acting as a powerful and useful analysis tool,
has frequently become the ultimate focus of computational geometry research. Un-
fortunately, the very nature of asymptotic “big-Oh” worst-case analysis carries
its own inadequacy: the suppression of multiplicative constants from performance
functions and the overemphasis on pathological scenarios. It is quite common for al-
gorithms that have been declared “asymptotically optimal” in the Random-Access
Machine (RAM) computational model to be inferior to “suboptimal” algorithms in
practice. Focusing exclusively on asymptotic analysis discounts the importance of
developing practically-efficient computational tools.

Remedying this shortcoming is an important and difficult task. A promising
approach is to isolate significant primitives appearing in the execution of algorithms,
such as pointer updates, evaluations of fixed-dimension determinants, and other
data management operations (including those occurring in the handling of external
and hierarchical memories), and to express performance not as a single function
of application parameters (problem size, memory size, number of processors, etc.),
but rather as a vector of such functions, each component of which quantifies the
use of such primitives. It may even be desirable or necessary to precisely quantify
some components of the performance vector (forfeiting the comforts of the big-Oh
notation), in order to provide a realistic comparison between competing algorithms.

3.3 Implementation

Existing computational geometry algorithms are often directly relevant in industrial
applications. However, the knowledge of those algorithms is not widespread, and
robust, easy-to-use, well-publicized implementations are rare. The computational
geometry community should strive to package its best geometric algorithms into
easy-to-use software tools that can be used by non-specialists. Such tools would
dramatically enlarge the set of potential users of geometric algorithms.

10 . R. Tamassia

A handful of programs—implementations of convex hull and Voronoi diagram
algorithms—have been distributed successfully. In fact, these popular programs
have been distributed more widely than any computational geometry publication
except perhaps Preparata and Shamos’s textbook [Preparata and Shamos 1985].
The programs have been used in a wide variety of applications, most of them unan-
ticipated by the program authors. These successes hint at the potential influence of
computational geometry in practice, and should encourage further implementation
efforts.

It is instructive to compare the teaching of computational geometry to that
of sorting or hashing. Computational geometry is typically taught in specialized
courses, or as a single short section in algorithms classes. Similarly, detailed analy-
ses of sorting and hashing are taught in specialized algorithms courses. The crucial
difference is that sorting and hashing are widely applied in other disciplines (e.g.,
systems programming), and are presented as black-box tools in non-algorithmic
courses.

Except in a few cases, computational geometry has not provided the simple,
flexible tools that would enable the kind of widespread use that sorting and hashing
receive. Published libraries of geometric routines (see, for example, the Directory
of Computational Geometry Software [Amenta]) often have a large granularity of
adoption: potential users must adopt the whole library and its data models if they
want to use any part of it. Writers of geometric software should provide lowest-
common-denominator interfaces, as well as more efficient interfaces for sophisticated
users. In particular, tools for geometric software development should enable non-
specialists to specify their geometric problems in a straightforward manner, and to
create programs for solving them by combining basic building blocks in a simple
fashion.

Two efforts to build libraries of geometric software are underway—CGAL [Over-
mars 1997] in Europe and GeomLib [Agarwal et al. 1995] in the United States.

Successful examples of software tools, libraries, and repositories from the nu-
merical, scientific, statistical, and symbolic computing communities include Netlib,
LAPACK, SPSS, Mathematica, and Maple.

Other models of successful publication of algorithmic results include the popular
Numerical Recipes and Graphics Gems books. In the same vein, computational ge-
ometry needs books and Web sites with titles like Geometric Recipes and Geometric
Tools, with accompanying software. Further ideas for dissemination of algorithms
and software appear in Section 6.

3.4 Experimental Evaluation

A prerequisite to deciding which algorithms to implement in geometric libraries
is knowing which ones perform well in practice. The last couple of SCG (ACM
Symposium on Computational Geometry) conferences have encouraged papers that
do experimental work, as has SODA (ACM-SIAM Symposium on Discrete Algo-
rithms). However, comparative studies of algorithms for solving given geometric
problems are just beginning to appear. We need to encourage and reward such
studies.

The algorithms should be implemented to share data structures and primitives
whenever possible (so that the relative speeds of the algorithms and not the clev-

Strategic Directions in Computational Geometry . 11

erness of the implementers is being tested). The programs need to be ported to a
range of machines, because differences in architecture seem to greatly influence the
relative speeds of algorithms.

A sub-area of experimental evaluation is choosing appropriate test data. We at
least have some idea of what “random” point sets might be (uniform, normal, etc.),
even if we do not know how realistically these distributions model the real world.
But what is a “random” collection of non-intersecting line segments or rectangles
or polygons? We have barely begun to consider such questions. Furthermore, how
do these correspond to “real world” data?

Using “real world” data is not a panacea, either, because applications differ
widely in what sort of data they use. What is needed is a collection of benchmark
data drawn from a wide range of applications, analogous to the SPEC benchmarks
used in computer architecture. No such collections of benchmark data are cur-
rently available, and creating such collections would be a valuable service to the
community.

4. COMPUTATIONAL PARADIGMS

To be effective, the proposed renovation of computational geometry must be ac-
complished within the context of today’s complex technology and computing envi-
ronments. In particular, it is a key strategic issue to take into account the following
realistic computational paradigms:

—parallel and distributed computing,
—external-memory algorithms;
—dynamic and real-time computing; and

—approzimation and randomized algorithms.

4.1 Parallel and Distributed Computing

For time-critical applications, multiple processors may be needed to perform the
specified computations in a short amount of time, and the data inputs for the
computations may be distributed geographically. This viewpoint conforms with a
general trend toward a more extensive deployment of concurrency and distributed
computation. The programming ease deriving from the use of a uniform address
space (shared memory) must be carefully weighed against the potentially better
performance of a distributed-memory network.

Particularly attractive is algorithmic research within the so-called coarse-grain
parallel model, which seems particularly attuned to a variety of geometric com-
putations. The coarse-grain model reflects very closely the most plausible paral-
lel/distributed computing technology of today or of the near future. In this model
a system consists of relatively few (typically, tens/hundreds) processors (typically,
off-the-shelf microprocessors), each equipped with a sizable private memory. The
processors are either interconnected according to one of the conventional networks,
or are part of a distributed network (as it turns out, since the number of processors
is very small, the interconnection does not play a central role). For p processors and
problem size n, the coarse-grain algorithmic approach consists of identifying p sub-
problems of size n/p whose solutions can be combined to solve the original problem.
Thus, initially all processors act serially on their respective subproblems (solitary

12 . R. Tamassia

parallelism), and subsequently interact (cooperative parallelism) to combine the
results of the first phase. For n much larger than p (a very realistic situation) the
parallel time of the first phase dominates the time of the second phase, and optimal
speed-ups are achievable. Problems that lend themselves to this approach are those
possessing substantial data-locality.

4.2 External-Memory Algorithms

In the large-scale geometric databases and other data-intensive processing encoun-
tered in many applications, the main (random-access) memory of the processor is
not large enough for the requirements of the application. This limitation faced by
large-scale applications was recognized very early on in the computer era, and its
correction (hierarchical memory) represents the first serious revision of the von Neu-
mann model. As it happens, Input/Output communication (I/0) between levels
of hierarchical memory is the bottleneck in many large-scale geometric applica-
tions. Algorithms designed specifically to make efficient use of two or more levels
of memory are often called external-memory algorithms to emphasize the explicit
use of memory beyond random-access main memory. The 1/0 bottleneck gets ac-
centuated as processors become faster with respect to disks (currently the typical
medium of external storage) or when multiple processors are used, prompting sev-
eral researchers and companies to deploy external storage systems with parallel
capabilities. The issues here are closely related to those outlined in the preceding
subsection in connection with the coarse-grain model, when the private memories
of the processors do not satisfy the requirements of the subproblems.

In many practical situations, we can restrict attention to the case of two lev-
els; for such purposes the fairly realistic two-level multiple-disk I/O model covers
both uniprocessor and multiprocessor systems: there are several disks and several
processors (both currently in the range 1-210); each processor is equipped with a
main memory that can store a limmited amount of data (currently in the range
216-928) " The processors and the disks are connected by a network (such as a
shared-memory interconnection, hypercube, or cube-connected cycles, as also pos-
tulated in the previously described coarse-grain model) that allows for efficient
execution of some basic operations like sorting.

4.3 Dynamic and Real-Time Computing

Dynamic (or incremental) computation considers updating the solution of a problem
when the problem instance is modified. Many applications are incremental (or
operation-by-operation) in nature and the typical run involves on-line processing
of a mixed sequence of queries and updates. In a real-time environment, it is
essential that a query be answered within a fixed time bound ¢. If the size of the
problem is such that the query time exceeds ¢, we should at least ensure that at
time ¢ the query algorithm has produced some useful results, i.e., an approximation
of the query answer. An algorithm is called interruptible if it converges toward
the exact solution by incrementally producing better and better approximations.
Interruptible algorithms should be explored for a variety of geometric problems that
arise in time-critical applications.

With respect to real-time applications, it is also interesting to devise approxima-
tion algorithms that use substantially fewer time and space resources than exact

Strategic Directions in Computational Geometry . 13

ones, with an ensuing performance/approximation trade-off. For example, consider
the convex hull problem. Tts exact solution needs O(n logn) time, but in a real-time
environment we may be able to afford only O(n)-time computations. What is the
best approximation of the convex hull that can be achieved with O(n) time? Most
previous research has been devoted to the study of polynomial-time approximation
algorithms for NP-hard problems (e.g., for the traveling salesman problem). Ap-
proximation algorithms with O(n) or O(nlogn) time complexity should be studied
for problems whose exact solution seems to require substantially more time (e.g.,
O(n?)).

Motion is common with objects in the physical world and is a primary concern
in geometric applications such as collision detection in robotics and visibility deter-
mination in computer graphics. Another facet of dynamic computation is dealing
with continuously changing data. A kinetic data structure maintains attributes of
mobile objects (e.g., convex hull and closest pair of a set of points in continuous
motion). Previous research on this subject has focused on the case where the full
motion of the objects is known in advance. Work is needed on a more realistic sce-
nario where objects can change their motion on-line because of external impulses
and interactions with each other.

4.4 Approximation and Randomized Algorithms

The lack of fast, simple, deterministic algorithms for many fundamental problems
has motivated the study of randomized algorithms. In the last few years, a number
of randomized geometric algorithms, based on elegant probability theory, have been
developed that are significantly simpler and, in several cases, faster than their de-
terministic counterparts. Randomization is also useful for dynamic data structures,
on-line algorithms, and intractable problems.

A number of interesting geometric problems are intractable, including certain
instances of navigation, machine learning, target acquisition and tracking, and vi-
sualization. In many applications, it suffices to obtain a good but fast solution.
For example, in a typical navigation problem, it is desirable to have a real-time
algorithm that computes a reasonably short path instead of one that computes an
optimal path but takes longer time. These factors initiated the study of approa-
tmation algorithms, which always determine a solution that is close to optimal.
Approximation algorithms are also useful for higher dimensional problems because
the running time of typical geometric algorithms increases exponentially with the
dimension.

5. INFORMATION VISUALIZATION

The Tmpact Task Force Report [Chazelle et al. 1996] is an excellent resource on
geometric computing problems within the following ten key application domains:
computer graphics and imaging, shape reconstruction, computer vision, geograph-
ical information systems, mesh generation, robotics, manufacturing and product
design, robustness, molecular biology, and astrophysics.

In this section, we describe the emerging application domain of information vi-
sualization, where computational geometry can have a major impact. Two specific
fields are covered within information visualization:

14 . R. Tamassia

—graph drawing; and

—algorithm animation.

Information visualization is identified as a strategic research direction also in
the report on “Strategic Directions in Human Computer Interaction” [Myers et al.

1996].

5.1 Graph Drawing

The visualization of complex conceptual structures is a key component of support
tools for many applications in science and engineering. Examples include software
engineering (call graphs, class hierarchies), database systems (entity-relationship
diagrams), digital libraries and WWW browsing (hypermedia documents), dis-
tributed computation (reachability graphs of communicating processes), VLSI
(symbolic layout), electronic systems (block diagrams, circuit schematics), project
management (PERT diagrams, organization charts), decision support (scheduling
and logistic diagrams), medicine (concept lattices), telecommunications (ring covers
of networks), and law (conceptual nets).

Foremost among the visual representations used are drawings of networks, graphs,
and hypergraphs. A variety of graph drawing algorithms have been developed in
the last decade [Di Battista et al. 1994]. Several graphic standards such as straight-
line, polyline, and orthogonal, have been used to represent graphs, depending on
the application. Major geometric problems in information visualization include:

—optimization of measures of quality of drawings, such as number of bends, number
of crossings, and area;

—trade-offs between quality measures of drawings, e.g., between area and angular
resolution of planar straight-line drawings;

—conceptual “fisheye views” for displaying large graphs;
—Ilabel placement for nodes and edges of a drawing;
—incremental and interactive layout maintenance;

—three-dimensional representations.

Detailed experimental studies on the practical performance of layout algorithms
are also much needed.

5.2 Algorithm Animation

The visual nature of geometry makes it a natural area where visualization can be
an effective tool for communicating ideas. This is enhanced by the observation
that much research in computational geometry occurs in two and three dimensions,
where visualization is highly plausible. Given these observations, it is not surprising
that there has been noticeable progress during the past few years in the production
of visualizations of geometric algorithms and concepts [Hausner and Dobkin 1997].
There is every reason to believe that this will continue and even accelerate in the
future.

As anyone who has tried to implement a complex geometric algorithm knows,
implementing geometric algorithms is a difficult task. Conventional tools are limited
as aids in this process. The programmer spends time with pen and pencil drawing

Strategic Directions in Computational Geometry . 15

the geometry and data structures the program is developing. This problem could be
solved by the use of visualization tools. In the ideal world, this visualization would
be used for three purposes: demonstration, debugging, and isolation of degeneracies.
Ideally, we would like to use the same tools for all three functions. For example,
we would use the tool to help us debug the implementation of an algorithm by
providing visual interaction during the debugging process. Next, we would like
to use the same tool to create a visualization of the algorithm with which the
user can interact. This interaction could be either passive or active. For example,
a video tape provides passive interaction since the viewer’s controls are limited
to the VCR controls. Active interactions allow the viewer greater control over
the visualization. Finally, there is the issue of isolating problems in code that is
symbolically correct. Typically, such bugs come from degeneracies either in the
data or in the computational model. Visualization has the potential to be a great
help here as a tool allowing the user to jump into the code at (or preferably before)
the point at which it breaks.

The problem of creating active interactions remains largely unsolved. It is still
the case that a visualization demonstrates the behavior of an algorithm on one
sample input and explains the behavior of the algorithm on that input. A better
scenario would allow the user not only to specify the input, but also to interact
with the view (and possibly even the input data) as the algorithm is running.
There are a few existing systems that allow the user to interact with a running
animation. However, the interactions come at a price. The viewer must typically
have the hardware that was used to develop the interaction. This limits the ability
to integrate such animations into hypermedia documents. There is hope that the
emergence of Java and VRML will help remove this limitation.

6. INTERACTION WITH OTHER DISCIPLINES

Computational geometry has established itself both as a discipline and as a com-
munity of researchers. To realize the discipline’s potential for usefulness to others
and to maintain its vigor, the community now seeks closer collaboration with ap-
plication domains that inspire geometry problems. At the same time, it wishes to
maintain both its identity and its traditional contacts with mathematics.

Previous sections have suggested computational paradigms and methodologies
for computational geometers to adopt in order for their research to become usable
by others. However, adopting new methods is not enough: real-world problems
are often inherently interdisciplinary in nature and international in impact. Hence
mechanisms are needed that facilitate the crossing of boundaries between academic
disciplines, between countries and continents, and between universities, government
research labs and industries.

The organization of effective mechanisms for interaction is a job not only for
individuals (e.g., students, researchers, university-industry liaison officers, admin-
istrators), but also for computational geometry community groups (e.g., program
committees, boards) and organizations (e.g., professional societies, funding agen-
cies). Hence the remarks below are addressed to a wide audience, and while stated
in the context of geometry, many apply to other subfields of computer science as
well.

16 . R. Tamassia

6.1 Education for Collaboration

Certainly the horizons of computational geometers can be broadened by guest
speakers at seminars and conferences who come from other, related fields. In-
terdisciplinary workshops and short courses can go much further. International
workshops such as those run by the Dagstuhl Research Center in Germany and the
summer joint research conference program run by AMS-IMS-STAM provide models.

Graduate education in computational geometry should provide an opportunity
for interdisciplinary study and, where possible, industrial collaboration. This could
be facilitated for example by university-industry internships, degree programs with
minor options in other fields, and special topics or projects courses taught by indus-
trial researchers. Students in disciplines that have a geometric component should
be informed of the possible relevance of computational geometry courses to their
program of study.

6.2 Fostering Collaboration Across Boundaries

Opportunities for professionals to share geometry problems across academic disci-
plines and across university/industry boundaries should be fostered. This might
take the form of short or long term visits for study or consulting, including con-
sulting by academics within their own universities. The value of such exchanges
should be recognized by agencies and institutions.

Mechanisms to ease publication of interdisciplinary research, and to promote
publication of research outside the boundaries of traditional, narrow subdisciplines,
should be designed and considered. Researchers should be able to build and main-
tain a reputation within the computational geometry community, while at the same
time making their applied results known to the community of the application area.
Possibilities for double-publishing might be explored (e.g., a research summary for
one community accompanied by a full paper for the other).

6.3 Dissemination of Knowledge

Unfortunately, many computational geometry algorithms are either completely un-
known or otherwise inaccessible to researchers and practitioners outside the com-
munity. Computational geometers should continue to address this problem by con-
tributing expository writing such as handbooks. Handbooks currently in prepara-
tion include [Goodman and O’Rourke 1997; Sack and Urrutia 1997]. Other possi-
bilities include creating collections modeled after Graphics Gems, and contributing
survey articles to publications such as ACM Computing Surveys, Communications
of the ACM, or Scientific American. Such expository literature should provide po-
tential users with pointers to implementation advice, performance results, and any
available code.

The availability of systems that contain libraries of well-documented code for
geometric problems forms an important aspect of knowledge dissemination. The
availability of good programming environments and usable code facilitates the de-
velopment of geometric applications for both specialists and non-specialists. Hence
such systems should allow easy export of code to other systems, such as a geo-
graphical information system. In return, the design and implementation of such
environments give rise to a host of interesting research problems for computational
geometers. Current efforts include the Workbench for Computational Geometry (at

Strategic Directions in Computational Geometry . 17

Carleton University, Ottawa), X YZ-Geobench at ETH Ziirich, LEDA at Max Planck
Institut fir Informatik, Saarbriicken, the CGAL project involving a consortium of
seven European sites (Utrecht University, ETH Ziirich, Free University Berlin, IN-
RIA Sophia-Antipolis, Max Planck Institut fir Informatik at Saarbricken, RISC
Linz, and Tel Aviv University), and the GeomLib project of the Center for Geomet-
ric Computing, a consortium of three US sites (Brown University, Duke University,
and The Johns Hopkins University).

Journals can publish implementation-oriented research articles by developing
standards for refereeing code and by making the code associated with accepted ar-
ticles available over the Web. Code accepted by a journal would become a citable,
refereed journal item. Already several conferences (e.g., ESA, SCG, SODA, WADS)
have started accepting papers of the above nature. Also, journals such as the In-
ternational Journal on Computational Geometry and Applications (ed. D.T. Lee),
Computational Geometry: Theory and Applications (eds. J.-R. Sack and J. Urru-
tia), the ACM Journal of Erperimental Algorithmics (ed. Bernard Moret) as well
as several special issues in other journals are currently seeking such papers.

6.4 Information Links

Theoretical and applied areas in which computational geometry could play a role
span several disciplines; indeed they span the scope of several professional societies.
For example, research in fields such as computer vision, automation, manufacturing,
CAD/CAM, robotics, computer graphics, topology, geometry, tomography, medi-
cal imaging, polyhedral combinatorics, combinatorial optimization, cartography,
and geographic information systems is reported in the conferences and journals of
professional societies such as ACM, AMS, STAM, TEEE, ASME, ORSA, and AGI
(Association for Geographic Information).

Technical terms are not standardized: roughly the same problem may have dif-
ferent names in different disciplines; conversely, different problems may receive the
same name. Furthermore, applied problems typically elude precise, tidy, mathe-
matical definition. Mechanisms are needed for the rapid cross-referencing, across
discipline and professional society boundaries, of geometric concepts, problems,
keywords, solutions methods, and implementations.

For problems that do admit precise description, practitioners should be able to
find relevant information easily, including pointers to literature and code. They
should also be able to pose geometric problems, whether of a general or a specific
nature, to the computational geometry community at large.

The computational geometry community should consider ways to maintain, build
on and cross-link resources (especially electronic ones) for geometry problems. A
number of individuals and research groups have initiated efforts to create electronic
sources of information. Perhaps such efforts should be imitated at the level of
professional societies, to insure continuity and ease of access across disciplines.

A kind of electronic encyclopedia of geometry might be designed, with mecha-
nisms for “looking up” and/or posing geometry problems in words and images, with
cross-referencing between problems and application domains, and with pointers to
code libraries and researchers.

18 . R. Tamassia

6.0 Rewarding Experimental and Applied Research

The computational geometry community should continue to design strategies to
encourage and evaluate experimental and applied work. However, strategies such
as creating separate categories for theoretical and applied papers at conferences
and such as creating bench marks and standard data sets should be constantly
monitored for desired effect.

Clearly, providing implementation results and comparisons requires substantial
research effort as well as time investment, so suitable reward structures should be
devised. These might take the form of publication in journals or established, public
geometric libraries as discussed above.

The commercial potential for geometric libraries provides major incentives for
researchers to work on implementation issues: the possibility of financial reward,
and also, the satisfaction of making something that works and gets used. Since
the availability of libraries will inspire and facilitate yet more implementation and
application-oriented research, the price structure for commercial code should dif-
ferentiate between academic and industrial /commercial users.

6.6 A Vision for Interaction

The vision for many in the computational geometry community is that computa-
tional geometry emerge as the discipline where for geometry, theory meets practice,
where problems of an applied nature inspire and inform research problems in com-
putational geometry and mathematics, where theoretical results are implemented,
made usable, and disseminated to application domains.

7. CONCLUSIONS

Computational geometry is a lively discipline that is undergoing a crucial phase of
its evolution. We have identified methodologies and computing paradigms that we
consider of strategic importance for the growth of the discipline and its impact on
applications. The key message is that computational geometry should reaffirm its
dual mission of investigating the combinatorial structure of geometric objects and
providing practical tools and techniques for the analysis and solution of fundamental
geometric problems

8. CONTRIBUTORS AND ACKNOWLEDGMENTS

This report represents the efforts of the Computational Geometry Working Group
formed as part of the ACM Workshop on Strategic Directions in Computing Re-
search, held at the Massachusetts Institute of Technology Laboratory for Computer
Science, Cambridge, Massachusetts, USA, on June 14-15, 1996. The main ideas
presented in this document were discussed at the working group meetings scheduled
during the workshop. The material contained in this report originates in part from
the participants’ position statements, from the “Computational Geometry Column
29” [O’Rourke 1996], and from the Center for Geometric Compuling proposal on
“Applicable and Robust Geometric Computing” [Agarwal et al. 1995].

This report benefited from a white paper on “Exact Computation and Reli-
able Geometric Software” contributed to the working group by Chee Yap, and
from a previous report entitled “Application Challenges to Computational Geom-

Strategic Directions in Computational Geometry . 19

etry,” [Chazelle et al. 1996] by the Computational Geometry Impact Task Force
chaired by Bernard Chazelle.

Comments and suggestions from Leo Guibas, Chris Hankin, and Michael Loui
are gratefully acknowledged.

Finally, we would like to thank Peter Wegner for encouraging the formation of
this working group and for many useful discussions.

REFERENCES

AGARwAL, P. K., GoopricH, M. T., KosaraJu, S. R., PREPARATA, F. P., TaMassia, R., AND
VITTER, J. S. 1995. Applicable and robust geometric computing.
http://www.cs.brown.edu/cgc/.

AMENTA, N. Directory of computational geometry software.
http://www.geom.umn.edu/software/cglist/.

CHAZELLE, B. ET AL. 1996. Application challenges to computational geometry: CG impact
task force report. Technical Report TR-521-96 (April), Princeton Univ.
http://www.cs.duke.edu/” jeffe/compgeom/taskforce.html.

D1 BaTTISTA, G., EADES, P., TAMASsIA, R., AND ToLLis, I. G. 1994. Algorithms for drawing
graphs: an annotated bibliography. Comput. Geom. Theory Appl. 4, 235-282.

EDELSBRUNNER, H. 1987. Algorithms in Combinatorial Geometry, Volume 10 of FATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany.

EPPSTEIN, D. Geometry in action.
http://www.ics.uci.edu/ eppstein/geom.html.

ERIcksoN, J. Computational geometry pages.
http://www.cs.duke.edu/” jeffe/compgeom/.

GoobpMAN, E. aAND O’ROURKE, J. Eds. 1997. Handbook of Discrete and Computational
Geometry. CRC Press. To appear.

HAUSNER, A. AND DoBKIN, D. 1997. Making geometry visible: An introduction to the
animation of geometric algorithms. In J.-R. Sack aAND J. UrRruTIA Eds., Handbook on
Computational Geometry, pp. 77-77 North Holland. To appear.

JONES, W. Geometry literature database.
http://www.cs.duke.edu/” jeffe/compgeom/biblios.html#geombib.

Leg, D. T. AND PREPARATA, F. P. 1984. Computational geometry: a survey. IEEFE Trans.
Comput. C-33, 1072-1101.

Lour, M. C. ET AL. 1996. Strategic directions in theory of computing. ACM Computing
Surveys 28, 4.
http://geisel.csl.uiuc.edu/"loui/complete.html.

MuLMULEY, K. 1994. Computational Geometry: An Introduction Through Randomized Al-
gorithms. Prentice Hall, Englewood Cliffs, NJ.

MyERrs, B., HoLrLan, J., Cruz, 1., ET AL. 1996. Strategic directions in human computer
interaction. ACM Computing Surveys 28, 4.
http://www.cs.cmu.edu/ bam/nsfworkshop/hcireport.html.

O’ROURKE, J. 1994. Computational Geometry in C. Cambridge University Press.

O’ROURKE, J. 1996. Computational geometry column 29. Internat. J. Comput. Geom.
Appl. 22, 7-7 Also in SIGACT News, 27:3 (1996), Issue 100, to appear.

OvVERMARS, M. H. 1997. Designing the computational geometry algorithms library CGAL.
In Applied Computational Geometry (Proc. WACG ’96), Lecture Notes in Computer Sci-
ence (1997). Springer-Verlag.

PREPARATA, F. P. AND SHAMOs, M. 1. 1985. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY.

Sack, J.-R. AND URRUTIA, J. Eds. 1997. Handbook on Computational Geometry. North
Holland. To appear.

