1.7. Exercises

47

1.7 Exercises

Reinforcement

R-1.1

R-1.3
R-1.4
R-1.5

R-1.7

Graph the functions 12n, 6rlogn, n?, 3, and 2" using a logarithmic scale for
the x- and y-axes; that is, if the function value f(n) is y, plot this as a point with
x-coordinate at logn and y-coordinate at logy.

Algorithm A4 uses 10nlogn operations, while algorithm B uses n? operations.
Determine the value ng such that 4 is better than B for n > ny.

Repeat the previous problem assuming B uses n1/n operations.
Show that log®n is o(n'/3).

Show that the following two statements are equivalent:

(a) The running time of algorithm A4 is O(f(n)).

(b) In the worst case, the running time of algorithm 4 is O(f(n)).

Order the following list of functions by the big-Oh notation. Group together (for
example, by underlining) those functions that are big-Theta of one another.

6nlogn 29 loglogn log’n 2logn

22" [\/ﬁ‘l n0-01 l/n 4n3/2
3n%3 5n |2nlog’n| 2" nlogyn
4n n n*logn 4°¢" | /logn

Hint: When in doubt about two functions f(#) and g(n), consider log f(n) and
logg(n) or 2/1") and 28

For each function f(n) and time 7 in the following table, determine the largest size
n of a problem that can be solved in time ¢ assuming that the algorithm to solve
the problem takes f(n) microseconds. Recall that logn denotes the logarithm in
base 2 of n. Some entries have already been completed to get you started.

1 Second | 1 Hour | 1 Month | 1 Century
~ 10300000

logn
NG

n! 12

48

R-1.9

R-1.10

R-1.11
R-1.12
R-1.13
R-1.14

Chapter 1. Algorithm Analysis

Bill has an algorithm, find2D, to find an element x in an n x n array A. The
algorithm find2D iterates over the rows of 4 and calls the algorithm arrayFind,
of Algorithm 1.12, on each one, until x is found or it has searched all rows of 4.
What is the worst-case running time of find2D in terms of n? Is this a linear-time
algorithm? Why or why not?

Consider the following recurrence equation, defining 7'(n), as

4 ifn=1
T'(n) = { T(n—1)+4 otherwise.

Show, by induction, that 7'(n) = 4n.

Give a big-Oh characterization, in terms of z, of the running time of the Loopl
method shown in Algorithm 1.22.

Perform a similar analysis for method Loop2 shown in Algorithm 1.22.
Perform a similar analysis for method Loop3 shown in Algorithm 1.22.
Perform a similar analysis for method Loop4 shown in Algorithm 1.22.

Perform a similar analysis for method Loop5 shown in Algorithm 1.22.

Algorithm Loopl(n):

s 0

fori < 1tondo
S—8s+1i

Algorithm Loop2(n):

p—1

fori«— 1to2ndo
pepi
Algorithm Loop3(n):

p—1

for i — 1 to n® do
pepi
Algorithm Loop4(n):

s 0

fori«< 1to2ndo
for j — 1toido
S—8s+1i

Algorithm Loop5(n):

s 0

for i < 1 to n* do
for j — 1toido
S—8s+1i

Algorithm 1.22: A collection of loop methods.

1.7. Exercises

R-1.15

R-1.16
R-1.17
R-1.18
R-1.19
R-1.20
R-1.21
R-1.22
R-1.23
R-1.24

R-1.25

R-1.26

R-1.27

R-1.28

R-1.29

R-1.30

49

Show thatif f(n) is O(g(n)) and d(n) is O(h(n)), then the summation f(n) +d(n)
is O(g(n) + h(n)).

Show that O(max{f(n),g(n)}) = O(f(n) +g(n)).

Show that f(n) is O(g(n)) if and only if g(n) is Q(f(n)).

Show that if p(n) is a polynomial in n, then log p(n) is O(logn).

Show that (n+ 1) is O(n°).

Show that 2"+ is O(2").

Show that n is o(nlogn).

Show that 1? is w(n).

Show that r3logn is Q(n?).

Show that [f(n)] is O(f(n)) if f(n) is a positive nondecreasing function that is
always greater than 1.

Justify the fact that if d(n) is O(f(n)) and e(n) is O(g(n)), then the product
d(n)e(n) is O(f(n)g(n)).

What is the amortized running time of an operation in a series of n add operations
on an initially empty extendable table implemented with an array such that the
capacitylncrement parameter is always maintained to be [log(m + 1)], where m
is the number of elements of the stack? That is, each time the table is expanded
by [log(m+1)] cells, its capacitylncrement is reset to [log(m’ + 1)] cells, where
m is the old size of the table and m’ is the new size (in terms of actual elements
present).

Describe a recursive algorithm for finding both the minimum and the maximum
elements in an array 4 of n elements. Your method should return a pair (a,b),
where a is the minimum element and b is the maximum. What is the running
time of your method?

Rewrite the proof of Theorem 1.31 under the assumption that the the cost of
growing the array from size k to size 2k is 3k cyber-dollars. How much should
each add operation be charged to make the amortization work?

Plot on a semi-log scale, using the ratio test, the comparison of the set of points
S ={(1.1).(2.7), (4.30), (8,125), (16,510}, (32.2045), (64,8190)}

against each of the following functions:

a. f(n)=n
b. f(n) = n?
c. f(n)=n’

Plot on a log-log scale the set of points
S={(1,1),(2,7),(4,30),(8,125),(16,510),(32,2045),(64,8190) }.

Using the power rule, estimate a polynomial function f(n) = bn¢ that best fits
this data.

50

Chapter 1. Algorithm Analysis

Creativity
C-1.1

C-1.2

What is the amortized running time of the operations in a sequence of n opera-
tions P = p1p; ... py if the running time of p; is ©(i) if i is a multiple of 3, and is
constant otherwise?

Let P = pip;...p, be a sequence of n operations, each either a red or blue oper-
ation, with p; being a red operation and p;, being a blue operation. The running
time of the blue operations is always constant. The running time of the first red
operation is constant, but each red operation p; after that runs in time that is twice
as long as the previous red operation, p; (with j < i). What is the amortized time
of the red and blue operations under the following conditions?

a. There are always ©(1) blue operations between consecutive red operations.

b. There are always ©(,/n) blue operations between consecutive red opera-
tions.

c. The number of blue operations between a red operation p; and the previous
red operation p; is always twice the number between p; and its previous
red operation.

What is the total running time of counting from 1 to # in binary if the time needed
to add 1 to the current number i is proportional to the number of bits in the binary
expansion of 7 that must change in going from i to i + 1?

Consider the following recurrence equation, defining a function 7'(n):

1 ifn=1
I'(n)= { T(n—1)+n otherwise,
Show, by induction, that 7' (n) = n(n+1)/2.

Consider the following recurrence equation, defining a function 7'(n):

1 ifn=1
I'(n)= { T(n—1)+2" otherwise,
Show, by induction, that 7'(n) = 2"+1 — 1.

Consider the following recurrence equation, defining a function 7'(n):

1 ifn=1
T(n)= { 2T(n—1) otherwise,
Show, by induction, that 7'(n) = 2".

Al and Bill are arguing about the performance of their sorting algorithms. Al
claims that his O(nlogn)-time algorithm is a/ways faster than Bill’s O(n?)-time
algorithm. To settle the issue, they implement and run the two algorithms on
many randomly generated data sets. To Al’s dismay, they find that if n < 100,
the O(n?)-time algorithm actually runs faster, and only when n > 100 is the
O(nlogn)-time algorithm better. Explain why this scenario is possible. You
may give numerical examples.

1.7. Exercises

C-1.8

C-1.9

C-1.10
C-1.11

C-1.12
C-1.13

C-1.14

C-1.15

51

Communication security is extremely important in computer networks, and one
way many network protocols achieve security is to encrypt messages. Typical
cryptographic schemes for the secure transmission of messages over such net-
works are based on the fact that no efficient algorithms are known for factoring
large integers. Hence, if we can represent a secret message by a large prime
number p, we can transmit over the network the number r = p - g, where g > p
is another large prime number that acts as the encryption key. An eavesdropper
who obtains the transmitted number on the network would have to factor r in
order to figure out the secret message p.

Using factoring to figure out a message is very difficult without knowing the
encryption key ¢. To understand why, consider the following naive factoring
algorithm:

For every integer p such that 1 < p < r, check if p divides r. If so,
print “The secret message is p!” and stop; if not, continue.

a. Suppose that the eavesdropper uses the above algorithm and has a computer
that can carry out in 1 microsecond (1 millionth of a second) a division
between two integers of up to 100 bits each. Give an estimate of the time
that it will take in the worst case to decipher the secret message if has 100
bits.

b. What is the worst-case time complexity of the above algorithm? Since the
input to the algorithm is just one large number r, assume that the input size
n is the number of bytes needed to store r, that is, n = (log,)/8, and that
each division takes time O(n).

Give an example of a positive function f(n) such that f(n) is neither O(n) nor
Q(n).

Show that ¥, i is O(n?).

Show that 37, i/2" < 2.
Hint: Try to bound this sum term by term with a geometric progression.

Show that log;, f(n) is ®(log f(n)) if b > 1 is a constant.

Describe a method for finding both the minimum and maximum of » numbers
using fewer than 3n/2 comparisons.

Hint: First construct a group of candidate minimums and a group of candidate
maximums.

Suppose you are given a set of small boxes, numbered 1 to n, identical in every
respect except that each of the first i contain a pear]l whereas the remaining n — i
are empty. You also have two magic wands that can each test if a box is empty
or not in a single touch, except that a wand disappears if you test it on an empty
box. Show that, without knowing the value of i, you can use the two wands
to determine all the boxes containing pearls using at most o(n) wand touches.
Express, as a function of n, the asymptotic number of wand touches needed.

Repeat the previous problem assuming that you now have £ magic wands, with
k> 2 and k < logn. Express, as a function of n and £, the asymptotic number of
wand touches needed to identify all the magic boxes containing pearls.

52

C-1.16

C-1.17

C-1.18

C-1.19

C-1.20

C-1.21

C-1.22
C-1.23
C-1.24

Chapter 1. Algorithm Analysis

An n-degree polynomial p(x) is an equation of the form
n .
p(x) = z aixl7
i=0

where x is a real number and each ¢; is a constant.

a. Describe a simple O(n?) time method for computing p(x) for a particular
value of x.
b. Consider now a rewriting of p(x) as

p(x) =ao+x(ar +x(az+x(az+ -+ +x(ay—1+xa,)--))),

which is known as Horner’s method. Using the big-Oh notation, character-
ize the number of multiplications and additions this method of evaluation
uses.

Consider the following induction “proof™ that all sheep in a flock are the same
color:

Base case: One sheep. It is clearly the same color as itself.

Induction step: A flock of n sheep. Take a sheep, a, out of the flock. The
remaining n — 1 are all the same color by induction. Now put sheep a back
in the flock, and take out a different sheep, b. By induction, the n — 1 sheep (now
with a in their group) are all the same color. Therefore, a is the same color as all
the other sheep; hence, all the sheep in the flock are the same color.

What is wrong with this “proof™?

Consider the following “proof” that the Fibonacci function, F(n), defined as
F()=1,F2)=2,F(n)=F(n—1)+F(n—-2),is O(n):

Base case (n < 2): F(1) =1, which is O(1), and F(2) = 2, which is O(2).
Induction step (n > 2): Assume the claim is true for n’ < n. Consider n. F(n) =
F(n—1)+F(n—2). By induction, F(n—1)isO(n—1) and F(n—2) is O(n—2).
Then, F(n) is O((n— 1) 4 (n—2)), by the identity presented in Exercise R-1.15.
Therefore, F'(n) is O(n), since O((n— 1)+ (n—2)) is O(n).

What is wrong with this “proof™?

Consider the Fibonacci function, F'(n), from the previous exercise. Show by
induction that F'(n) is Q((3/2)").

Draw a visual justification of Theorem 1.13 analogous to that of Figure 1.11b for
the case when # is odd.

An array A contains n — 1 unique integers in the range [0,n — 1], that is, there is
one number from this range that is not in 4. Design an O(n)-time algorithm for
finding that number. You are allowed to use only O(1) additional space besides
the array A itself.

Show that the summation Y, [log, /] is O(nlogn).
Show that the summation Y, [log, /] is Q(nlogn).

Show that the summation ¥}, [log,(n/i)] is O(n). You may assume that n is a
power of 2.

Hint: Use induction to reduce the problem to that for n/2.

1.7. Exercises

C-1.25

C-1.26

C-1.27

C-1.28

C-1.29

C-1.30

C-1.31

C-1.32

C-1.33

53

An evil king has a cellar containing n bottles of expensive wine, and his guards
have just caught a spy trying to poison the king’s wine. Fortunately, the guards
caught the spy after he succeeded in poisoning only one bottle. Unfortunately,
they don’t know which one. To make matters worse, the poison the spy used was
very deadly; just one drop diluted even a billion to one will still kill someone.
Even so, the poison works slowly; it takes a full month for the person to die.
Design a scheme that allows the evil king to determine exactly which one of
his wine bottles was poisoned in just one month’s time while expending at most
O(logn) of his taste testers.

Let S be a set of n lines such that no two are parallel and no three meet in the
same point. Show by induction that the lines in S determine ©(n?) intersection
points.

Suppose that each row of an n x n array 4 consists of 1’s and 0’s such that, in
any row of 4, all the 1’s come before any 0’s in that row. Assuming 4 is already
in memory, describe a method running in O(n) time (not O(n?) time) for finding
the row of 4 that contains the most 1’s.

Suppose that each row of an n X n array 4 consists of 1’s and 0’s such that, in any
row i of 4, all the 1’s come before any 0’s in that row. Suppose further that the
number of 1’s in row i is at least the number in row i+ 1, fori =0,1,...,n—2.
Assuming 4 is already in memory, describe a method running in O(n) time (not
O(n?) time) for counting the number of 1’s in the array 4.

Describe, using pseudo-code, a method for multiplying an n x m matrix 4 and
an m x p matrix B. Recall that the product C = 4B is defined so that C[i][/] =
Si Ali][k] - B[K][j]. What is the running time of your method?

Give a recursive algorithm to compute the product of two positive integers m and
n using only addition.

Give complete pseudo-code for a new class, ShrinkingTable, that performs the
add method of the extendable table, as well as methods, remove(), which re-
moves the last (actual) element of the table, and shrink ToFit(), which replaces
the underlying array with an array whose capacity is exactly equal to the number
of elements currently in the table.

Consider an extendable table that supports both add and remove methods, as de-
fined in the previous exercise. Moreover, suppose we grow the underlying array
implementing the table by doubling its capacity any time we need to increase the
size of this array, and we shrink the underlying array by half any time the number
of (actual) elements in the table dips below N /4, where N is the current capacity
of the array. Show that a sequence of » add and remove methods, starting from
an array with capacity N = 1, takes O(n) time.

Consider an implementation of the extendable table, but instead of copying the
elements of the table into an array of double the size (that is, from N to 2N) when
its capacity is reached, we copy the elements into an array with [v/N] additional
cells, going from capacity N to N + [v/N]. Show that performing a sequence
of n add operations (that is, insertions at the end) runs in ©(n3/?) time in this
case.

54

Chapter 1. Algorithm Analysis

Projects

P-1.1 Program the two algorithms, prefixAveragesl and prefixAverages2 from Sec-
tion 1.4, and perform a careful experimental analysis of their running times. Plot
their running times as a function of their input sizes as scatter plots on both a
linear-linear scale and a log-log scale. Choose representative values of the size
n, and run at least five tests for each size value » in your tests.

P-1.2 Perform a careful experimental analysis that compares the relative running times
of the methods shown in Algorithm 1.22. Use both the ratio test and the power
test to estimate the running times of the various methods.

P-1.3 Implement an extendable table using arrays that can increase in size as elements
are added. Perform an experimental analysis of each of the running times for
performing a sequence of n add methods, assuming the array size is increased
from N to the following possible values:

a. 2N

b. N+ [VN]
¢. N+ [logN]
d. N+100.

Chapter Notes

The topics discussed in this chapter come from diverse sources. Amortization has been
used to analyze a number of different data structures and algorithms, but it was not a topic
of study in its own right until the mid 1980°s. For more information about amortization,
please see the paper by Tarjan [201] or the book by Tarjan [200].

Our use of the big-Oh notation is consistent with most authors’ usage, but we have
taken a slightly more conservative approach than some. The big-Oh notation has prompted
several discussions in the algorithms and computation theory community over its proper
use [37, 92, 120]. Knuth [118, 120], for example, defines it using the notation f(n) =
O(g(n)), but he refers to this “equality” as being only “one way,” even though he mentions
that the big-Oh is actually defining a set of functions. We have chosen to take a more stan-
dard view of equality and view the big-Oh notation truly as a set, following the suggestions
of Brassard [37]. The reader interested in studying average-case analysis is referred to the
book chapter by Vitter and Flajolet [207].

We include a number of useful mathematical facts in Appendix A. The reader in-
terested in further study into the analysis of algorithms is referred to the books by Gra-
ham, Knuth, and Patashnik [90], and Sedgewick and Flajolet [184]. The reader interested
in learning more about the history of mathematics is referred to the book by Boyer and
Merzbach [35]. Our version of the famous story about Archimedes is taken from [155].
Finally, for more information about using experimentation to estimate the running time
of algorithms, we refer the interested reader to several papers by McGeoch and coau-
thors [142, 143, 144].

