1. Let L be the language of all string of balanced parentheses, that is, all strings of the characters "(" and ")" such that each "(" has a matching ")". Use the Pumping Lemma to show that L is not regular.

Assume that L is regular. Then by the Pumping Lemma, there is some pumping length n, such that any word w in L of length at least n can be split into $w = xyz$ satisfying the following conditions:

- $|xy| \leq n$,
- $|y| > 0$,
- $xy^iz \in L$ for all $i > 0$.

We let w be the word with n left parentheses, followed by n right parentheses. Then by the first condition we know that y consists only of left parentheses. By the second condition, we know that y is nonempty. So the string $xyyz$ must have more left parentheses than right parentheses. Therefore, it must be unbalanced, so the third condition of the pumping lemma fails.

Thus L cannot be regular. QED.

2. Let $L = \{0^n1^{2n}|n > 1\}$. Show that L is not regular.

Assume L is regular. Let p be the pumping length, and let w be the word 0^p1^{2p}. Then when we break our word into $w = xyz$ as in the pumping lemma, we know that $|xy| \leq p$, and that $|y| \geq 0$. Therefore, y contains only zeros, and is nonempty.

Now consider the string $w' = xyyz$. This will have more zeros than w, but the same number of ones. Therefore, it cannot be in the language. This contradicts the pumping lemma, so L cannot be regular. QED.

3. Given two languages, L and M, define the exclusive-or of L and M as the set of all strings w such that w is in L and not in M or w is in M and not in L. Show that the exclusive-or of two regular languages is regular.

Let D_L be the DFA that accepts L, and let D_M be the DFA that accepts M. Then we will construct a DFA that accepts the exclusive-or of L and M.

We use the product DFA construction, which builds a DFA whose states are all of the pairs
of states in D_L and D_M. Then we make a state in our product DFA a final state if and only if exactly one of its components is a final state in its original DFA.

Thus this DFA will accept a string whenever exactly one of the original DFA’s accepts. QED.

4. Suppose L is a regular language over the alphabet $\{0,1\}$. Describe an algorithm to test whether $L = \{0,1\}^*$.

We perform a depth-first search on the DFA for L, to see if any rejecting state is reachable from the start state. If so, then L is not $\{0,1\}^*$. But otherwise, every string must be accepted, so $L = \{0,1\}^*$.

5. Give an algorithm to tell, for two regular languages L and M over the alphabet $\{0,1\}$, whether there is a string from this same alphabet that is in neither L nor M.

Let D_L be a DFA accepting L, and let D_M be a DFA accepting D_M. We build the product DFA D for D_L and D_M, and set the final states of D to be those states in which both components are not final states. Then a string is accepted by D if and only if it is rejected by both D_L and D_M.

Finally, we test if the language of D is empty. If so, then $L \cup M = \{0,1\}^*$. Otherwise, we can find a string that is not in L or M.