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(57) ABSTRACT 

A method for automatically transferring attributes between 
computer-generated models. The method includes storing in 
memory ?rst and second models represented by polygonal 
meshes and storing a set of attributes for the ?rst model. A 
processor operates or runs a compressed graph generator to 
process the ?rst and second models to generate ?rst and 
second compressed graphs that are compressed versions of 
the models. The method includes comparing topological con 
nectivity of the ?rst and second compressed graphs. When the 
connectivity is similar, the method includes transferring at 
least a portion of the attributes from the ?rst model to the 
second model. The compressed graphs may be motorcycle 
graphs, skeleton graphs, or other forms of compressed 
graphs. The method includes determining a pair of vertices in 
the ?rst compressed graph that match vertices in the second 
compressed graph for use as starting locations in comparing 
topological connectivity of the compressed graphs. 

17 Claims, 6 Drawing Sheets 
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ATTRIBUTE TRANSFER BETWEEN 
COMPUTER MODELS INCLUDING 

IDENTIFYING ISOMORPHIC REGIONS IN 
POLYGONAL MESHES 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates, in general, to computer ani 

mation, and, more particularly, to systems and methods for 
allowing ef?cient production of computer generated (CG) or 
computer-animated images by accurately determining simi 
larities and differences between two animation models to 
enable transfer of attributes from one to another model. 

2. Relevant Background 
Computer animation has become a standard component in 

the digital production process for animated works such as 
animated ?lms, television animated shows, video games, and 
works that combine live action with animation. The rapid 
growth in this type of animation has been made possible by 
the signi?cant advances in computer graphics software and 
hardware that is utilized by animators to create CG images. 
Producing computer animation generally involves modeling, 
rigging, animation, and rendering. First, the characters, ele 
ments, and environments used in the computer animations are 
modeled. Second, the modeled virtual actors and scene ele 
ments can be attached to the motion skeletons that are used to 
animate them by techniques called rigging. Third, computer 
animation techniques are performed ranging from key fram 
ing animation where start and end positions are speci?ed for 
all obj ects in a sequence to motion capture where all positions 
are fed to the objects directly from live actors whose motions 
are being digitized. Fourth, computer rendering is performed 
to visually represent the animated models with the aid of a 
simulated camera. 

A model of a complex object or character may require 
hundreds or thousands of polygons to provide a desired level 
of detail in 3D space. In many applications, polygonal meshes 
such as quadrilateral meshes are used to provide these models 
or representations of 3D objects or characters. During anima 
tion processes, attributes are assigned to the models, and the 
attributes such as shading, texturing, and other animation or 
rendering information may be assigned to the model based on 
an area or polygon-basis or associated with each vertex. To 
improve ef?ciency of the animation process, a model of an 
object may be simultaneously used by a number of depart 
ments to create a ?nal model for use in rendering of a CG 
image or an animated scene. For example, the original model 
may be used by a shading department and a layout department 
concurrently while the model may also be undergoing rigging 
to allow the model to be moved or animated. As a result, a 
number of models may be generated that each have differing 
attributes. 

It is often desirable to later transfer attributes from one 
model to another model such as transferring shading 
attributes for one model to another model that has been rigged 
to a skeleton for motion. Unfortunately, attribute transfer 
algorithms are typically only effective when the two models 
have similar shape or topological connectivity (e.g., there are 
two basic approaches to attribute transfer, with one being 
based on the geometric shape of an object and the other being 
based on the topological connectivity). Additionally, each of 
the departments or animators working on an original model 
may have introduced dissimilarities that cause the attribute 
transfer algorithm to fail or terminate without completing the 
transfer. Often, the transfer module will simply report back to 
the operator that the two models are not identical or the same 
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2 
without providing any indication of where the difference was 
found. An animator may look at the two models and not be 
able to visualize the difference because the model may have 
hundreds or thousands of mesh faces or areas with just one 
difference resulting in failure to transfer the attributes or 
rendering information. As a result, the animator may be 
forced to recreate a model or to perform numerous manual 

steps that result in an animation project becoming very 
tedious or labor intensive and expensive. The need for iden 
tifying similar models canbe seen in many animation projects 
where many similar characters or objects are used in the same 
scene and it is desirable to transfer attributes rapidly to the 
numerous copies, which may be in various positions but 
otherwise similar. The same object may also be modeled and 
used in numerous scenes of an animated work, and it is 
desirable to transfer attributes among models used in these 
varying scenes even if one model has been worked on by 
numerous animation personnel or departments. 

Hence, there is an ongoing need for computer-based meth 
ods and systems for determining whether two animation 
models that have been generated and stored in memory are 
similar enough to enable attribute transfer to be successfully 
completed. Further, it would be desirable for the computer 
based methods and systems to be con?gured to output or 
report areas of any identi?ed differences or dissimilarities 
when two copies of models do not match. 

SUMMARY OF THE INVENTION 

The present invention addresses the above problems by 
providing attribute transfer methods and systems for use with 
computer generated or animated models such as those repre 
sented with polygonal meshes such as, but not limited to, 
quadrilateral meshes. The methods and systems include algo 
rithms or techniques for creating compressed graphs of the 
meshes including motorcycle graphs and skeleton graphs. 
The methods also may automate the identi?cation of anchor 
vertices (or pairs of vertices that match in each of two meshes 
or models), which in prior practices was a tedious manual 
process, and this anchor identi?cation may include labeling 
of vertices based on emanating edges, ?nding a unique label 
in one model/compressed graph, and then ?nding a match in 
the other model/compres sed graph. The methods of the inven 
tion further include comparing topological connectivity of 
two models, such as by using the compressed graphs and 
starting at the identi?ed anchor vertices. 
When the comparison indicates similarity in connectivity, 

attributes such as attributes associated with faces, edges, or 
vertices of a polygonal mesh (or data useful in rendering or 
the like) is transferred from one model (e.g., a source) to the 
other matching model (e.g., a target). Interestingly, if the 
comparison indicates at least some dissimilarity or mismatch 
in connectivity, the methods described herein may include 
performing an approximate topological matching to identify 
regions or areas of the two models that do match or have 
similar connectivity and to also, in some cases, identify 
regions or areas of the two models that do not match or that 
have dissimilar connectivity (e.g., areas that may have been 
changed dining parallel processing of a model). This approxi 
mation may include using a lazy-greedy comparison or 
matching algorithm to compare two compressed versions of 
the models (e. g., skeleton or other compressed graphs) start 
ing from identi?ed anchor vertices. The methods and systems 
of the invention recognize that producing a maximum or 
best-case approximate topological match of two meshes may 
be NP-hard (or nearly impossible), but the lazy-greedy algo 



US 8,681,145 B2 
3 

rithm provided here produces good matches especially when 
mismatching portions of the meshes are localized in the mod 
els. 
More particularly, a computer-based method is provided 

for transferring attributes between animated models. The 
method includes storing or providing in memory a ?rst com 
puter animated or CG model and a second computer animated 
model that both comprise a polygonal mesh. The memory is 
also used to store a set of attributes (e.g., data, properties, or 
other information) for at least the ?rst model (e. g., data asso 
ciated with vertices, edges, and/or faces of the mesh). A 
processor operates or runs a compressed graph generator to 
process the ?rst and second models to generate ?rst and 
second compressed graphs that are compressed versions of 
the ?rst and second models (e.g., the compressed graphs may 
each have fewer vertices than the number found in their 
corresponding original mesh or model). Note, the compres 
sion step is primarily an acceleration technique, and the sub 
sequent labeling, anchor identi?cation, and transfer work 
faster with such compression but may also be performed 
without compression in some embodiments of the method. 
The method continues with the processor acting to compare 
topological connectivity of the ?rst and second compressed 
graphs. When the compared connectivity is similar, the 
method may include transferring at least a portion of the 
attributes from the ?rst model to the second model.As de?ned 
herein, the compressed graphs may be motorcycle graphs, 
skeleton graphs, or other forms of compressed graphs or 
compressed versions/ copies of the original mesh. 

The method may also include determining a pair of vertices 
(e. g., anchors) in the ?rst compressed graph that match a pair 
of vertices in the second compressed graph, and these pairs 
may be used as starting locations or anchors in the step of 
comparing the topological connectivity of the compressed 
graphs. Such anchor identi?cation is automated or performed 
by the processor running a module/routine/algorithm that 
may function to label vertices of the compressed graphs (e.g., 
based on emanating edges or otherwise), selecting a uniquely 
labeled vertex in the ?rst compressed graph, ?nding a match 
in the second compressed graph, and then choosing a neigh 
boring vertex to make a pair or a set of anchors. In some 
aspects of the invention, the compared topological connec 
tivity may be at least partially dissimilar, and the method may 
further include operating the compressed graph generator to 
create skeleton graphs of the two original meshes (if not 
already completed) and then using the anchors to apply a 
lazy-greedy algorithm to perform approximate topological 
matching of the ?rst and second models. The output of such 
approximate topological matching may be a set of matching 
regions and a set of nonmatching regions (e.g., areas of simi 
lar topological connectivity and areas of dissimilar topologi 
cal connectivity or at least areas marked/identi?ed as being 
dissimilar by the lazy-greedy algorithm). Then, the method 
may include transferring some or all of the attributes from the 
?rst model to the second in the set of matching regions of the 
models. 

According to another aspect of the invention, code or logic 
readable by a computer may be provided on disk or other 
digital data storage device or medium. The code may cause a 
computer to effect retrieving ?rst and second meshes from 
memory for ?rst and second models and to effect generating 
compressed graphs of the ?rst and second meshes. The code 
may also cause the computer to effect identifying a pair of 
vertices in the compressed graph of the ?rst mesh that 
matches a pair of vertices in the compressed graph of the 
second mesh. Further, code may cause the computer to effect 
comparing topological connectivity of the compressed 
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4 
graphs starting at the pairs of vertices to identify regions in the 
compressed graphs with matching connectivity. Code may be 
provided to cause the computer to effect transferring 
attributes from one of the ?rst and second models to the other 
one of the models, with the attributes being associated with 
regions identi?ed as having matching connectivity. The com 
paring of the topological connectivity may include identify 
ing regions in the compressed graphs with dissimilarity in the 
topological connectivity. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a functional block diagram a computer system or 
network con?gured for use in transferring attributes such as 
rendering or other animation-related data or information from 
one model to another model with similar or matching topo 
logical connectivity; 

FIG. 2 is a ?ow chart of a method of transferring attributes 
from one model to another that includes identifying regions 
with like or similar topological connectivity as well as non 
matching or dissimilar regions; 

FIG. 3 illustrates a pair of CG or animation models in the 
form of quadrilateral meshes that may be compared accord 
ing to the invention for similarity of topological connectivity 
and as may be displayed in an output or report indicating 
matching and nonmatching regions based on such compari 
son; 

FIG. 4 illustrates the pair of CG or animation models of 
FIG. 3 in the compressed graph form showing the signi?cant 
reduction in vertices, edges, and quadrilaterals provided by 
compression techniques such as a motorcycle graphing pro 
cess; 

FIGS. 5A and 5B illustrate anotherpair of CG or animation 
models that have been compared for topological connectivity 
similarity according to an embodiment of the invention show 
ing nonmatching regions, which would be dif?cult to ?nd 
without use of the invention, and such as may be provided in 
a GUI display or a report to an animator or operator; and 

FIGS. 6A-6C illustrate construction of a motorcycle graph 
from a quadrilateral mesh version of a model or representa 
tion of an object. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

Brie?y, embodiments of the present invention are directed 
to methods and systems for facilitating the transfer of 
attributes, such as information or data useful in rendering or 
other animation processes, from one animation or computer 
graphics (CG) model to another. The methods and systems 
described address the broad problem of transferring attributes 
between two models stored in memory (e. g., transfer 
attributes associated with faces, edges, and/or vertices from a 
source model to a target model). The method is a computer 
based or fully automated method that functions to compare 
two input models such as a model with polygonal meshes 
(e. g., quadrilateral or other meshes) to determine if they have 
identical topological connectivity. To make such a compari 
son more ef?cient, compressed graphs are ?rst formed and 
these compressed graphs are tested for similarity. The method 
may also include processes to automate the location of start 
ing points or anchor vertices for use in performing the simi 
larity testing or comparison and/or for use in attribute trans 
fer. Once full or partial connectivity similarity is determined 
or veri?ed, the pair of starting or anchor vertices (e. g., one (or 
more) labeled or identi?ed vertex in each model or com 
pressed graph of such model) may be input to an attribute 
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transfer module that then acts to transfer attributes from the 
source to the target model by working through all the neigh 
boring and matching vertices of the mesh of the model. If the 
comparison shows that the two models are not identical, the 
method may involve creating a skeleton or other compressed 
graph of the two models and then performing an approximate 
topological matching with these compressed graphs to iden 
tify portions or regions of the models that have matching 
connectivity and regions that are nonmatching. Attributes can 
be transferred in an automated fashion to the matching 
regions, and the nonmatching regions may be identi?ed to an 
operator or reported in output of the transfer method. 

The following description begins with an overview of a 
computer system or work station that may be used to imple 
ment or practice the attribute transfer method and then dis 
cusses generally the attribute transfer method of the inven 
tion. This discussion is followed by a detailed description of 
implementations of compressed graph generators as well as 
algorithms for comparing connectivity, for providing 
approximate topological matching, and for identifying useful 
anchors or starting vertices for attribute transfer. 

FIG. 1 illustrates an attribute transfer system 100 of an 
embodiment of the invention that includes a server 110 linked 
by a digital communications network 120 (such as a local area 
network (LAN), a wide area network (WAN), the lntemet, or 
the other digital communications connection) to an animation 
computer system 130. The server 110 and computer system 
130 may take many forms to practice the invention such as 
conventional servers and a variety of computer devices such 
as desktop computers, computing workstations, laptops, 
notebooks, and the like including other electronic devices 
con?gured to provide processing, memory, and other data 
storage and computing functions such as devices adapted to 
support computer graphics processes as common in the ani 
mation industry. 

Further, the functions and features of the invention are 
described as being performed, in some cases, by “modules” 
(or “engines” or “algorithms”), and these modules may be 
implemented as software running on a computing device 
and/ or ?rmware, hardware, and/ or a combination thereof. For 
example, the data attribute transfer method, processes, and/ or 
functions described herein and including creation of com 
pressed graphs of CG models or quadrilateral meshes and 
comparison of the topological connectivity of such com 
pressed graphs may be performed by one or more processors 
or CPUs running software modules or programs. The meth 
ods or processes performed by each module are described in 
detail below typically with reference to functional block dia 
grams, ?ow charts, and/or data/system ?ow diagrams that 
highlight the steps that may be performed by subroutines or 
algorithms when a computer or computing device runs code 
or programs to implement the functionality of embodiments 
of the invention. Further, to practice the invention, the com 
puter, network, and data storage devices and systems (or 
memory) may be any devices useful for providing the 
described functions, including well-known data processing 
and storage and communication devices and systems such as 
computer devices or nodes typically used in computer sys 
tems or networks with processing, memory, and input/ output 
components, and server devices (e.g., web servers and the 
like) con?gured to generate and transmit digital data over a 
communications network. Data typically is communicated in 
a wired or wireless manner over digital communications net 

works such as the lntemet, intranets, or the like (which may 
be represented in some ?gures simply as connecting lines 
and/or arrows representing data ?ow over such networks or 
more directly between two or more devices or modules) such 
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6 
as in digital format following standard communication and 
transfer protocols such as TCP/IP protocols. 

In the system 100, a server or data storage device 110 is 
provided on the network 120 (or otherwise accessible by 
computer system 130). The server 110 serves data stored in 
memory or data store 112 including information or data that 
is stored during an animation project for example but not 
limitation. For example, the memory 112 may be used to store 
numerous animation or CG models 114 for objects or char 
acters that are being animated for inclusion in an animated 
?lm or the like. In many cases, the CG models 114 are each 
represented by or include a mesh 116 (e.g., a polygonal mesh 
such as, but not limited to, a quadrilateral mesh) de?ned by 
the arrangement of numerous vertices 117 (and edges 
between such vertices 117). For example, FIG. 3 illustrates a 
pair of CG models 310, 330 de?ned in part with quadrilateral 
meshes 320, 340.Associated with each ofthe CG models 114, 
model attributes 118 may be stored in memory 112 such as 
data and properties for use in animating an object or character, 
e.g., data for use in later rendering processes. 
The CG models 114 are typically created by a number of 

modelers or other operators of one or more animation/mod 

eling (or other) computer systems, computers, or worksta 
tions 130 that are in communication with the memory 112 via 
network 120 (or more directly). The computer system 130 
includes a central processing unit (CPU) 132 that runs or 
controls input and output devices 134 (e.g., keyboards, mice, 
touch screens, voice recognition devices, and the like) as well 
as a monitor 136 that may be operated to view the CG models 
114 and/or to allow an operator to enter input and/or interact 
with an attribute transfer module 150 and other programs/ 
routines running on or accessed by the system 130. The CPU 
132 may also manage or run a report and graphical user 
interface (GUI) generator 140 that creates the GUI 138 and 
may be used to create reports or output of the attribute transfer 
module 150 and/or to print such reports out or transmit the 
reports via network 120 or otherwise (e.g., in an e-mail or the 

like). 
Signi?cantly, the computer system 130 includes an 

attribute transfer module 150 that can be run to assist an 
operator in testing two models 114 for similarity and when at 
least partial similarity is found, in transferring all or portions 
of the model attributes 118 from a source one of the models to 
a target one of the models. To this end, the attribute transfer 
module 150 includes a compressed graph generator 152 that 
may be called by an operator via the GUI 138 or otherwise to 
create a compressed version or graph of one the models 114. 
For example, a pair of models 114 may have been processed 
by the compressed graph generator 152 to generate com 
pressed graphs 172, 174 that are stored in system memory 
170. 
A variety of techniques may be used to create compressed 

graphs or versions of the models 114 with the goal being to 
reduce processing (e.g., similarity testing) time between the 
compressed versions 172, 174, and, generally, this means that 
the compressed versions 172, 174 include a subset of the 
vertices 117 of the meshes 116 (with quadrilateral meshes 
shown in FIG. 1 as one non-limiting example) of the models 
114. As will be described in more detail below, the generator 
152 may use a motorcycle graph module 156 to form com 
pressed graphs 172, 174 in the form of motorcycle graphs or 
may use a skeleton graph module 158 to form the compressed 
graphs 172, 174 in the form of skeleton graphs, with the 
choice often depending upon whether the compressed graph 
is required or preferred to be canonical (e.g., then a motor 
cycle graph may be preferred) or if some risk of error is 
acceptable (e. g., then a skeleton graph may be used). 
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The attribute transfer module 150 further includes a graph 
comparison engine 160 that functions to compare two com 
pressed graphs or versions of models 114 such as graphs 172, 
174 to determine if the connectivity is identical. This may 
involve providing a pair of vertices (one from each com 
pressed graph) to the algorithm, which then may act to com 
pare neighboring vertices in an iterative process to determine 
if connectivity is similar in the two compressed graphs 172, 
174. Alternatively, an anchor vertices ID algorithm 163 may 
be run to identify and/ or recommend anchors or starting point 
vertices 176 for the connectivity comparison by comparison 
engine 160. This may involve, as discussed below, creating 
unique labels 175 for the vertices. For example, the number of 
emanating edges from a vertex may be used as its label 175 
and a second step may be concatenation of the labels of all 
neighboring vertices followed by selecting a concatenation 
with a smallest value. A matching value in the other com 
pressed graph may indicate a vertex that can be paired to 
create a pair of anchors or starting vertices 176 for initiating 
connectivity comparison (and/or attribute transfer). 

In some cases, the graph comparison engine 160 may 
determine that the two graphs 172, 174 (and the correspond 
ing models 114) do not have similar topological connectivity. 
In such cases, an approximate topological matching algo 
rithm 162 (such as a lazy-greedy algorithm as discussed 
below or other approximate matching algorithm) may be run 
on the compressed graphs 172, 174, which may be formed as 
skeleton graphs to facilitate proper operation of the matching 
algorithm 162. The approximate topological matching algo 
rithm 162 may be selected to identify matching regions as 
well as nonmatching model regions 178 that may be stored in 
memory 170 and reported to a user. The attribute transfer 
module 150 is further shown to include an attribute transfer 
module 164 that may be called upon determination that two 
models 114 are matching based on similar topological con 
nectivity of their compressed graphs 172, 174. At this point, 
the identi?ed anchors 176 or other starting point vertices 
(e. g., typically a pair is provided from each model for use in 
attribute transfer by module 164) may be provided to the 
attribute transfer module 164 that acts to transfer the proper 
ties or model attributes 118 from one of the models 114 
identi?ed as a source to one of the models 114 identi?ed as the 

target to create a new or revised model 114 (e. g., CG, anima 
tion, or other model) with revised attributes 118 (e.g., for 
corresponding vertices, edges, and faces the properties of the 
source are transferred to the target in an iterative, automated 
process). 

FIG. 2 illustrates a representative attribute transfer method 
200 such as may be performed by operation of the system 100 
of FIG. 1 or other systems. As shown, the method 200 starts at 
205 such as by providing a set of animation models or meshes 
used to represent objects or characters. Step 205 typically 
may also include loading software tools such as the attribute 
transfer module 150 shown in FIG. 1 onto operator computers 
(or providing these operators with access to such tools). This 
may also include a selection of which subset of available 
algorithms will be used in various processing steps or this 
selection may be left to an operator (e.g., a selection of 
whether to create compressed graphs such as motorcycle 
graphs or skeleton graphs and a selection of techniques/tools 
for identifying anchor pairs, for comparing topological con 
nectivity, for approximating topological matching if pairs of 
models differ in connectivity, for transferring attribute data, 
and so on). 

The method 200 continues at 210 with retrieving a pair of 
models for similarity testing or connectivity comparison 
(e. g., choosing two models from memory or data storage). For 
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8 
example, an operator may wish to compare the two CG mod 
els 310, 330 shown in FIG. 3 or the two CG models 510, 530 
shown in FIGS. 5A and 5B. As shown, models 310, 330 are 
provided as quadrilateral meshes 320, 340 with numerous 
faces or quadrilaterals 312, 332 de?ned by vertices 314, 334 
and edges 316, 336 extending therebetween. Likewise, mod 
els 510, 530 are polygonal meshes (e.g., quadrilateral meshes 
or the like) with numerous faces 512, 532 de?ned by vertices 
514, 534 and edges 516, 536. As will be appreciated, it is very 
difficult to determine by visual inspection whether the meshes 
have similar topological connectivity, and, for illustration 
purposes, the models 310 and 510 are chosen to differ slightly 
from models 330, 530 with the nonmatching region or areas 
shown as shaded areas or regions 326, 346, 520, 540 (e.g., 
region 326 does not match region 346 and region 520 is 
dissimilar from region 540) while the rest of the models do 
match. 
The method 200 continues at 220 with generating a com 

pressed version of each model. For example, the compressed 
graph generator 152 of FIG. 1 may be called and the motor 
cycle graph module 156 run on models 310 and 330 to gen 
erate compressed versions or graphs as shown in FIG. 4 with 
motorcycle graphs 415, 425 for models 310, 320. As can be 
seen, the motorcycle graphs 415, 425 have signi?cantly fewer 
vertices (and edges and faces), which facilitates similarity 
testing and/ or connectivity comparison. As will be discussed 
below, motorcycle graphs are desirable as compressed graphs 
because they have been proven to provide an accurate indi 
cation of whether two quadrilateral or other polygonal 
meshes are similar (i.e., if the topological connectivity of two 
motorcycle graphs is found to be identical then the connec 
tivity of the meshes are also identical). 

At 230, anchors or starting point vertices may be identi?ed 
in each of the models (such as by labeling or other techniques 
as discussed herein). At 235, the method 200 continues with 
performing a comparison of the connectivity of the com 
pressed graph versions of the two models of interest. For 
example, this may involve an iterative comparison process 
starting at the anchors and working outward to neighboring 
vertices to determine if the connectivity at each of these 
neighbors is similar in both models. For example, such a 
comparison may be performed of models 510 and 530 by 
starting at anchor or starting point vertices 526 and 546 (or 
another anchor pair) and may proceed upward until a mis 
match is identi?ed in regions 520 when compared with 
regions 540. At 240, the method 200 continues with a deter 
mination of whether the results of the comparison 235 indi 
cate that the topological connectivity is similar throughout the 
compressed graphs. If so, the method 200 continues at 250 
with transferring the attributes from the source model to the 
target model (such as from model 310 to 330 or vice versa), 
and such transfer may start at the anchors or other identi?ed 
starting points/vertices . At 255, the updated model is stored in 
memory and/or passed to other processes for further modi? 
cation or processing (e.g., to a renderer or the like). At 260, the 
method 200 may include reporting any nonmatching regions 
(such as regions 326, 346) and/ or results of the similarity 
testing such as indicating the models had similar topological 
connectivity or providing a percent or fractional similarity 
(e.g., “the models had 60 percent similarity and attributes 
were transferred to that portion” or the like). The method 200 
then ends at 295. 
When at 240 it is determined that the connectivity of the 

two models was not identical, the method 200 continues at 
270 with generating a skeleton graph or other compressed 
graph that is useful for processing when connectivity is not 
identical. At 280, the method includes performing approxi 
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mate topological matching to identify nonmatching regions, 
and this may include using the lazy-greedy algorithm for the 
tool 162 of FIG. 1, with this technique described in detail 
below. At 290, anchor vertices may be identi?ed or these may 
be from step 230. It may be desirable to continue with trans 
ferring of the attributes from the matching portion of the 
source model to the matching portion of the target model 
(e. g., to all areas except the nonmatching model regions such 
as regions 520 and 540 ofFlGS. 5A and 5B). The method 200 
then continues with performance of steps 250, 255, and 260 
and ends at 295. 

With the above discussion of an attribute transfer system 
and method in mind, it may now be useful to describe in more 
detail speci?c aspects and/or embodiments of the invention 
including how to generate compressed graphs or compressed 
versions of animation models. Speci?cally, the following dis 
cussion provides a description of algorithms, which may be 
implemented within the compressed graph generator 152 of 
FIG. 1, to partition unstructured quadrilateral meshes into 
multiple structured submeshes such as a canonical partition 
based on the motorcycle graphing technique. The discussion 
then shows how such a compressed graph in the form of a 
motorcycle graph can be used to ef?ciently ?nd isomor 
phisms between the meshes and also discusses how such a 
canonical partition may be constructed or generated in sub 
linear or reduced time when the set of extraordinary vertices 
of a model or its mesh is known (e.g., compression as 
described signi?cantly increases ef?ciency in storing model 
versions for comparison and also the actual process of testing 
similarity of topological connectivity). Also, a description is 
provided of techniques for further reducing the number of 
components of a structured partition of a mesh. As will be 
shown, although optimization of the number of components 
may be very dif?cult (e.g., NP-hard), heuristics can be used to 
approximate a reduced or minimum number of such compo 
nents. The term canonical is used in this context to indicate 
that for any particular quadrilateral mesh there is only one 
motorcycle graph, e.g., use of the motorcycle graph technique 
provides canonical compression of models because if you 
have two meshes and they have the same connectivity the 
result or output will be the same compression or compressed 
graph. 

Quadrilateral meshes have many applications in computer 
graphics, surface modeling, and ?nite element simulation, 
and any of these applications may provide the animation or 
CG models discussed herein. The polygon meshes of a model 
may be quadrilateral meshes, and the simplest quadrilateral 
meshes are structured meshes in which connections between 
quadrilaterals form a regular grid. However, in complicated 
domains, it may be necessary to use meshes in which this 
structure is interrupted by a small number of irregular vertices 
that do not have degree four. For example, mesh generation 
methods may replace each quadrilateral of a coarse unstruc 
tured quadrilateral mesh with a ?ner structured mesh, and, 
with such methods, ?aws may occur at the coarse mesh ver 
tices. Similar domain decomposition-based meshing tech 
niques have been studied, and in these techniques, the initial 
coarse mesh partitions the ?nished mesh into structured sub 
meshes. However, subsequent processing steps may cause the 
knowledge of the partition to be lost. Alternatively, meshing 
methods may be used in CG modeling that do not form 
structured submeshes within each subdomain or that are not 
based on domain decomposition. Even for a repartitioned 
mesh, it may be possible to repartition the mesh into struc 
tured submeshes in multiple ways. The use of a motorcycle 
graph provides one technique of generating a compressed 
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10 
graph of a given mesh (e.g., an unstructured quadrilateral 
mesh) or model by providing a partition with a small number 
of structured submeshes. 

There are a number of motivations for providing an 
improved (e.g., reduced complexity and canonical) com 
pressed graph of a CG model or partition of a quadrilateral 
mesh or other polygonal mesh. For example, as discussed for 
use in computer animation, similarity testing between two 
models stored in memory or worked on in parallel is very 
important and useful to allow attributes to be transferred 
between the models. Hence, as a speci?c example of algo 
rithmic increased ef?ciency on compressed meshes, the fol 
lowing discussion considers testing of the similarity between 
pairs of object represented or modeled as quadrilateral 
meshes. For instance, the objects may represent two copies of 
a model within a scene, and by ?nding an isomorphism from 
one copy to another, rendering information such as texture 
maps or other attributes may be shared. For models of 
bounded genus, isomorphism testing may be performed in 
linear time, but these algorithms are complex and may have a 
high constant factor in their linear runtime. In contrast, by 
applying these same tests to a compressed version of the 
model rather than the uncompressed input model, the speed of 
such isomorphism testing is signi?cantly increased without 
sacri?cing accuracy or robustness. In addition, compression 
of a mesh to a motorcycle graph allows certain features of the 
mesh such as distances between irregular vertices to become 
more salient, which leads to better performance from the 
isomorphism algorithms. Also, as discussed below, the com 
pressed representations or graphs described herein may also 
be used in approximate similarity testing in which one mesh 
may differ by a relatively small amount with respect to 
another and in which the task is to ?nd the large portions of the 
two meshes that remain identically connected (e.g., regions or 
portions of the models with matching connectivity). 

Other applications for an enhanced compressed graph or 
version of a mesh include texture mapping, mesh compres 
sion, algorithms on compressed meshes, and scienti?c com 
putation. Texture mapping is a standard technique in graphics 
whereby a two-dimensional bitmap image is projected onto 
the faces of a three-dimensional model. A partition into sub 
meshes provides a convenient framework for describing the 
correspondence between two-dimensional pixels and three 
dimensional vertices, e.g., one can store a separate bitmap 
image for each submesh and map each submesh quadrilateral 
vertex to the corresponding pixel in the bitmap. A partition 
with few submeshes minimizes the overhead associated with 
the bitmap objects and reduces visual artifacts at the seams 
between submeshes. With regard to mesh compression, a 
partition of an unstructured mesh into structured submeshes 
can be used as a compressed representation of the mesh that 
may be substantially more space ef?cient than the original 
uncompressed mesh. With meshes with few ?aws, the com 
pressed size of the mesh topology (e.g., in a motorcycle 
graph) is proportional to the small number of irregular verti 
ces. Much of the emphasis in this application regards mesh 
topology, but it may also be used in compressing the mesh 
geometry as the techniques of the invention provide a struc 
tured neighborhood of each vertex that could be used in 
predicting vertex positions from their neighbors. 

Regarding algorithms on compressed meshes, several ef? 
cient algorithms in image and video processing, graph algo 
rithms, and text searching apply directly to the compressed 
data rather than needing to uncompress the data before pro 
cessing it. Such techniques can often be made to run in an 
amount of time proportional only to the compressed data size, 
and the compressed graphs or representations of unstructured 
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mesh via its partition into structured submeshes (e.g., into a 
motorcycle graph) may be helpful in ?nding similar solutions 
to algorithmic problems on meshes. Regarding scienti?c 
computation, in ?nite element computations on quadrilateral 
grids, the code for looping over mesh elements and comput 
ing their updated simulation values can be greatly simpli?ed 
and sped up when the mesh is structured. By partitioning 
unstructured meshes into a small number of structured sub 
meshes and using a code structure in which an update cycle 
includes an outer loop over submeshes and an inner tight loop 
over the elements within each submesh, it should be possible 
to achieve similar speed ups while allowing less structured 
meshes that may be easier to generate or that may better ?t the 
domain structure. 

Through theoretical development, it has been shown that 
the method for generating compressed graphs or partitions 
using the motorcycle graph technique is canonical in the 
sense that it does not depend on the ordering in which the 
mesh elements are stored but only on the connectivity of the 
initial mesh or model. Such a canonical partition is of par 
ticular interest with regard to the mesh isomorphism problem 
because it allows isomorphisms to be found (e. g., match 
regions) between meshes in an amount of time that depends 
on the compressed size of the mesh rather than on its overall 
number of elements. The following description also provides 
data that shows that on meshes from animation applications 
the canonical partition or compressed graph leads to a sub 
stantial reduction in storage size compared to the initial 
unpartitioned mesh or model. The described canonical parti 
tion or compression may also be constructed in certain cases 
in time that is sublinear in the input. Speci?cally, if the initial 
list of irregular vertices in a mesh is given, the partition or 
compressed graph can be constructed in time that is propor 
tional to the number of boundary edges in the mesh, which 
may be a substantially smaller number than the number of 
edges in the entire input mesh. Also, regarding problems of 
?nding partitions that are optimal in the sense of minimizing 
the size of the compressed representation of the mesh, it can 
be shown that many problems of this type are NP-complete, 
but the canonical partition approximates them to within a 
constant factor. Further, heuristics can be used for reducing 
the size of compressed representations beyond the size pro 
vided by our canonical partition. 

At this point in the discussion, it may be useful to discuss 
some of the terms used in the description of the canonical 
partition or generation of a compressed graph of a mesh 
representation of a modeled object or character. An abstract 
quadrilateral mesh is a structure (V, E, Q), where V is a set of 
vertices, E is a set of edges, and Q is a set of quadrilaterals. 
The mesh or its structure has the following properties: (a) V, 
E, Q are ?nite; (b) (V, E) forms a simple undirected graph, 
e.g., each edge includes an unordered pair of distinct vertices, 
no two edges connect the same pair of vertices, and, if an edge 
e is formed by the pair {v, w}, v and w are called the endpoints 
of E; (c) each quadrilateral in Q includes an oriented cycle of 
four edges in the graph (V, E); (d) each edge in E belongs to 
at least one, and at most two, quadrilaterals in Q; (e) any two 
quadrilaterals in Q intersect in a single edge, a single vertex, 
or the empty set; (f) if two quadrilaterals intersect in a single 
edge {u, v}, then that edge is oriented from u to v in one of the 
two corresponding two cycles of four edges and from v to u in 
the other cycle; and (g) if two quadrilaterals q and q' intersect 
in a single vertex v, there is a sequence of quadrilaterals quO, 
ql, . . . kuq' such that each pair qi, qi+l of consecutive 
quadrilaterals in the sequence intersects in an edge that has v 
as its endpoint. 
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12 
The boundary of a quadrilateral mesh includes all edges of 

E that belong to exactly one quadrilateral of Q, and all vertices 
incident to an edge of this type. In graphics and scienti?c 
simulation applications, the vertices correspond to points in 
space, but that correspondence is not required for the algo 
rithms described here. A submesh of a quadrilateral mesh 
M:(V, E, Q) is a mesh M':(V', E', Q') and a one-to-one 
mapping from Q' to Q, such that whenever any two quadri 
laterals of Q' intersect in an edge, the corresponding quadri 
laterals of Q also intersect in an edge. Further, whenever any 
two quadrilaterals of Q' intersect in a vertex, the correspond 
ing quadrilaterals of Q intersect in at least a vertex. A submesh 
can be formed by cutting apart Q along a set of edges corre 
sponding to the boundary edges of Q' and keeping a con 
nected component of the result. An ordinary vertex of a quad 
rilateral mesh is a non-boundary vertex incident with exactly 
four edges of the mesh or a boundary vertex incident with at 
most three edges. An extraordinary vertex is a vertex that is 
not ordinary. A mesh or submesh is structured if it has no 
extraordinary vertices and unstructured otherwise. As will 
become clear, a main emphasis of the compression tech 
niques described herein is the partition of quadrilaterals of a 
mesh M:(V, E, Q) into a small number of subsets Q1, Q2, . . . 
, such that each Qi is the set of quadrilaterals in a structured 
submesh of M, and such a partition or compressed graph may 
be labeled a structured partition of M. 

Regarding the classi?cation of structured meshes, variable 
a and b may be positive integers. Then, an (a, b)-grid may be 
said to be the structured mesh formed by the unit squares with 
integer vertex coordinates within the rectangle {(x, y)IOsxsa 
and Osysb}. Two meshes are isomorphic if there is a one-to 
one correspondence between their vertices, edges, and quad 
rilaterals, preserving all incidences between pairs of objects. 
A ?rst lemma may be stated that if M is a structured mesh, 
then the manifold formed by M is homeomorphic to a disk, an 
annulus (i.e., a disk with a single hole in it), or a torus. Further, 
ifM forms a disk, it is isomorphic to an (a, b)-grid. 

In representing a structured partition, a schematic partition 
may be thought of as a graph or multigraph (e.g., a com 
pressed graph) that is embedded on a two-dimensional mani 
fold without boundary. Such a schematic partition may have 
the following properties: (a) each edge is marked with a 
length; (b) some of the vertex-face intersections are marked 
as comers; (e) each vertex has at least two incident edges such 
that if a vertex has exactly two incident edges then exactly one 
of its vertex-face intersections is marked as a comer; (d) each 
face of the embedding is topologically a disk and has either 
zero or four comers: (e) at least one of the two faces incident 
to each edge has four comers; and (f) if a face has four 
corners, then these comers partition the boundary of the face 
into four paths such that the two paths in each opposite pair of 
paths have the same length. 

It may be convenient to represent schematic partitions 
using a winged edged data structure made up of an object for 
each edge with pointers to the four edges clockwise and 
counterclockwise from it on each incident face. To augment 
this data structure to describe a schematic partition, a length 
may be stored in memory for each edge object, and two bits 
representing the existence of a comer at the two vertex-face 
intersections clockwise of the edge on each of its two incident 
faces. Then, mesh M may be said to have a structuredpartition 
Q1, Q2, . . . Qk into structured submeshes, each topologically 
a disk. From this partition, a schematic partition may be 
formed representing M by letting X be the set of vertices of M 
that have nonzero de?ciency in M itself or in at least one 
submesh Qi. Then, Y can be decomposed into a family of 
paths in M, having vertices in X as endpoints. A schematic 
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partition is formed with one edge per path that is labeled by 
the length of the path. Conversely, from a schematic partition 
formed in this way from a quadrilateral mesh M, a mesh 
isomorphic to M can be formed by replacing each marked 
face of G, having paths connecting its corners with lengths a, 
b, a, b, by an isomorphic copy ofan (a, b)-grid. In this sense, 
a schematic partition can be thought of as a compressed graph 
or representation of M, requiring space proportional to the 
number of edges in G rather than to the number of vertices, 
edges, and quadrilaterals or faces in M. In one speci?c 
example, a schematic partition (or one form of a compressed 
graph) of a quadrilateral mesh having 323 vertices, 622 edges, 
and 300 quadrilaterals may take the form of a winged edge 
data structure having only 44 edge objects. 

Signi?cantly, compressed graphs or partitions may be gen 
erated using a motorcycle graph technique (e.g., as may be 
implemented in the compressed graph generator 152 to per 
form the process 200 of FIG. 2). Speci?cally, a technique is 
now described according to one embodiment of the invention 
for ?nding a partition of an abstract quadrilateral mesh, inde 
pendent of its representation. This independence allows our 
partition to be used, for instance, in ?nding isomorphisms 
between pairs of meshes. In this regard, two meshes will be 
isomorphic (e.g., in a comparison such as may be provided by 
comparison engine 160 of FIG. 1 or in step 235 of the method 
200 of FIG. 2) if and only if their partitions are isomorphic, 
and, therefore, an isomorphism algorithm (e.g., as may be 
used by the comparison engine 160) can be applied directly 
on the schematic partitions of the meshes rather than on the 
original uncompressed meshes. 

In one embodiment, the technique used to generate a com 
pressed graph or partition is based on the motorcycle graph, 
e.g., a construction inspired by a video game in the 1982 
Disney movie Tron and previously used in algorithms for 
constructing straight skeletons. In the movie, players ride 
“light cycles” that move horizontally and vertically within a 
playing ?eld, leaving paths behind them that are visible as 
glowing walls. The object of the game is to force one’s oppo 
nents to crash into these walls; when this happens, the player 
who crashes loses the game. The motorcycle graph for a 
system of moving particles in the plane is formed by moving 
each particle in a straight line at its initial velocity until it 
reaches a point that has previously been part of the track 
followed by one of the other particles; when this happens, it 
stops. The paths traced out by the particles in this system form 
a pseudoforest called a motorcycle graph. 

Similarly, a motorcycle graph may be determined or gen 
erated for a quadrilateral mesh or CG model using the fol 
lowing process (and then this type of compressed graph may 
be used in similarity testing between two models). At each 
extraordinary vertex of the mesh, incident to d edges, place d 
particles, one moving outwards on each edge. Assign all 
particles equal velocities. Then, in a sequence of time steps, 
move each particle along the edge on which it is placed. When 
a particle reaches an ordinary interior vertex of the mesh, it 
continues in the next time step outwards from that vertex on 
the opposite edge at that vertex. However, when two oppo 
sitely-traveling particles meet, when a particle meets a vertex 
that has previously been traversed by itself or another particle, 
or when a particle meets a boundary vertex of the mesh, the 
traveling particle stops. 

There may be several ways of determining what happens 
when particles that are not oppositely oriented meet simulta 
neously at a vertex. For example, if there are three or four 
particles that meet simultaneously in this way, they all stop. 
However, if exactly two particles meet perpendicularly at a 
vertex, the compression or partitioning technique may 
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14 
employ the “right-hand rule” familiar to American drivers at 
intersections with four-way stops: the particle on the left (that 
is, clockwise from the right angle formed by the two particles ’ 
tracks) stops, while the particle on the right (that is, counter 
clockwise from the right angle) keeps going. Note that this 
rule depends on having an orientation on the mesh, which 
may be imposed as part of a de?nition of an abstract quadri 
lateral mesh. 

Eventually, all particles stop traveling. Each moving par 
ticle moves from a vertex that is not reused as the source of 

another moving particle, and, as a result, the process runs out 
of vertices from which particles can move. The motorcycle 
graph of the mesh includes the set of edges traversed by 
particles as part of this process, together with all boundary 
edges of the mesh. FIGS. 6A-6C show the process of motor 
cycle graph construction on an example mesh 600 formed of 
a plurality of faces or quadrilaterals, vertices 612, and edges 
614. In FIG. 6A, the construction is shown after one time step 
with particles emanating from each extraordinary vertex 620 
shown as moving one edge away from their initial positions. 
In FIG. 6B, the construction is shown after two time steps 
with some particles having collided with each other. In FIG. 
6C, the completed motorcycle graph 650 is shown including 
its signi?cantly reduced number of faces or quadrilaterals 
652, vertices 654, and edges 656. 
A ?rst theorem (or Theorem 1) regarding motorcycle 

graphs may be stated as the motorcycle graph partitions any 
abstract quadrilateral mesh M into structured submeshes. If 
M is not itself structured, each of the submeshes is topologi 
cally equivalent to a disk. The motorcycle graph is deter 
mined uniquely by the connectivity of the mesh and does not 
depend on the computer representation of the mesh. For sur 
faces of bounded genus, the motorcycle graph partitions any 
mesh into a number of structured submeshes that is within a 
constant factor of the minimum possible. The numbers of 
vertices and edges of the corresponding schematic partition 
are also within a constant factor of the minimum possible. If 
M is given together with a list of the extraordinary vertices in 
M, then the motorcycle graph may be constructed in an 
amount of time that is proportional to the total number of 
edges in M that it contains. 
As noted above, one motivating application was for creat 

ing compressed graphs or partitions such as the motorcycle 
graph was for use in testing the isomorphism of meshes. In 
that light, a second theorem (or Theorem 2) may be used to 
show that use of the motorcycle graph speeds up isomorphism 
calculations. In this second theorem, M and M' are taken to be 
quadrilateral meshes. Then M and M' are isomorphic if and 
only if the respective schematic partitions corresponding to 
the motorcycle graphs of M and M' are isomorphic as labeled, 
embedded multigraphs. Isomorphism between quadrilateral 
meshes on bounded-genus surfaces may be tested in linear 
time by constructing the motorcycle graphs and applying 
Miller’s algorithm to the resulting schematic partitions (e. g., 
the graph comparison algorithm may be that developed by G. 
Miller, which is known to those skilled in the art and, hence, 
is not need repeated here but may be found in Proc. 12th 
AnnualACMSymp. on Theory 0fC0mpuZing, pages 225-235, 
1980, article entitled “Isomorphism Testing for Graphs of 
Bounded Genus,” which is incorporated herein by reference). 

Although this result may not provide signi?cant improve 
ment in asymptotic complexity over direct application of 
Miller’s algorithm to the original meshes, it does provide 
practical improvement in several ways. First, the only part of 
the algorithm in which the uncompressed representation of 
the input mesh is handled is as input for the construction of the 
motorcycle graph, which is much simpler than Miller’s iso 
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morphism testing algorithm and, as a result, likely has much 
smaller constant factors in its linear runtime. Second, if the 
extraordinary vertices are known, the whole algorithm may 
be performed in time sublinear in the input size. Third, the 
motorcycle graph construction need be performed only once 
for each mesh, allowing subsequent isomorphism tests to be 
performed ef?ciently on these compressed graphs for models. 

In a test of the motorcycle graph partition (e.g., a com 
pressed graph generator using a motorcycle graph module), 
the partition routine/technique was applied to six meshes 
created for a feature ?lm animation application. The results 
showed: (a) Model A had 820 vertices and 1603 edges in the 
original mesh and 98 vertices and 123 edges in the motorcycle 
graph or schematic partition to provide a compression factor 
of about 12.0 percent for vertices and about 7.7 percent for 
edges; (b) Model B had 1070 vertices and 2110 edges in the 
original mesh and had 164 vertices and 247 edges in the 
schematic partition for a compression factor of about 15.3 
percent for the vertices and 11.7 percent for the edges; (c) 
Model C had 3099 vertices and 6034 edges in the original 
mesh and had 286 vertices and 408 edges in the schematic 
partition for a compression factor of about 9.2 percent in the 
vertices and 6.8 percent in the edges; (d) Model D had 6982 
vertices and 13933 edges in the original mesh and had 711 
vertices and 1251 edges in the schematic partition for a com 
pression factor of about 10.2 percent for vertices and 9.0 
percent for edges; (e) Model E had 9958 vertices and 19889 
edges in the original mesh and had 749 vertices and 1299 
edges in the schematic partition for a compression factor of 
about 7.5 percent for vertices and 6.5 percent for edges; and 
(f) Model F had 10281 vertices and 20530 edges in the origi 
nal mesh and had 761 vertices and 1300 edges in the sche 
matic partition for a compression factor of about 7.4 percent 
for vertices and 6.3 percent for edges. Also, as discussed 
above, FIG. 3 illustrates a pair of models 310, 330 that may be 
processed using these compression techniques to form the 
motorcycle graphs 415, 425 based on the meshes of models 
310, 330 as shown in FIG. 4. The reduction in size of the 
number of edges in the schematic partition (the controlling 
factor for the size of its winged-edge representation) com 
pared to the number of edges in the original mesh ranged from 
6.33% to 11.71%, with some trend towards better compres 
sion on larger meshes. The reduction in the number of vertices 
was similar although not quite so great. It is expected a similar 
reduction would be found in the time for performing isomor 
phism tests (such as Miller’s algorithm or other similarity 
testing) on compressed meshes with respect to the times for 
testing their uncompressed counterparts, and perhaps, in this 
case, the speedup might be even larger due to the presence of 
labels in the schematic partition which may serve to help in 
isomorphism testing. 

In some applications of structured partitions, it may be 
acceptable to spend a greater amount of preprocessing time 
and sacri?ce canonicalness of the resulting partition. In this 
regard, several observations may be made related to minimiz 
ing the number of vertices in any schematic partition for a 
mesh M. First, each extraordinary vertex of the input mesh 
should be a vertex of the schematic partition. Second, at each 
extraordinary vertex, edges of the schematic partition should 
follow paths that use at least every other outgoing edge for, if 
two consecutive edges at the vertex remained unused, the 
result would be an extraordinary boundary vertex of degree 
four or greater in some submesh of the partition. Third, the 
motorcycle graph construction may be modi?ed to produce a 
valid structured partition by allowing particles to travel at 
different velocities or with different starting times. The simul 
taneous movement of the particles is important in making the 
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motorcycle graph canonical but not in generating a correct 
partition. Fourth, the schematic partition formed from a 
motorcycle graph includes as a vertex an ordinary vertex v of 
M only if some particle reaches v after some otherparticle has 
already reached it or if two particles reach v simultaneously. 

Thus, a smaller partition than the motorcycle graph itself 
may be found in some cases by a process in which the parti 
tion is built up by adding a single path at a time, at each step 
starting from an extraordinary vertex and extending a path 
from it until it hits either another extraordinary vertex or an 
ordinary vertex that has previously been included in one of the 
paths. In this process, priority may be given ?rst to paths that 
extend from one extraordinarily vertex to another because 
these paths cannot do not add any additional vertices to the 
partition. Secondly, paths may be preferred in the initial edge 
of which is an even number of positions from some other edge 
around the same extraordinary vertex in order to use as few 
paths emanating from that vertex as possible. Once no two 
consecutive edges at an extraordinary vertex remain unused, 
the partition process may terminate with a valid partition. The 
partition discussed above with 323 vertices, 622 edges, and 
300 quadrilaterals in the original, mesh, for instance, may be 
constructed by a process of this type, and, for such a smaller 
mesh, this technique for creating a compressed version of the 
model is signi?cantly simpler than the motorcycle graph par 
tition of the same mesh. 
An alternative approach to reducing the complexity of 

partitions into structured submeshes would be, instead, to 
form the motorcycle graph, and then to repeatedly merge 
pairs of structured submeshes, the union of which is still 
structured. For instance, the motorcycle graph 650 in FIG. 6C 
contains many mergable pairs of submeshes. This approach 
would not be able to ?nd certain partitions, for instance those 
in which some instances of the right hand rule have been 
replaced by a symmetric left hand rule. So, it may be less 
effective at ?nding small partitions, but it would have the 
advantage of working within the compressed mesh after an 
initial motorcycle graph construction phase. Therefore, such 
an alternate compression technique could likely be imple 
mented to run more ef?ciently than the careful selection of 
paths described above. 

Note, some special cases of problems of ?nding optimal 
partitions may be solvable in polynomial time. For instance, 
a polygon in the plane with horizontal and vertical sides 
(possibly with holes) may be partitioned into the minimum 
possible number of rectangles, in polynomial time. The same 
algorithm may be adapted to ?nd a partition of a mesh having 
only axis-aligned rectangles into a minimum number of struc 
tured submeshes, again in polynomial time. However, this 
method typically does not minimize the number of vertices 
and edges of a schematic partition for the mesh and likely may 
only be applied, to a very restricted subset of quadrilateral 
meshes. 

In order to show that ?nding optimal structured partitions is 
hard, the problem of ?nding an optimal structured partition is 
modeled as a decision problem. Three such problems may be 
de?ned, one for each parameter measuring the size of a par 
tition, and, then, it can be shown that they are all NP-com 
plete. Speci?cally, a third theorem (or Theorem 3) may be 
stated as follows. It is NP-complete to determine, for a given 
mesh M and parameter k, whether there exists a partition of M 
into at most k structured submeshes, which there exists a 
partition of M into structured submeshes that corresponds to 
a schematic partition with at mo st k vertices, or whether there 
exists a partition of M into structured submeshes that corre 
sponds to a schematic partition with at most k edges. The 
proof may be completed by a reduction from maximum inde 
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pendent sets in cubic planar graphs, via an intermediate prob 
lem, which can also be shown to be NP-complete with ?nding 
a maximum independent set in the instruction graph of a 
family of line segments such that any two intersecting seg 
ments in the family cross properly. 

To summarize some of this discussion of creating a com 
pressed graph in the form of a motorcycle graph, a number of 
problems were investigated and solved that involved canoni 
cal and optimal partitioning of unstructured quadrilateral 
meshes into structured meshes. The motorcycle graph 
approximates the optimal structured partition to within a con 
stant factor in the number of vertices, edges, and submeshes. 
The constant factor that the inventors have been able to prove 
is relatively large, but it is likely that further efforts by those 
skilled in the art will prove or provide tighter bounds on its 
quality or on the quality of the improved mesh partitioning 
strategies that were described based on sequential choices of 
paths giving priority to paths that connect pairs of extraordi 
nary, vertices. The proof that optimal partitioning problems 
are hard relies on meshes with a very large number of bound 
ary components, and accordingly high genus, but in some 
cases, these problems may also be hard for bounded-genus 
meshes. In addition, it may be of interest to gather more 
empirical data on the application of our structured partition 
techniques to the problems described above. In brief, the 
inventors have implemented an exact mesh isomorphism 
strategy based on the motorcycle graph, and the results are 
very promising for use in compressing data storage needs and 
for facilitating comparison of two models based on their 
compressed graphs and then when at least partially isomor 
phism is found transferring attributes or data from one model 
to the other (e.g., from a source model to a target model). 

With a solid understanding of mesh compression using 
motorcycle graph processes in hand, it may now be useful to 
explain other compression techniques (e.g., skeleton graph 
techniques) and other processing useful for performing simi 
larity testing (e.g., identifying anchor vertices). Before turn 
ing to such details, a reminder that quadrilateral meshes are 
used to model objects and characters as representing polyhe 
dral surfaces such that each face is a quadrilateral. Having 
each face a quadrilateral is useful in part because quadrilat 
erals or quads can be easily partitioned into ?ner quadrilateral 
grids, which facilitates applications such as re?ning a low 
resolution texture image mapped to a single quad into a high 
resolution image mapped into a grid of re?ned sub-quads in 
that single quad. In order to better utilize the time of people 
such as animators working with a given quad mesh or CG 
model, it is common for a single mesh to be used in a number 
of different processing paths in parallel. 
As discussed above, a signal mesh may be processed 

simultaneously for texture mapping, feature mapping, ?nite 
element analysis for physical animation purposes, and mor 
phing for object animation. Unfortunately, the software sys 
tems that perform the multiple simultaneous tasks on a given 
mesh M often use different internal representations of M, 
which in turn can result in different representations of mesh 
M in the output of each task, e. g., reordering or reindexing of 
vertices of the mesh M while keeping the topological struc 
ture of mesh M unchanged or computation al tasks may 
slightly change the structure in hard to identify places. Thus, 
in order to integrate the results of a set of multiple parallel 
tasks performed on a mesh M, it is desirable to match or 
perform similarity testing as well as possible on all the copies 
or versions of a particular model or mesh M. Such matching 
or determination that all or portions of two models are similar 
in connectivity allows that attributes such as texturing and 
feature mapping can be transferred from one model to 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
another. When quad meshes (or their compressed graphs or 
embedded graphs) are not fully identical with regard to topo 
logical connectivity, it is desirable to solve the approximate 
topological matching problem as to identify much of the 
matching portion and to identify the nonmatching regions or 
portions of the model (which may include at least some 
regions that have similar topological connectivity). 

In the following paragraphs, the problem and possible 
solutions are described for how to ?nd a best match between 
two potentially dissimilar quadrilateral meshes (e. g., two 
models that are similar but include one or more regions of 
nonmatching topological connectivity). Such algorithms and 
techniques may be implemented by the attribute transfer 
module 150 of FIG. 1 such as in the skeleton graph module 
158, the graph comparison engine 160, the approximate topo 
logical matching algorithm 162, and the anchor vertices ID 
algorithm 163 (as well as the method 200 of FIG. 2 when 
topological connectivity similarity is not found at 235). In 
brief the describe results indicate that the problem of ?nding 
the best match is NP-hard or nearly impossible (if “best” is 
most matching vertices), implying that it is very unlikely that 
there is a polynomial-time algorithm for approximate topo 
logical matching. Of course, there is a polynomial-time solu 
tion for ?nding an exact topological match between two 
meshes if such a match exists, but the quadratic running time 
of such an algorithm makes its use impractical for most real 
world meshes with more than a few hundred quads (and for 
mo st computing applications). Moreover, because mo st of the 
vertices in a quadrilateral mesh have degree four, there is a 
considerable amount of natural similarity and symmetry 
between quad meshes, which makes even the exact matching 
problem interesting or challenging in practice. 

In some of the following embodiments, a heuristic algo 
rithm is provided for use in approximating topological mesh 
matching (e.g., for use in matching algorithm 162 of FIG. 1). 
The heuristic algorithm is, at least in part, based on a graph 
theoretic analogue to the Delaunay triangulation. A Delaunay 
triangulation may be de?ned on a set of points S in the plane 
as the graphtheoretic dual of a Voronoi diagram of S. If we 
imagine that the plane is made of a combustible materials, and 
a ?re is started from each point in S and the propagation of the 
waves of the ?re are watched, then the Delaunay triangulation 
is the graph de?ned by joining every pair of points whose 
waves of ?re crash into each other. Different versions of the 
Delaunay triangulation may be produced depending on the 
shape of the ?re waves (e.g., as de?ned by uniform-distance 
balls determined by L1, L2, or Loo metrics). This approach 
may be applied to quad meshes in embodiments of the inven 
tion, viewing the vertices of degree four as “combustible 
material” and the extraordinary vertices of degree other than 
four as the starting points for the ?res. Such a ?re propagation 
approach to de?ning a graph-theoretic Delaunay triangula 
tion has, in some cases an undesirable complication for 
approximation matching. It can lead to poor matches when a 
deformed portion of the mesh is shrunk relative to a portion it 
should be approximately matched against. However, the ?re 
growing approach described herein for use in approximate 
matching can be made to work effectively even in these more 
dif?cult cases as long as the wave fronts are grown in a 

lazy-greedy fashion, which is one preferred embodiment of 
the approximate topological matching algorithm of the inven 
tion, so as to grow the largest portions of matching wave 
fronts. 

Before discussing speci?c algorithms and results, it may be 
helpful to discuss and describe terms and general information 
about quadrilateral meshes (or assumptions made by the 
inventors). Any graph drawn on the sphere SO in three-dimen 
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sional space partitions the surface of SO into cells such that 
each is homeomorphic to a disk (e.g., it is assumed that graphs 
are drawn without edge crossings). Each such cell is called a 
face in the embedding, and adding g “handles” to S0 gives the 
surface Sg, which is said to have genus g. For example, a 
traditional coffee cup is of genus 1. 
A cellular embedding of a graph on Sg is a drawing that 

partitions Sg into cells such that each is homeomorphic to a 
disk. A quadrilateral mesh is a cellular embedding of a graph 
G:(V, E) onto a surface Sg such that each face is a quadrilat 
eral. The genus of the mesh is g in this case. A quad mesh may 
be viewed as a triple (V, E, Q) whereV is a set ofvertices, E 
is a set of edges, and Q is a set of quadrilaterals. In addition, 
quad meshes are represented with a data structure, such as a 
“winged edge” structure (e.g., a winged-edge polyhedron 
representation such as described by B. G. Baumgart in Tech 
nical Report CS-TR-72-320, Stanford University, 1972, 
which is incorporated herein by reference), that supports the 
following operations: (a) list the incident edges aron a 
given vertex (in clockwise or counter-clockwise order) in 
time proportional to the degree of that vertex; (b) list the 
bounding edges around a given face (in clockwise or counter 
clockwise order) in time proportional to the size of that face; 
and (c) list the two vertices that are the endpoints of a given 
edge in constant time. 

The simplest form of quad mesh is a structured mesh, 
where every vertex has degree four. The average degree of 
vertices in a bounded-genus quad mesh is 4, and it is common 
for the majority of vertices in a quad mesh to have degree 4. 
For this reason, if a vertex in a quad mesh is an interior vertex 
with degree different than 4 or an exterior (boundary) vertex 
with degree different than 3, then that vertex is referred to as 
an extraordinary vertex. Regarding the size of a quad mesh, 
traditionally, an algorithm operating on a graph G is charac 
terized in terms of nIIVI, the number of vertices of (G, and 
m:| E|, the number of edges in G. These measures are present 
in quad mesh algorithms as well, but there is also q:|Q|, the 
number of quads, so it is useful to relate these quantities. 
Hence, a ?rst observation (or Observation 1) may be that in a 
quad mesh with m edges and q faces, 2qsms4q. A proof of 
such an observation may be that if the number of edges on 
every face is summed up each edge is counted at least once 
and at most twice. Since each face is a quadrilateral, 4qs2m 
and ms4q. 
A second observation (or Observation 2) may be that the 

number of edges and faces in a quad mesh can be arbitrarily 
larger than the number of vertices. Proof of such an observa 
tion is that two vertices can be placed at opposite poles of a 
sphere and as many edges as liked can be added joining them. 
Now, remove the sphere and enlarge each edge to be a thin 
tube. Next, take each original vertex and split into two points 
separated by the width of a tube, with one on top and one on 
the bottom. Now, for each tube, run an edge between the two 
top vertices, an edge between the two bottom vertices, and an 
edge joining top to bottom at each pole. This creates a quad 
mesh with four vertices and an arbitrary number of faces and 
edges. 

Although it is not uncommon in the solid modeling litera 
ture to allow for such multiple edges and even self loops in the 
graph de?ned by a quadrilateral mesh, the following descrip 
tion is generally limited to simple meshes, where there are no 
multiple edges between the same pair of vertices and no self 
loops. Likewise, multiple edges and self loops are disallowed 
in the dual graph, which is formed by placing a vertex in each 
quad and joining two quads Q and R with an edge any time Q 
and R have an edge of the mesh in common. Likewise, the 
mesh is well-formed, meaning that it satisfy the following: (a) 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
for each vertex v, the set of quads containing v is connected in 
the dual graph; (b) the boundary of a quadrilateral mesh M 
includes all edges of E that belong to exactly one quadrilateral 
in M and all vertices incident to an edge of this type (also, for 
every cyclic portion C of the boundary of M on Sg (that is, a 
“hole” in the mesh), the interior of C is homeomorphic to a 
disk, which may be stated that each hole in M is contractible); 
(c) every edge in M is adjacent to at least one and at most two 
quadrilateral faces of M; and (d) any two quadrilaterals in Q 
intersect in a single edge, a single vertex, or the empty set. 
A third observation (or Observation 3) may be stated that in 

a simple, connected, well-formed quadrilateral mesh M of 
genus g, with n vertices and m edges, ms2+4g—4. Proof for 
such observation is that since M is a simple, cellularly embed 
ded graph in g, the Euler characteristic implies: n—m+q:2— 
2g. Speci?cally, the Euler characteristic (which is also called 
“Euler’s formula” or the “Euler-Poincare characteristic”) 
states that, in such embeddings, the number of vertices minus 
the number of edges plus the number of faces is equal to 2—2g. 
That is, in this case, m:n+q+2g—2. Based on the ?rst obser 
vation discussed above (or Observation 1), qsm/2 and thus, 
ms2n+4g—4. 

In most practical applications of quadrilateral meshes, the 
genus g of a given mesh is bounded by constant, and it is likely 
O(n). In fact, g is typically 0 or 1. Thus, the above lemma 
implies that in almost every practical application using a 
mesh M with n vertices and m edges, m is O(n). Thus, for 
example, the time complexity of the simple wave-growing 
exact graph isomorphism algorithm on such meshes is O(n2). 
The following lemma may be stated, too. In a simple, con 
nected, well-formed quadrilateral mesh M of genus g, with n 
vertices and m edges: ms((4/3g)l/2+2)n—4. The proof of this 
lemma follows from observation 3 (or Observation 3) in that 
it is known that: ms2n+4g—4. So, proof requires that it is 
shown that 4gs(4/3g)l/2n or to show g<n2/ 12. But, this fol 
lows from the fact that M is simple and the complete graph on 
n vertices K”, has genus less than n2/ 12. 
As method above, the problem of ?nding a best approxi 

mate topological match between two quad meshes has several 
uses in object representation and rendering applications. 
Unfortunately, as will be shown in the following discussion, 
the problem of ?nding an optimal approximate topological 
match is typically NP-hard and algorithms trying to ?nd such 
an optimal match are not useful in practice. In order to be 
precise, the approximate topological matching problem for 
quad meshes should be stated more formally. Given two 
quadrilateral meshes, M1 and M2. A matching submesh S l of 
M1, with respect to M2, is a connected set of quads in M1 that 
is mapped one-to-one to a connected set of quads in M2 by a 
function u. that maps quads in S 1 to quads in M2 such that ql 
and q2 are adjacent in S 1 if and only in p.(ql) and p.(q2) are 
adjacent in M2 (using adjacency across edge boundaries). The 
approximate topological matching problem is to ?nd a match 
ing submesh S l of M1, with respect to M2, and corresponding 
mapping function u, such that S 1 has the largest number of 
quads over all such submeshes. 

Unfortunately, we have the following theorem (or Theorem 
5) that the approximate topological matching problem for 
quad meshes in NP-hard. Proof of this theorem involves 
showing that this problem is NP-hard by giving a reduction 
from the problem of determining if a given cubic planar graph 
is Hamiltonian, which is known to be NP-complete. Suppose 
then, a cubic planar graph G is given as input, that is a graph 
G such that each vertex has degree 3 and which can be drawn 
in the plane without crossings. An embedding of G can be 
produced in an O(n)><O(n) integer grid in polynomial time, 
where n is the number of vertices in G. Next, C may assumed 
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to be a simple cycle with n vertices, and a mesh Ml can be 
constructed from C by expanding each edge of C into a 
connected sequence of four quads and expanding each vertex 
of C according to a replacement mesh. Then, G may be 
converted into a second quad mesh M2 by expanding each 
edge into a sequence of four quads “glued” together end-to 
end and expanding each vertex of G according to another 
replacement mesh (e.g., replacement meshes in which all the 
possible ways that a maximum number of quads in a vertex 
submesh from M 1 can match a maximum number of quads in 
the vertex submesh in M2 is considered). Note that since each 
edge in G and C is expanded into a connected sequence of 4 
quads, the quads in an edge submesh can match at most 2 
quads in a vertex submesh. Now suppose that G is Hamilto 
nian. That is, C is a subgraph of G. Then, there is a topological 
match of M l in M2 that pairs up all but n quads from Ml, i.e., 
the number of matched quads between M1 in M2 is 7n. Sup 
pose, on the other hand, that there is a match of M1 in M2 that 
matches 7n quads. As we have noted above, the only way this 
can occur is if the edge submeshes of M1 match edge sub 
meshes of M2 and 3 quads in each vertex submesh of the M 1 
match inside a vertex submesh of M2. Thus, C is a subgraph 
of G, e.g., G is Hamiltonian. 

Turning now to features or aspects of the present invention 
as discussed with reference to FIGS. 1 and 2, given that the 
approximate topological matching problem is NP-hard, it is 
very unlikely that there is an ef?cient algorithm for solving it 
exactly. Thus, let us discuss a heuristic approach that may be 
used in the approximate topological matching algorithm 162 
with support by anchor vertices ID algorithm 163 of FIG. 1 
(and steps 270, 280, 290 of method 200 of FIG. 2). 
A useful starting point for our heuristic algorithm may 

include the identi?cation of good anchors that can seed the 
process of matching pairs of quads in the input meshes M1 in 
M2 (e.g., the models to be compared for similar connectivity). 
In order to ?nd a good set of anchors, a few iterations of the 
Weisfeiler and Leman (WL) algorithm may be applied for 
exact graph isomorphism (e. g., see, M. Grohe, “Isomorphism 
Testing for Embeddable Graphs Through De?nability” found 
at least in STOC ’00: Proceedings of the 32”d Annual ACM 
Symposium on Theory of Computing, pages 63 -72, New 
York, N.Y., USA, 2000, ACM Press, which is incorporated 
herein by reference). As will be understoodby those skilled in 
the art, in the WL algorithm, each vertex is initially colored 
with a color associated with its degree (e.g., not only the 
degree of each vertex may serve as the seed for colors as the 
edge weights may also be chosen for use in the compressed 
meshes, and, in order to do so, each edge may be labeled by 
the number of edges contracted while compressing the 
meshes). Then, each vertex is colored by a string of its neigh 
bors’ colors in an order that appears in the topological embed 
ding. In turning the cyclic ordering into a linear ordering, the 
one that is lexicographically minimum is picked or selected. 
Then, these strings are allowed to be the new colors of the 
vertices, which can be re-normalized to be the integers from 
1 to n with a simple radix sort. The following algorithm (or 
Algorithm 1) gives a pseudo code for this procedure: 

Algorithm 1: Algorithm for ColorGraph 

foreach u E M do 
tmpColor[u] = deg(u); 

end 
foreach u E M do 

Color[u] = ( ); 
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-continued 

Algorithm 1: Algorithm for ColorGraph 

foreach v E neighbor(u) do 
Color[u] = Color[u] + tmpColor[v]; 

end 
Color[u] = Lexicographical minimum ordering of Color[u]; 

end 
return the set of vertices with unique color; 

Observe that the second loop in Algorithm 1 can be 
repeated to re?ne the colors of vertices. This repetition should 
be done until a reasonable stopping condition is reached. For 
example, the stopping condition may be used of repeating 
until a set upper bound, k, is reached on the number of itera 
tions or until at least one pair of uniquely colored edges are 
found, one from each mesh. If this loop is repeated i times, the 
color of each vertex u will contain information about the 
vertices that are within distance i from u. The running time of 
this second loop is 2m:O(m), which is O(n) in the case of 
planar meshes or meshes of at most linear genus, by Obser 
vation 3 described above. A ?nal step of the algorithm for 
identifying seeds to initiate mesh-matching growth from is 
that of ?nding corresponding anchors from the colored com 
pressed meshes. In order to ?nd such seeds, the rarest (hope 
fully unique) colored vertices returned from the two com 
pressed meshes are ?rst matched, and then look for matching 
neighbors of the two matched vertices. Again, for most 
meshes, this process takes O(n) time in the worst case, by 
Observation 3 or Lemma 4 described above. 

This WL algorithm or Algorithm 1 may also be considered 
looking for or identifying unique labels as discussed with 
reference to FIGS. 1 and 2 to identify good anchor vertices. 
For example, each of the vertices in a mesh may be labeled 
using the number of edges emanating from that vertex. Then, 
in a second iteration, a concatenation of the labels of all a 
vertex’s neighbors may be performed. Then, the smallest 
number (or another value) among these possible concatena 
tions may be chosen. If we have a unique number among these 
selected smallest numbers then the process may continue 
with ?nding a match in the other model or mesh. If a match is 
found in the second model or mesh, one of the neighbors of 
these vertices may be chosen to create a good starting pair of 
vertices or anchors for later processing such as for use in the 
heuristic algorithm described below (e. g., in the approximate 
topological matching algorithm). 
As noted above, it is desirable to ?nd rare or even uniquely 

colored anchors, so as to limit the number of possible candi 
date starting points for growing matching sets of quads 
between the two input meshes. Thus, it makes intuitive sense 
that the search should concentrate on extraordinary vertices. 
In order to focus on the adjacencies between these vertices, a 
compression scheme may be applied that focuses on extraor 
dinary vertices, and, in most cases, a scheme that reduces the 
size of the graph to be processed. Hence, some embodiments 
of the invention utilize a skeleton graph module (e. g., element 
158 of FIG. 1) or algorithm to create a compressed graph. 
Constructing a compressed skeleton graph inside each mesh 
may be preformed or thought of in the following way. Imag 
ine that a particle is shot outward in every possible direction 
going out of each extraordinary vertex. These particles (sepa 
rately) trace out a sub graph in each input mesh, M 1 in M2. The 
particles are allowed to continue to move, tracing out the 
compressed graph foruse in color assignment, until each such 
particle reaches another extraordinary vertex (which is a very 
common occurrence given the way that people build quad 
meshes in practice) or the particle reaches a boundary edge. In 
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some cases, the creation of the anchor skeleton version of a 
compressed graph is followed by the anchor-?nding proce 
dure, e.g., the anchor ?nding algorithm or similar ID process 
for starting vertices is performed on this skeleton graph. 

Before describing an embodiment of an approximate topo 
logical matching algorithm, it may be useful to describe a 
false start or exact/best match process that is ineffective, e.g., 
a greedy algorithm. For example, given a set of anchors to 
begin a matching or graph comparison process, perhaps the 
most natural heuristic algorithm for solving the approximate 
topological matching problem is to start with a seed pair of 
matching quads, starting at some candidate anchors, and grow 
out matching meshes from this starting point. The natural 
greedy algorithm based on this approach would be to grow 
out the matching set of quads in waves, adding as many quads 
as possible so as to satisfy the adjacency constraint for quads 
(e. g., by restricting attention to quads that are adjacent across 
an edge or vertex). 

Unfortunately, this greedy approach suffers from a serious 
drawback, which is highlighted by a simple example. Sup 
pose we are given two similar meshes, M l in M2, such that M2 
is an exact match for M1 except that some small group of 
quads in M2 is compressed into a set of edges. Suppose further 
that sets of matching quads are grown out in M1 in M2 starting 
from some anchor point, using the greedy approach of match 
ing as many quads as possible with wavefront propagation. 
When this propagating wavefront reaches the set of com 
pressed quads (or nonmatching regions), it will correctly 
match long sets of quads on each side of the mismatching 
portion, but the process will also incorrectly match as many 
quads as possible across the compressed edges as well. 
Unfortunately, this sets off a cascading failure, as the wave 
front that propagated across the compressed edges will be out 
of phase with the (correct) sets of quads that are being 
matched as they go around the compressed region. The cas 
cade continues because the incorrectly-matched quads are 
being “grown” ahead of the correctly-matching quads (e.g., 
the matching regions behind the mismatching region are iden 
ti?ed falsely as also being mismatching due to the growth or 
propagation of the wavefront). The correctly-matching quads 
never have a chance to “catch up” to this wave, however, and 
it can continue cascading across the entire mesh. Thus, a 
greedy algorithm may be used as a heuristic for solving the 
approximate topological matching problem, but it often will 
result in identifying large areas or regions as nonmatching 
that actually have similar topological connection. Hence, 
most embodiments of the invention utilize a lazy-greedy 
approach for approximate topological matching (e.g., com 
parison when two models are not identical), while the greedy 
approach may be used as an initial mesh comparison process/ 
algorithm (e.g., by graph comparison engine 160 of FIG. 1 or 
in step 235 of the method 200 of FIG. 2 to determine whether 
or not two meshes are identical). 
More particularly, the following description discusses one 

useful lazy-greedy approach to solving the approximate topo 
logical matching problem for two quad meshes by using a 
wavefront “?re-propagation” method. A main idea behind 
this oxymoronic algorithm is to grow out waves of matching 
quads, as in the greedy algorithm given above as a false start 
but to do so in a more relaxed way that helps to avoid the 
cascading failures that can arise from the straightforward 
greedy algorithm. Assume then that an initial coloring or 
other process has been performed to ?nd and/or identify a set 
of anchors to begin the matching process from in M1 in M2. 
The goal of the lazy-greedy algorithm is to incrementally 
build a mapping function, u, that matches quads in M1 to 
quads in M2. Initially, p. maps the two anchor quads in M1 in 
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M2 to each other (de?ning an edge in the dual graph). As the 
matching proceeds, the set of quads are tracked where the 
matching function u. can expand to more quads. Let S be the 
set of currently matched quads, that is, each quad q in M1 for 
which a matching quad, p.(q) has been determined. Since the 
process starts matching from a seed, at each iteration, S forms 
a contiguous block of quads in M1 with a corresponding set of 
matching quads, p.(S) in M2. Now, let S' be a subset of quads 
in S on the boundary of the contiguous submesh S, that is, 
quads that have adjacent unmatched neighbors. When grow 
ing the match at each iteration, note that it is only necessary to 
consider quads that are either vertex or edge adjacent to quads 
in S' or p.(S'), since the quads that are interior to the contiguous 
block have no adjacent unmatched quads. 

Let A be the set of unmatched quads in M1 that are vertex 
or edge adjacent to quads in S', and let B be the set of 
unmatched quads in M2 that are vertex or edge adjacent to 
quads in S'. For each quad q in A, let M(q) be the set of quads 
in B that could match with q, that is, each quad r in B such that 
r is adjacent to a quad p.(t) such that q is adjacent to t in the 
same way as r and p.(t) (i.e., across a corresponding vertex or 
edge adjacency). Now, create a compatibility graph L by 
de?ning, for each M(q), a vertex vhq for each quad in M(q). 
Note that same quad in B might be listed in different M(q) 
sets, in which case a different vertex in L may be created for 
each copy of the quad in the different M(q) sets. A vertex vhq 
is adjacent to vertex vias in L if: (a) q and s are adjacent across 
an edge in M1; and (b) the quads, r and t, corresponding 
respectively to vias are compatible in M2, meaning that if u. 
were extended by mapping q to r and s to t, then the submesh 
in M 1 consisting of q and s and all their adjacent quads in S' 
would be consistent (in the topological sense) with the sub 
mesh in M2 consisting of r andt and all their adjacent quads in 
p.(S'). Note, the nodes in L have degree at most 2. 
The lazy-greedy heuristic is to extend p. in each iteration by 

adding the matches de?ned by a longest path in L. Note, this 
is a greedy algorithm in the sense that it is augmenting the 
match using an optimization criterion that maximizes an 
objective function. But it is also a lazy algorithm in that it 
postpones performing a lot of potentially valid matches 
between quads in M1 in M2 just because they did not belong 
to the longest path in the compatibility graph L. The lazy 
greedy heuristic process is repeated until the current version 
of L contains no vertices. 
A bene?t of the lazy-greedy approach is that it allows the 

approximate matching process to match the quads around a 
small mismatching region even when the mismatch is caused 
by a compression of quads into individual edges. Such a 
compression causes the greedy algorithm to immediately 
march through these bad regions, whereas the lazy-greedy 
algorithm will only venture into such regions as a last resort. 
The lazy greedy algorithm or approach to approximate 

matching or similarity testing has been empirically tested on 
real-world quad meshes from a character database for an 
animation project. A ?rst assertion tested was that the com 
pressed graph generated by with the described skeleton graph 
algorithm signi?cantly compresses quad meshes in a way that 
preserves essential features. The following example results 
were achieved: (a) for a model of a bear character with 1070 
vertices and 2110 edges in the original mesh the skeleton 
graph had 202 vertices and 393 edges for reduction or com 
pression of 81 percent; (b) for a model of a shirt with 3099 
vertices and 6134 edges in the original mesh the skeleton 
graph had 518 vertices and 1015 edges for a reduction of 83 
percent; and (c) in a model of a body with 6976 vertices and 
13903 edges in the original mesh the skeleton graph had 2340 
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vertices and 4647 edges for a reduction of 66 percent. In these 
tests, the reduction percentages or compression factors aver 
aged around 75 percent. 
A signi?cant aspect of this compression may not be the 

storage savings (although the compression technique could 
be used for that purpose) since the regions bounded by edges 
of the skeleton graph are all structured meshes. Instead, these 
compressed graphs in the form of skeleton graphs are very 
useful to facilitate approximate matching processes. With this 
in mind, another assertion or aspect of the invention that was 
tested was that the lazy-greedy algorithm runs fast enough for 
most interactive modeling purposes. The running times for 
the matching process (or the approximate topological match 
ing algorithm) were determined for the same models tested 
for compression effectiveness. Exemplary results include: (a) 
for the bear model the matching time was 0.04 seconds; (b) 
for the shirt model the running time for approximate topo 
logical matching was 0.12 seconds; and (c) for the body 
model the running time was 1 .08 seconds. The running times 
for approximate matching were found generally to be at a 
second or less, which is suf?cient for most if not all interactive 
modeling purposes. Moreover, it signi?cantly speeds up prior 
processes that involved human input of a pair of edges to use 
as anchors, with some suggested embodiments using an algo 
rithm to determine anchors for starting points in a matching 
process between two models. 

Additionally, it is likely that the use of the lazy-greedy 
algorithm will produce or ?nd good approximate matches 
(e.g., identify larger matching regions and also, in some 
embodiments, identify the nonmatching or mismatched/ 
changed regions to facilitate manual transfer of attributes 
between just those nonmatching portions of models). In test 
ing, it was proven that the lazy-greedy algorithm was suc 
cessful in many cases (such as can be seen by the results 
shown in FIGS. 3, 5A, and 5B which provide an identi?cation 
of nonmatching regions with large portions of the models 
found to be matched such as with approximate topological 
matching). In a more theoretical sense, there may be a map 
ping between two simple, connected, well-formed quad 
meshes M1 in M2 such that each connected mismatched 
region has boundary complexity of at most 6. Suppose further 
that the medial axis of the matched region for M1 in M2 is 
connected and has a spanning three T such that each edge of 
T has a cross-sectional width of at least e>26. Then the lazy 
greedy algorithm succeeds in ?nding a match at least as good 
as this match. In addition, a subjective evaluation of the 
matches the algorithms described herein produced on a rep 
resentative character database demonstrated to the inventors 
that the algorithms empirically found good matches. For 
example, the quality of the matches produced by the algo 
rithms on the bears and the body described above in the 
compression results and run times above and the body can be 
seen in FIGS. 3-5B. 

Although the invention has been described and illustrated 
with a certain degree of particularity, it is understood that the 
present disclosure has been made only by way of example, 
and that numerous changes in the combination and arrange 
ment of parts can be resorted to by those skilled in the art 
without departing from the spirit and scope of the invention, 
as hereinafter claimed. 

We claim: 
1. A computer-based method for transferring attributes 

betweenpolygonal models based on topological connectivity, 
comprising: 

storing a ?rst model and a second model in memory, 
wherein the ?rst and second models each comprises a 
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polygonal mesh, and the memory further stores a set of 
attributes for at least the ?rst model; 

with a processor of a computer, determining a feature in 
each of the polygonal meshes of the ?rst and second 
models; 

with the processor, comparing topological connectivity of 
the ?rst and second models using the features as a start 
ing location; 

when the compared topological connectivity is identical, 
transferring at least a portion of the set of attributes for 
the ?rst model to the second model; and 

determining a pair of vertices in the ?rst model matching a 
pair of vertices in the second model, wherein the pairs of 
vertices are the features used as the starting locations for 
the comparing of the topological connectivity of the 
polygonal meshes corresponding to the ?rst and second 
models and wherein the comparing is performed using 
the polygonal meshes by working outward to neighbor 
ing vertices from the pairs of vertices to determine if 
connectivity is similar in the ?rst and second models. 

2. The method of claim 1, further comprising with the 
processor, operating a compressed graph generator to process 
the ?rst and second models to generate ?rst and second com 
pressed graphs comprising compressed versions of the ?rst 
and second models, wherein the comparing of the topological 
connectivity is performed on the ?rst and second compressed 
graphs. 

3. The method of claim 2, wherein the ?rst and second 
compressed graphs each comprise a number of vertices that is 
less than 50 percent of a number of vertices in the polygonal 
meshes associated with the ?rst and second models. 

4. The method of claim 2, wherein the compressed graphs 
comprise a skeleton graph or a motorcycle graph. 

5. The method of claim 2, wherein the pairs of vertices are 
used as starting locations for the comparing of the topological 
connectivity of the ?rst and second compressed graphs. 

6. The method of claim 5, wherein the determining of the 
pairs of vertices comprises labeling the vertices of ?rst and 
second compressed graphs generated from the ?rst and sec 
ond models, selecting a uniquely labeled one of the vertices in 
the ?rst compressed graph, and ?nding a matching one of the 
labeled vertices in the second compressed graph. 

7. A computer-based method for transferring attributes 
betweenpolygonal models based on topological connectivity, 
comprising: 

storing a ?rst model and a second model in memory, 
wherein the ?rst and second models each comprise a 
polygonal mesh, and the memory further stores a set of 
attributes for at least the ?rst model; 

with a processor of a computer, determining a feature in 
each of the polygonal meshes of the ?rst and second 
models; 

with the processor, comparing topological connectivity of 
the ?rst and second models using the features as a start 
ing location; 

when the compared topological connectivity is similar or 
identical, transferring at least a portion of the set of 
attributes for the ?rst model to the second model; and 

when the compared topological connectivity is at least 
partially dissimilar, processing the ?rst and second mod 
els to generate skeleton graphs and using the pairs of 
vertices applying a lazy-greedy algorithm to perform 
approximate topological matching of the ?rst and sec 
ond models. 

8. The method of claim 7, wherein the output of the 
approximate topological matching comprises a set of regions 
in the ?rst and second models with matching topological 




