CS 162 — Automata Theory — Winter 2014 — Goodrich — Midterm 2

Name:			
ID:			
1:			
2:			
3:			
4:			
5:			
6:			
total:			

1. (50 points). General Concepts.					
(a) How is a nondeterministic Turing machine's transition deterministic Turing machine?	function	different	than	that	for a

(b) What is the Church-Turing thesis?

2	(50)	points))	Unde	ecida	bility
4.	(50	pomis,	, .	Onde	sciua	DIII oy.

(a) Draw a Venn diagram that illustrates the relationships between the following classes of languages: regular languages, context-free languages, decidable languages, Turing-recognizable languages.

(b) Give an example of a language that is undecidable. (You don't need to prove that it is undecidable, however.)

3. (50 points). Countability. Show that the set, $\{3,6,9,12,15,\ldots\}$, of positive multiples of 3 is countable.

4. (50 points). Context-free Languages. Use the pumping lemma for context-free languages to show that the language $L=\{1^n2^n3^n\mid n\geq 1\}$ is not context free.

5. (50 points). Turing Machines. Show that the language $L = \{1^n 2^n 3^n \mid n \geq 1\}$ is decidable by giving a high-level of a description of a Turing Machine that accepts strings in L and rejects strings not in L.

6. (50 points). Universal Turing Machines. Consider the language,

 $F_{TM} = \{(M, w, n) \mid M \text{ is a Turing Machine and } M \text{ accepts the string } w \text{ in at most } n \text{ steps}\}.$

Is ${\cal F}_{TM}$ decidable? Why or why not? (Prove your answer.)