1. After the specified sequence of operation we will have the structure in the figure below.
2. The idea is to do a simultaneous binary search on both lists, where we keep the two indices summing to $k - 1$. The details are given in the python code below.

```python
def k_small(A, B, k):
    n = len(A)
    m = len(B)

    # Handle base cases.
    if n == 0:
        return B[k - 1]
    if m == 0:
        return A[k - 1]
    if n + m == k:
        if A[n - 1] < B[m - 1]:
            return B[m - 1]
        else:
            return A[n - 1]

    # Set starting indices
    i = min((n - 1) / 2, k - 1)
    j = k - 1 - i
    # Cap j if too big
    if j >= m:
        j = m - 1
        i = k - 1 - j

    # Recurse
    if A[i] <= B[j]:
        if j == 0:
            return A[i]
        elif B[j - 1] <= A[i]:
            return A[i]
        else:
            return k_small(A[i:n], B[0:j], k - i)
    else:
        if i == 0:
            return B[j]
        elif A[i - 1] <= B[j]:
            return B[j]
        else:
            return k_small(A[0:i], B[j:m], k - j)
```
3. Construct a sequence of lists L_n by $L_0 = [0]$, $L_n = [n] + L_{n-1}$ when n is odd, and $L_n = L_{n-1} + [n]$ when n is even. So for example $L_5 = [5, 3, 1, 0, 2, 4]$. For this family of lists the pivots will be 1, 2, 3, 4,... in order. This will give the $\Theta(n^2)$ runtime desired.

4. If we represent sets with bit vectors as proposed in the problem, then bitwise and computes the intersection, bitwise or computes the union, and bitwise not computes the complement of a set. For set difference we use the formula $A \setminus B = A \cap \overline{B}$ where \overline{B} is the complement of B. If we use a single word to store the bit vector, then all operations are $O(1)$. However, a more precise run time is $O(n/w)$ where w is the number of bits that can fit in a single word.

5. First we modify the merge(A, B) function in the merge sort algorithm. Every time that we take an element from B when A is nonempty there is an inversion. So we will count this event, and we will have the merge function return the number of inversions along with the merged list. Now we modify the sort function so that it returns the number of inversions along with the sorted list. Like before we will split the list into even halves, call sort on each half and merge the two halves. When the base case of a single element list or empty list happens we return zero inversions. To return the inversion count we sum the values returned from the two recursive calls to sort together with the value returned by merge.